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a b s t r a c t 

When choosing a portfolio of projects with a multi-attribute weighting model, it is necessary to elicit 

trade-off statements about how important these attributes are relative to each other. Such statements 

correspond to weight constraints, and thus impact on which project portfolios are potentially optimal or 

non-dominated in view of the resulting set of feasible attribute weights. In this paper, we extend earlier 

preference elicitation approaches by allowing the decision maker to make direct statements about the 

selection and rejection of individual projects. We convert such project preference statements to weight 

information by determining the weights for which (i) the selected project is included in all potentially 

optimal or non-dominated portfolios, or (ii) the rejected project is not included in any potentially optimal 

or non-dominated portfolio. We prove that the two complementary selection rules will exclude exactly 

the same set of weights. However, analyses that apply the dominance structure often lead to multiple, 

mutually exclusive feasible weight sets, and therefore the approach based on potential optimality is more 

relevant for practical decision analysis. We also propose ex ante value of information measures to guide 

the elicitation of project preference statements, and illustrate our results by analyzing a real case on the 

selection of infrastructure maintenance projects. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

The decision of allocating resources to a subset of many propos-

ls is important in public administration and private firms which

aunch new products, invest in infrastructure projects and make

ommitments to policy actions. For this problem class, Portfolio

ecision Analysis (PDA) ( Salo, Keisler, & Morton, 2011 ) offers a

ollection of theory and methods. The use of PDA methods for

roject portfolio selection is based on (i) the development of a

ecision model which captures the salient properties of the avail-

ble project proposals and the preferences of the Decision Maker

DM) for risk and multiple objectives, and (ii) the solution of a

athematical (integer) optimization problem which helps to de-

ermine the most preferred portfolios subject to the relevant con-

traints. PDA methods are widely employed in practice, and nu-

erous high-impact applications have been reported in contexts
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uch as R&D project selection ( Grushka-Cockayne, de Reyck, & De-

raeve, 2008; Phillips & Bana e Costa, 2007; Toppila, Liesiö, & Salo,

011 ), healthcare capital budgeting ( Kleinmuntz, 2007 ), military

esource allocation ( Ewing, Tarantino, & Parnell, 2006 ), and infras-

ructure asset management ( Mild, Liesiö, & Salo, 2015 ). 

Project portfolio selection usually involves multiple attributes

or evaluating the proposals. In order to lower the DM’s cognitive

oad in providing information about the exact attribute trade-offs

weights), much research has been carried out to develop methods

n which the DM can provide incomplete preference information

 Argyris, Figueira, & Morton, 2011; Fliedner & Liesio, 2016; Liesiö,

ild, & Salo, 20 07; 20 08; Lourenço, Morton, & Bana e Costa, 2012 ).

any of these methods resemble those for choosing the best alter-

ative out of many proposals ( Argyris, Morton, & Figueira, 2015;

azen, 1986; Punkka & Salo, 2013; Salo & Hämäläinen, 1992; We-

er, 1987 ). For instance, instead of requiring the DM to provide ex-

ct attribute weights, she can make a holistic assessment of two

real or hypothetical) projects and state that she prefers the first

roject to the second. Such a statement corresponds to a linear

eight constraint that bounds the set of feasible weights. 
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With incomplete preference information, no portfolio is typ-

ically optimal for all feasible weights. Hence, plenty of research

has focused identifying portfolios that are defensible alterna-

tives in view of incomplete information. Probably the two most

widely used concepts are non-dominated and potentially optimal

portfolios (see, e.g. Liesiö et al., 2007; Lourenço et al., 2012; Liesiö

& Punkka, 2014; Argyris et al., 2015; Fliedner & Liesio, 2016 ). The

concepts are not identical: A feasible portfolio is non-dominated

(or efficient) if no other feasible portfolio provides greater or equal

value for all feasible weights, whereas a potentially optimal (also

convex efficient) maximizes the overall value for some feasible

weights. Both of these solution concepts can be used to provide

well-founded decision recommendations on the project-level. In

particular, there usually exists projects that are included in all of

the potentially optimal or non-dominated portfolios. Such projects

should be selected, because if the available incomplete information

were to be refined so that the feasible weight space would contain

a single weight vector, the resulting optimal portfolio for this

weight vector would contain all such projects. Conversely, based

on the same rationale, all projects which do not belong to any

potentially optimal or non-dominated portfolio should be rejected.

Many decision support tools applied in practice allow the DM to

iteratively select or reject projects included in some but not all of

the non-dominated/potentially optimal portfolios, to construct the

final portfolio ( Kleinmuntz, 2007; Mild et al., 2015 ). These tools are

heuristic in the sense that they do not model what implications

these project preference statements have on the set of feasible

weights and, in fact, the current literature offers no formal models

to capture such implications. This can be seen as a major short-

coming, because such models could be used to inform DM about

implicit judgments on the attributes’ importance that are implied

by the project preference statements, assuming that the model is

consistent. Furthermore, such information would be needed to ex-

amine whether the project preference statements are consistent

with preferences elicited through standard trade-off questions in-

volving project or portfolio consequences. 

The importance of analyzing the implications of project pref-

erence statements on the set of feasible attribute weights is fur-

ther motivated by the apparent cognitive complexity of making

such statements. Even in a simple setting with a linear portfolio

value function, a DM selecting a project into the portfolio has to, in

theory, simultaneously take into account the project’s score profile

across all attributes, how this profile is in line with attributes’ im-

portance, and consider the project resource consumption. In more

complicated problems with non-linear portfolio value function and

project interactions, the DM may also have to consider how well

the project consequences supplement those of other projects in-

cluded in the portfolio, and whether including the project en-

ables utilizing some synergy effects. Despite these general chal-

lenges, it is possible that some decision support processes could

benefit from the use of project preference statements if proper

methodological support was available. In fact, behavioral research

on standard multiattribute single alternative choice problems sug-

gests that holistic preference elicitation can lead to more consistent

weights than direct methods ( Korhonen, Silvennoinen, Wallenius, &

Öörni, 2013 ). 

In this paper, we take the first step to bridge this apparent gap

in the PDA toolset by developing approaches for modeling project

preference statements as sets of feasible weights. Specifically, we

consider two alternative approaches based on analyzing sets of

(i) potentially optimal portfolios and (ii) non-dominated portfolios.

We identify challenges with the approach based on analyzing sets

of non-dominated portfolios, and show that it is as informative as

the approach that analyzes potentially optimal portfolios. We also

show how commonly used project performance indexes can be ex-

tended to build useful ex ante measures that support the elicita-
ion of additional project preference statements, and illustrate how

hese indexes can be used to guide the preference elicitation pro-

ess. Finally, we demonstrate our approaches by analyzing a high-

mpact application on infrastructure asset management. 

Our contributions advance the theory and practice of PDA in

everal ways. First, to our best knowledge, we provide the first

heoretical basis for modeling project preference statements by

sing the concepts of dominance and potential optimality to de-

ive weight information in portfolio problems. Given that mod-

ling preference statements concerning selection and rejection

f multi-attribute alternatives in choose-one-out-of-many decision

roblems has attracted much methodological and applied research

 Corrente, Greco, Kadzi ́nski, & Słowi ́nski, 2013; Greco, Mousseau,

 Słowi ́nski, 2008; Kadzi ́nski & Słowi ́nski, 2015; Kadzi ́nski & Ter-

onen, 2013a; 2013b; Kadzi ́nski, Tervonen, & Figueira, 2015; Spliet

 Tervonen, 2014; Tervonen, Sepehr, & Kadzi ́nski, 2015 ), this con-

ribution has the potential to open a new stream of methodologi-

al PDA research. Second, modeling project preference statements

s constraints on the feasible attribute weights makes it possi-

le to use these statements in combination with other approaches

or eliciting incomplete weight information (see e.g. Liesiö et al.,

007 ). Finally, our methods can be readily implemented to enhance

xisting processes and decision support tools for multi-attribute

roject portfolio selection. 

The approach developed here is based on the assumption that

roject preference statements reveal meaningful information about

he attribute weights. By meaningful we mean, that the set of fea-

ible weights implied by the inclusion of a project in, or exclusion

f a project from the portfolio, is consistent with the DM’s prefer-

nces on trade-offs among the attributes. Whether this assumption

olds in practice can be debated, but the theory developed here

rovides techniques for testing this assumption empirically. In par-

icular, the models developed in this paper can be used to trans-

ate project preference statements into a set of feasible attribute

eights. This set can be then compared to that obtained from the

M’s preference statements on attribute trade-offs. 

The rest of the paper is structured as follows. Section 2 intro-

uces the additive value model for multi-attribute project port-

olio selection and defines the concepts of potential optimality

nd dominance. Section 3 models project preference statements in

erms of constraints on the set of feasible weights, and examines

he structure of the resulting feasible weight set. Section 4 devel-

ps measures for assessing the ‘strength’ of these statements in

roviding additional preference information, and shows how these

easures can be used to support portfolio decision processes.

ection 5 addresses computational aspects. Section 6 presents an

xample analysis based on real-life data, and Section 7 concludes

y discussing the main results. 

. Multiattribute project portfolio selection with incomplete 

reference information 

Let there be m project proposals X = { x 1 , . . . , x m } which are

valuated on multiple attributes i = 1 , . . . , n, and denote the per-

ormance (score) of project x j on attribute i by v j 
i 
. A project port-

olio p ⊆ X is a subset of the m project proposals, and the set of

ll possible portfolios is the power set P = 2 X . In what follows, we

ssume that the overall value of a portfolio can be expressed as 

 (p, w ) = 

n ∑ 

i =1 

w i V i 

( ∑ 

x j ∈ p 
v j 

i 

) 

, (1)

here the attribute-specific portfolio value functions V 1 , . . . , V n 
re assumed to be strictly increasing. The functional (1) form

an model non-constant marginal attribute-specific portfolio val-

es, and is thus more general than the widely applied additive-
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inear value function V (p, w ) = 

∑ 

x j ∈ p 
∑ n 

i =1 w i v 
j 
i 

( Golabi, Kirkwood,

 Sicherman 1981 ). This is a special case of (1) in which each V i ( ·)
s an identity function. 

We assume that feasible portfolios are those which satisfy q lin-

ar inequalities defined by the coefficient matrix A ∈ R 

q ×m ( a 
j 

l 
=

 A ] l j ) and the vector B = [ b 1 , . . . , b q ] 
T ∈ R 

q . That is, 

 F = { p ∈ P | Az(p) ≤ B } , (2)

here z ( ·) is a bijection z : P → {0, 1} m such that z j (p) = 1 if x j ∈
 and z j (p) = 0 if x j �∈ p . For instance, with m = 5 projects, portfo-

io p = { x 1 , x 2 , x 4 } corresponds to z(p) = [1 , 1 , 0 , 1 , 0] T . For exam-

le, if there is a single budget constraint R and the cost of the j -th

roject is c j , then we have l = 1 , a 
j 
1 

= c j and b 1 = R in (2) . Non-

dditive synergy and cannibalization effects among projects can be

odeled through linear constraints, which involve dummy projects

hat represent project interactions (see, e.g., Stummer & Heiden-

erger 2003 ). 

Given precise values for the attribute weights w, the best feasi-

le portfolio is the one which maximizes the overall value (1) . This

ortfolio is the solution to the Non-linear Zero-One Programming

roblem 

ax 
p∈ P F 

V (p, w ) 

= max 
z(p) 

{ 

n ∑ 

i =1 

w i V i 

( 

m ∑ 

j=1 

z j (p) v j 
i 

) 

| Az(p) ≤B, z(p) ∈ { 0 , 1 } m 

} 

. (3) 

.1. Incomplete preference information 

Providing complete weight information can be cognitively de-

anding for the DM ( Weber & Borcherding, 1993 ). Several meth-

ds have been proposed to lower the cognitive load by allowing

he DM to provide incomplete preference statements (see e.g. Salo

 Hämäläinen, 1992; Park & Kim, 1997; Mustajoki, Hämäläinen, &

alo, 2005 ). These define linear constraints that must be satisfied

y the closed set of feasible weights W ⊆ W 

0 . For instance, with

 = 2 attributes, stating that improving the project’s score from the

orst to the best level on the first attribute is (weakly) preferred

ver the similar swing on the second attribute corresponds to the

easible weight set W = { w ∈ W 

0 | w 1 ≥ w 2 } . Often such sets are

onvex, although incomplete ordinal statements can lead to non-

onvex sets as well ( Punkka & Salo, 2013 ). 

In line with existing theory, we model incomplete preference

nformation through a non-empty, closed set of feasible weights

 ⊆ W 

0 , which is derived from all preference statements, includ-

ng the project preference statements. We do not, however, require

he feasible weight set to be convex or even connected, but in-

tead assume that the set has a non-empty interior that spans

he whole set. Specifically, the interior of the set W , denoted by

nt( W ), includes those points w ∈ W around which one can form
Fig. 1. Three subsets of the 2-simplex W 

0 such tha
n ε–neighborhood N ε (w ) = { w 

′ ∈ W 

0 | || w 

′ − w || 2 < ε} contained

ntirely in W , i.e., 

nt (W ) = { w ∈ W | ∃ ε > 0 s.t. N ε (w ) ⊂ W } . 
n turn, points w ∈ W 

0 whose ε–neighborhood includes a point

rom the set W for any positive value of ε make up the set’s clo-

ure cl( W ), i.e., 

l (W ) = { w ∈ W 

0 | N ε (w ) ∩ W � = ∅ ∀ ε > 0 } . 
ith these concepts, a feasible weight set is defined to be a non-

mpty subset of W 

0 , which has its interior’s closure equal to the

et itself. 

efinition 1. The set of feasible weight sets is 

 = { W ⊆ W 

0 | cl ( int (W )) = W, W � = ∅} . 
Fig. 1 illustrates the structure of W . The set W 

1 consisting of

wo points and a line segment does not belong to W . This is since

ts interior is an empty set, which implies that the closure is also

mpty. The set W 

2 consists of two triangles and a separate line

egment, but the interior of W 

2 consists only of interior points of

he two triangles. Hence, the closure does not include the line seg-

ent and therefore W 

2 does not belong to W . Only the set W 

3 be-

ongs to W since any point in W 

3 is arbitrarily close to an interior

oint (and, equivalently, closure of its interior is the set itself). 

The requirement stated in Definition 1 poses no limits for prac-

ical application of such sets in modeling preferences. Feasible

eight sets proposed in the literature almost without exception

atisfy the assumptions of W . Any DM preferences that are mod-

led as regions in the weight space that do not contain the neigh-

oring interior points, such as the line segment in Fig. 1 , can be

xtended to include arbitrarily small neighborhoods without af-

ecting the portfolio decision recommendations. This extended set

ould then belong to W . With incomplete preference informa-

ion, the portfolio which solves problem (3) may be different for

ifferent selections of weight vector w from the set of feasible

eights. In this case, it is warranted to focus on the non-dominated

ortfolios. 

efinition 2. Portfolio p dominates p ′ with respect to weight set

 ∈ W, denoted by p �W 

p ′ , if V (p, w ) ≥ V (p ′ , w ) for all w ∈ W and

 (p, w ) > V (p ′ , w ) for some w ∈ W . Furthermore, the set of non-

ominated portfolios w.r.t. weight set W is 

 N (W ) = { p ∈ P F | � p ′ ∈ P F such that p ′ �W 

p} . 
The concept of dominance is illustrated in Fig. 2 , which shows

our feasible portfolios that are all non-dominated except for p 4 .

f the DM were to select a dominated portfolio, then one could

dentify a non-dominated portfolio which yields at least as much

alue for all weights and more value for some weights. 

A portfolio can be non-dominated even if it is not optimal for

ny weights (cf. portfolio p 2 in Fig. 2 ). Another widely used opti-
t W 

1 ⊂ W 

2 ⊂ W 

3 , and only W 

3 belongs to W . 
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Fig. 2. Attribute-specific values of portfolios p 1 , ..., p 4 (left) and their overall values as a function of attribute weights w ∈ W = W 

0 = { (w 1 , w 2 ) ∈ R 2 + | w 1 + w 2 = 1 } (right). 

The set of non-dominated portfolios is P N (W ) = { p 1 , p 2 , p 3 } and the set of potentially optimal portfolios is P O (W ) = { p 1 , p 3 } . 
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mality concept under incomplete information is potential optimal-

ity, which focuses on portfolios that have the highest overall value

for some weights ( Hazen, 1986 ). However, there can be situations

in which portfolios have an equal value for some set of weights

W 

′ ⊂ W , while one dominates the other w.r.t. W (cf. portfolio p 4 in

Fig. 2 ). Hence, we define a portfolio to be potentially optimal if it

has the highest value for a subset of feasible weights with a non-

empty interior. 

Definition 3. A feasible portfolio p ∈ P F is potentially optimal w.r.t.

 ∈ W if 

int ({ w ∈ W | V (p, w ) ≥ V (p ′ , w ) ∀ p ′ ∈ P F } ) � = ∅ . (4)

The set of potentially optimal portfolios w.r.t. W is denoted by P O ( W ).

In particular, if a portfolio is potentially optimal with regard to

some feasible weight set W ∈ W, then the closure of set (4) , i.e., 

ˆ 
 (p, W ) = cl 

(
int 

({ w ∈ W | V (p, w ) ≥ V (p ′ , w ) ∀ p ′ ∈ P F } 
))

, (5)

also belongs to the set of feasible weight sets W given by

Definition 1 . Furthermore, for any feasible weight set in W there

always exists at least one potentially optimal portfolio, and each

potentially optimal portfolio is also non-dominated, as stated by

the following lemma. 

Lemma 1. Let W ∈ W . Then ∅ � = P O ( W ) ⊆ P N ( W ) . 

Portfolios that are optimal for a set of weights with an empty

interior are not included in the set P O ( W ). This is a modeling

choice which has the potential drawback of excluding some port-

folios that the DM might be interested in. However, arguably these

excluded portfolios are not particularly robust as the set of weights

for which they maximize value has a dimension less than n . In

particular, the optimality of these portfolios is sensitive to er-

rors in the preference elicitation. Furthermore, for any weights for

which these excluded portfolios maximize value, there exists an-

other portfolio in the set P ( W ) that yields equal value. 
O 
Both the set of potentially optimal and the set of non-

ominated portfolios can be used to provide recommendations for

roject selection and rejection. Specifically, projects can be classi-

ed into (i) core projects that are included in all, (ii) exterior projects

hat are not included in any, and (iii) borderline projects that are

ncluded in some but not all potentially optimal or non-dominated

ortfolios ( Liesiö et al., 2007 ). 

efinition 4. The sets of core, borderline and exterior projects

ased on potentially optimal portfolios w.r.t. W ∈ W are 

X 

C 
O (W ) = { x k ∈ X | x k ∈ p ∀ p ∈ P O (W ) } 

X 

B 
O (W ) = { x k ∈ X | ∃ p, p ′ ∈ P O (W ) such that x k ∈ p, x k �∈ p ′ } 
 

E 
O (W ) = { x k ∈ X | x k �∈ p ∀ p ∈ P O (W ) } , 
espectively. 

efinition 5. The sets of core, borderline and exterior projects

ased on non-dominated portfolios w.r.t. W ∈ W are 

X 

C 
N (W ) = { x k ∈ X | x k ∈ p ∀ p ∈ P N (W ) } 

X 

B 
N (W ) = { x k ∈ X | ∃ p, p ′ ∈ P N (W ) such that x k ∈ p, x k �∈ p ′ } 
 

E 
N (W ) = { x k ∈ X | x k �∈ p ∀ p ∈ P N (W ) } , 
espectively. 

Table 1 identifies the five projects x 1 , . . . , x 5 in Fig. 2 as core,

orderline or exterior projects, based on both potentially optimal

nd non-dominated portfolios. By Lemma 1 , the potentially opti-

al portfolios are also non-dominated, and thus the classification

f projects has the following general properties. 

emma 2. Let W ∈ W . Then 

X 

C 
N (W ) ⊆ X 

C 
O (W ) 

X 

B 
N (W ) ⊇ X 

B 
O (W ) 

 

E 
N (W ) ⊆ X 

E 
O (W ) . 

As a result of introducing additional preference statements, the

evised set of feasible weights W 

′ may become smaller but not
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Table 1 

Project classification in the example of Fig. 2 . For the weight set W 

′ = { (w 1 , w 2 ) ∈ W 

0 | w 1 ≥ 0 . 5 } the classification based on non-dominated and potentially optimal portfolios 

is equivalent since P N (W 

′ ) = P O (W 

′ ) = { p 1 } . 
v j 

1 
v j 

2 
X C N (W 

0 ) X B N (W 

0 ) X E N (W 

0 ) X C O (W 

0 ) X B O (W 

0 ) X E O (W 

0 ) X C ∗ (W 

′ ) X B ∗ (W 

′ ) X E ∗ (W 

′ ) 

x 1 0.75 0.75 x x x 

x 2 1 0.5 x x x 

x 3 0.5 1 x x x 

x 4 0.75 0.6 x x x 

x 5 1 0.25 x x x 

l  
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arger, and thus W 

′ ⊆ W . If W 

′ has a non-empty interior (i.e.

 

′ ∈ W), the sets of non-dominated and potentially optimal port-

olios will therefore either become smaller or remain unchanged.

ithout the assumption of non-empty interior, additional prefer-

nce statements can enlarge the set of non-dominated portfolios.

or instance, if in the example of Fig. 2 the weight set would be

educed to a single point W 

′ = { (0 , 1) T } , then portfolio p 4 would

ot be dominated by any of the other portfolios, although p 3 has a

trictly better value for any infinitely small perturbation of weights

rom the value (0, 1) T . The following lemma formalizes the im-

act that additional preference statements have on the sets of non-

ominated and potentially optimal portfolios, and on the sets of

ore, borderline and exterior projects. 

emma 3. Let W 

′ , W ∈ W such that W 

′ ⊆ W. Then, for ∗ ∈ { N , O }, 

P ∗(W 

′ ) ⊆ P ∗(W ) 

 

C 
∗ (W 

′ ) ⊇ X 

C 
∗ (W ) 

 

B 
∗ (W 

′ ) ⊆ X 

B 
∗ (W ) 

 

E 
∗ (W 

′ ) ⊇ X 

E 
∗ (W ) . 

The DM is advised to select core projects and to reject exte-

ior ones, because core and exterior projects will retain their status

ven if the set of feasible weights becomes smaller. Furthermore,

dditional preference statements cannot expand the set of border-

ine projects. For instance, the last three columns of Table 1 show

he classification of projects after adding the preference statement

 1 ≥ w 2 to the example in Fig. 2 . Specifically, only portfolio p 1 is

on-dominated and potentially optimal for the resulting set of fea-

ible weights. 

The decision support process is often iterative so that the in-

roduction of additional preference information into the prefer-

nce model decreases the number of borderline projects. This pro-

ess will eventually lead to the identification of only few non-

ominated or potentially optimal portfolios; it is also possible that

nly one such portfolio remains. However, the DM may be un-

ble to provide preference statements that reduce the set of feasi-

le portfolios sufficiently. In such situations, she may wish to con-

ider which borderline projects could either be selected into the

nal portfolio or, alternatively, rejected so that they are excluded

rom it. 

. Modeling project preference statements 

This section develops approaches for modeling the DM’s state-

ents about which borderline projects should be included in the

nal portfolio. In particular, we consider two types of statements: 

• Statement In( x k ): ‘Select project x k ’. 
• Statement Out( x k ): ‘Reject project x k ’. 

The developed approach interprets these statements through

he feasible weight set, thus enabling the use of project prefer-

nces together with standard preference statements. The key chal-

enge with this approach is that unlike standard preference state-

ents, the project preference statements do not contain a compar-

son of two (hypothetical) portfolios, which could be interpreted
s a constraint for the feasible weights in a straightforward man-

er. Hence, we seek to identify set of weights for which each non-

ominated or potentially optimal portfolio satisfies the statement. 

This modeling approach is in line with methods developed for

apturing holistic statements in a setting were the objective is to

hoose one of several decision alternatives (see, e.g., Punkka & Salo,

013 ). In particular, each feasible portfolios can be viewed as one

ecision alternative and the set of possible decision alternatives

an be partitioned into two mutually exclusive groups based on

ny project x k : (i) those alternatives that include project x k , and

ii) those that do not include project x k . Hence, the preference

tatement In( x k ) can be interpreted as the DM stating that only

lternatives in group (i) should be considered as possible choices,

nd therefore the statement should result in such a set of feasi-

le weights that only alternatives belonging to group (i) are non-

ominated or potentially optimal. The two approaches based on

sing the sets of non-dominated or potentially optimal portfolios

s the basis of interpreting project preference statements are de-

eloped in the following sections. 

.1. Project selection and rejection based on potentially optimal 

ortfolios 

Additional project preference statements reduce the set of fea-

ible weights W to a subset W 

′ . If W 

′ is compatible with the state-

ent In( x k ), then it is logical to require that x k is contained in

ll potentially optimal portfolios in P O ( W 

′ ). This requirement en-

ures that x k is a core project, and it imposes no additional as-

umptions on the preference model. Furthermore, W 

′ should be

he largest such set, i.e., augmenting it by adding other weight vec-

ors would cause x k to lose its core classification. Maximality of

 

′ is required because the resulting weight constraints should ex-

lude only those weights for which x k is no longer a core project,

ven though choosing any subset of W 

′ would also make x k a core

roject (cf. Lemma 3 ). 

efinition 6. Let W ∈ W be the current feasible weight set. The

ubset of weights W 

′ ⊆ W , W 

′ ∈ W, is PO-compatible with the pref-

rence statement In( x k ) if 

(i ) x k ∈ X 

C 
O (W 

′ ) 
(ii ) x k / ∈ X 

C 
O (W 

′′ ) for any W 

′′ ∈ W, such that W 

′ ⊂ W 

′′ ⊆ W . 

Clearly, the PO-compatible weight set does not exist if x k is an

xterior project with regard to the original weight set W . However,

ven if x k ∈ X B 
O 
(W ) , but for each feasible weight vector there exists

wo potentially optimal portfolios such that one of them includes

roject x k and the other one does not, then the PO-compatible

eight set does not exist. Otherwise there exists a unique com-

atible weight set which can be formulated as a finite union of

onvex subsets of W . This is formalized by the following theorems,

n which [ p ] denotes the equivalence class of feasible portfolios

hose value is the same for all weights, i.e., 

 p] = { p ′ ∈ P F | V (p ′ , w ) = V (p, w ) ∀ w ∈ W 

0 } . 
heorem 1. Let W ∈ W . There exists a weight set W 

′ PO-compatible

ith the preference statement In(x k ) if and only if there exists
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Fig. 3. Values of portfolios p 1 , p 2 and p 3 as a function of attribute weights w ∈ 
W = { (w 1 , w 2 ) ∈ R 2 + | w 1 + w 2 = 1 } . The set W 

′ 
1 = { w ∈ W | w 1 ∈ [0 , 0 . 2] ∪ [0 . 6 , 1] } is 

PO-compatible with the statement In( x 1 ) and the set W 

′ 
2 = { w ∈ W | w 1 ∈ [0 , 0 . 2] } 

is PO-compatible with the statement Out( x 3 ). 
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Fig. 4. With the feasible weight set W = { (w 1 , w 2 ) ∈ R 2 + | w 1 + w 2 = 1 } each of port- 

folios p 1 , p 2 and p 3 is non-dominated. Both weight sets W 

′ 
1 and W 

′ 
2 are ND- 

compatible with the preference statement In( x 4 ). These sets are also ND-compatible 

with the statement Out( x 3 ). However, the union of these sets is not ND-compatible 

with either statement since W 

′ 
1 ∪ W 

′ 
2 = W . 
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p ∈ P O ( W ) such that x k ∈ p ′ for all p ′ ∈ [ p ], and this weight set is

given by 

 

′ = 

⋃ 

p∈ P O (W ) s.t. 

x k ∈ p ′ ∀ p ′ ∈ [ p] 

ˆ W (p, W ) . (6)

In most applications, not allowing the DM to provide In( x k )

statements on exterior projects x k ∈ X E O (W ) is sufficient to ensure

that a PO–compatible weight set exists. However, to be completely

safe, In( x k ) statements cannot be given about those borderline

projects x k ∈ X B O (W ) that meet the following condition: For each

portfolio p containing x k , there exists another portfolio p ′ which (i)

does not contain x k , and (ii) has exactly the same overall value for

all weights (i.e., p ′ ∈ [ p ]). 

Fig. 3 illustrates Definition 6 and Theorem 1 ; the set W 

′ 
1 

= { w ∈
 | w 1 ∈ [0 , 0 . 2] ∪ [0 . 6 , 1] } is PO-compatible with the statement

In( x 1 ). Furthermore, if there existed a portfolio p 4 = { x 2 , x 5 } ∈ [ p 1 ] ,

then for { w ∈ W | w 1 ∈ [0 . 6 , 1] } both p 1 and p 4 would be po-

tentially optimal, and because p 4 does not contain x 1 , the PO-

compatible set would be W 

′ 
2 = { w ∈ W | w 1 ∈ [0 , 0 . 2] } . This exam-

ple shows that the set of compatible weights may not be con-

nected, because it is formed as a union of the weight sets for

which all potentially optimal portfolios include/exclude a specific

project. If the set of potentially optimal portfolios P O ( W 

′ ) is known,

then constructing the set W 

′ is relatively straightforward, because

it suffices to construct the sets ˆ W (p, W ) defined through linear

constraints (cf. Eq. (4) ). 

The set of weights compatible with a project rejection state-

ment is defined analogously. 

Definition 7. Let W ∈ W be the current feasible weight set. The

subset of weights W 

′ ⊆ W , W 

′ ∈ W, is PO-compatible with the pref-

erence statement Out( x k ) if 

(i ) x k ∈ X 

E 
O (W 

′ ) 
(ii ) x k / ∈ X 

E 
O (W 

′′ ) for any W 

′′ ∈ W such that W 

′ ⊂ W 

′′ ⊆ W . 

Theorem 2. Let W ∈ W . There exists weight set W 

′ PO-compatible

with the preference statement Out(x k ) if and only if there exists p ∈
P O ( W ) such that x k �∈ p ′ for all p ′ ∈ [ p ], and this weight set is given

by 

 

′ = 

⋃ 

p∈ P O (W ) s.t. 

ˆ W (p, W ) . (7)
x k / ∈ p ′ ∀ p ′ ∈ [ p] w  
.2. Project selection and rejection based on non-dominated 

ortfolios 

Another approach for modeling project preference statements

s to interpret them using the set of non-dominated portfolios.

pecifically, for a weight set W 

′ to be compatible with the state-

ent In( x k ) (Out( x k )), project x k must be included in (excluded

rom) each non-dominated portfolio in P N ( W 

′ ). 

efinition 8. Let W ∈ W be the feasible weight set. The subset of

eights W 

′ ⊆ W , W 

′ ∈ W, is ND-compatible with the preference

tatement In( x k ) if 

(i ) x k ∈ X 

C 
N (W 

′ ) 
(ii ) x k / ∈ X 

C 
N (W 

′′ ) for any W 

′′ ∈ W such that W 

′ ⊂ W 

′′ ⊆ W . 

efinition 9. Let W ∈ W be the feasible weight set. The subset of

eights W 

′ ⊆ W , W 

′ ∈ W, is ND-compatible with the preference

tatement Out( x k ) if 

(i ) x k ∈ X 

E 
N (W 

′ ) 
(ii ) x k / ∈ X 

E 
N (W 

′′ ) for any W 

′′ ∈ W such that W 

′ ⊂ W 

′′ ⊆ W . 

Thus, if W 

′ is compatible, then x k is included in all (none) non-

ominated portfolios P N ( W 

′ ) and no additional weight vectors can

e included in W 

′ without x k losing its core (exterior) classifica-

ion. Note that an ND-compatible W 

′ is not necessarily unique and

ence there can exist several sets in W that satisfy the require-

ents of Definition 8 or 9 . For instance, in Fig. 4 , the two sets 

 

′ 
1 = { (w 1 , w 2 ) 

T ∈ W 

0 | w 1 ∈ [0 , 0 . 6] } 
 

′ 
2 = { (w 1 , w 2 ) 

T ∈ W 

0 | w 1 ∈ [0 . 4 , 1] } 
re ND-compatible with the statement Out( x 3 ). Both sets are ND-

ompatible with the statement In( x 4 ), which shows that when

orking with non-dominated portfolios, the project preference

tatements can result in a situation where incomplete preference

nformation corresponds to multiple sets of feasible weights. 

A borderline project x k can become a core one (included in all

on-dominated portfolios) only if every non-dominated portfolio

n which x k does not belong to becomes dominated by at least one

easible portfolio in which x k belongs to. This gives an upper bound

n the number of sets that are ND-compatible with the preference

tatement In( x k ). 

emma 4. Let W ∈ W be the current feasible weight set. The upper

ound for the number of subsets of weights that are ND-compatible

ith the statement In(x k ) is | P + 
k 
| | P −k | , where P + 

k 
= { p ∈ P N (W ) | x k ∈ p}
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Table 2 

Classification of projects for selection in (In( x k )) and rejection from (Out( x k )) the 

final portfolio. Bold entries indicate the best candidates for eliciting project prefer- 

ence statements. 

In( x k ) Low CI High CI 

Low AI Non-robust, large reduction 

of P O ( W ) 

Non-robust, small 

reduction of P O ( W ) 

High AI Robust, large reduction of 

P O (W) 

Robust, small reduction of 

P O ( W ) 

Out( x k ) Low CI High CI 

Low AI Robust, small reduction of 

P O ( W ) 

Robust, large reduction of 

P O (W) 

High AI Non-robust, small 

reduction of P O ( W ) 

Non-robust, large reduction 

of P O ( W ) 
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nd P −
k 

= 

{
p ∈ P N (W ) | x k �∈ p 

}
are the sets of portfolios in which the

orderline project x k does and does not belong to, respectively. 

The worst-case exponential number of ND-compatible weight

ets makes it difficult to explain the results of the analysis to the

M: if the DM questions results of the analysis, there can be a

arge number of possible sets of mutually exclusive constraints that

ll explain the results. Furthermore, the weights that can be elimi-

ated from the feasible weight set are equal when project selection

tatements are interpreted based on potentially optimal portfolios

 Definitions 6 and 7 ) and non-dominated portfolios ( Definitions 8

nd 9 ). This is stated in Theorem 3 . 

heorem 3. Assume that the set W 

′ ∈ W is PO-compatible with the

reference statement In ( x k ), and that W 

j ∈ W, j = 1 , 2 , . . . , J, are all

he sets ND-compatible with the preference statement In ( x k ) . Then

 

′ = 

⋃ J 
j=1 

W 

j . 

Theorem 3 implies that the information gained from project

election statements is essentially the same in analyses based on

on-dominated and potentially optimal portfolios (see e.g. sets that

re ND- and PO-compatible with In( x 4 ) in Fig. 4 ). Recall that holis-

ic preference statements can be used in PDA to narrow down the

easible weight set until a sufficiently informed portfolio selection

an be made. Thus, as there are multiple, worst-case exponen-

ial number of ND-compatible weight sets but only a single PO-

ompatible set, from the viewpoint of practical decision analysis

ith a focus on interacting with the DM, it makes little sense to

nterpret the project selection statements based on ND-compatible

ortfolios. For brevity, we state without proof a similar result for

roject rejection statements: If the set W 

′ ∈ W is PO-compatible

ith the preference statement Out( x k ), then W 

′ = 

⋃ J 
j=1 

W 

j , where

 

j ∈ W, j = 1 , 2 , . . . , J are all the sets ND-compatible with the

reference statement Out( x k ). 

. Targeting project preference statements 

In many project portfolio selection problems there are dozens

r hundreds of project candidates (see e.g. Ewing et al., 2006;

ild et al., 2015 ), and even after some preference information

bout the attribute weights have been elicited, the number of

orderline projects may still be large. It is therefore useful to iden-

ify all those borderline projects about which project preference

tatements are likely to reduce the number of potentially optimal

ortfolios as much as possible. The DM can be asked to consider

f she is willing to select or reject some of the corresponding

orderline projects. Furthermore, the decision process should

esult in selecting a robust portfolio which is optimal (has the

argest overall value with the portfolio value model in Eq. (1) )

or a large share of feasible attribute weights. Hence, the size of

he compatible weight set resulting from the project preference

tatements is also a relevant criterion for prioritizing borderline

rojects to be evaluated by the DM. 

To support the prioritization of borderline projects in prefer-

nce elicitation, we adapt and extend two measures that have

een suggested in the literature. The first is the Core Index , which

easures the share of non-dominated portfolios that include a

articular project ( Liesiö et al., 2007 ). Because analyses with non-

ominated portfolios are not very useful when eliciting project

reference statements (see previous Section), we compute core

ndexes over the set of potentially optimal portfolios. Specifically,

he Core Index (CI) of project x k with respect to a set of feasible

eights W ∈ W is 

I (x k , W ) = 

∣∣{p ∈ P O (W ) | x k ∈ p 
}∣∣

| P O (W ) | . (8)
he CI of any core (exterior) project is equal to one (zero), while

he CI of borderline projects is in the open interval (0, 1). 

The second measure is based on the Acceptability Index intro-

uced by Lahdelma, Hokkanen, and Salminen (1998) . The original

cceptability index describes the share of weights for which a par-

icular alternative is optimal in single alternative choice problems.

or use in PDA, we define the project’s Acceptability Index (AI) as

he relative size of the subset of weights for which the project is a

ore one, and thus included in all potentially optimal portfolios (cf.

efinition 6 ). Specifically, given a set of feasible weights W ∈ W,

he AI of project x k is 

I (x k , W ) = 

vol (W 

′ ) 
vol (W ) 

, (9)

here W 

′ is PO-compatible with In( x k ) and vol( ·) denotes the

 − 1 -dimensional volume of the given set. 

Core and acceptability indexes can be used for identifying those

orderline projects that are good candidates for the elicitation of

roject preference statements. Specifically, the lower (higher) the

I of project x k is, the smaller is the set of potentially optimal

ortfolios w.r.t. the set of weights compatible with the preference

tatement In( x k ) (statement Out( x k )). In turn, if a project with a

igh (low) AI is selected (rejected), then a large share of weights

ill remain feasible. These results are stated formally in the fol-

owing lemmas. 

emma 5. Let W, W 

′ ∈ W . If W 

′ ⊆ W is PO-compatible with the

reference statement In(x k ), then 

 P O (W 

′ ) | ≤ CI (x k , W ) | P O (W ) | 
vol (W 

′ ) = AI (x k , W ) vol (W ) 

emma 6. Let W, W 

′ ∈ W . If W 

′ ⊆ W is PO-compatible with the pref-

rence statement Out(x k ), then 

 P O (W 

′ ) | ≤ (1 − CI (x k , W )) | P O (W ) | 
vol (W 

′ ) ≤ (1 − AI (x k , W )) vol (W ) 

From another point of view, AIs describe the robustness of

roject preference statements. If a borderline project has a very

igh acceptability, then alterations of previously elicited preference

tatements are unlikely to make it an exterior one. If the project

as a very low AI, then even a small alteration in one of the pre-

iously elicited preference statements could lead it to becoming

n exterior one. Therefore, the DM may wish to avoid selecting

rojects with an extremely low AI, because feasibility of the final

ortfolio would otherwise be highly dependent on validity of all

reference statements. Table 2 classifies project preference state-

ents based on the corresponding core and acceptability indexes.

ote, however, that if the DM is sure about including a project

ith low AI and low CI (or excluding one with high AI and high

I), such a statement should not be discouraged, as it would re-

uce the set of feasible weights considerably. 
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1 An open source R package implementing the hit-and-run procedure is available 

from CRAN ( https://cran.r-project.org/web/packages/hitandrun/ ). 
Although core and project acceptability indexes can be com-

puted for any W ∈ W, they are not very useful metrics for decision

support at the beginning of the analysis when W = W 

0 , because

the “real” DM preferences may lie on a small region of W 

0 which

could be formed by eliciting linear inequality constraints. We rec-

ommend to start the process by first eliciting incomplete prefer-

ence information in form of linear weight constraints, and only af-

terwards to elicit the project preference statements. The core and

project acceptability indexes are useful only in this second phase. 

Selecting projects on which to provide preference statements

can be viewed as a portfolio problem itself. However, it is impor-

tant to highlight that the core and acceptability indexes of a par-

ticular project reflect the marginal effect a statement about this

project would have on the weight set, or the number of potentially

optimal portfolios, but these indexes cannot as such be used eval-

uate the effect of combinations of such statements. This is since

CI and AI are contingent of the set of feasible weights W , which

will change as the result of each statement. Hence, rather than en-

couraging DM to provide a sequence of, for instance, In( ·) state-

ments on projects with low CI( ·, W ) values, it is better to ask for

one statement at a time and update the AI and CI values based on

the set of feasible weights W 

′ , resulting from this single statement.

Continuous update of CI values also provides a way of giving

feedback to the DM about the implications of each project prefer-

ence statement. In particular, after providing a project preference

statement, the DM can immediately be provided with the updated

CI values, to show which other projects the statement causes to

be excluded from, or included in all potentially optimal portfolios.

The DM can then reflect on this information and has the option

of removing the preference statement if the project implications

are not consistent with her intentions. In addition, it is important

also to illustrate effects the statements have on the set of feasi-

ble weights (e.g., average and range of each weight). These types

of feedback are particularly important in real-life applications in

which the DM is likely to base the statements at least partly on

considerations not explicitly included in the portfolio value model.

5. Computational considerations 

Applying the developed models for capturing project pref-

erences requires identification of the set of potentially optimal

portfolios P O ( W ) to identity sets of core, borderline and exterior

projects. The feasible weight set W 

1 ∈ W is assumed to capture

preference information in form of linear weight constraints. In case

no such preference information exists, then W 

1 = W 

0 . However,

the current literature offers no exact algorithms to compute the set

of potentially optimal portfolios P O ( W 

1 ) directly. Hence, we base

our approach on first computing the set of non-dominated port-

folios P N ( W 

0 ), since Lemmas 1 and 3 together imply that P O ( W 

1 )

⊆ P N ( W 

1 ) ⊆ P N ( W 

0 ). Even if the attribute-specific portfolio value

functions V i in (1) are non-linear, the set P N ( W 

0 ) can be identified

by solving a Multi-Objective Zero-One Linear Programming (MO-

ZOLP) problem as stated by the following lemma. 

Lemma 7. p ∈ P N ( W 

0 ) if and only if z ( p ) is a Pareto optimal solution

to the n–objective MOZOLP problem 

v–max 
z(p) 

[ 

m ∑ 

j=1 

z j (p) v j 
1 
, 

m ∑ 

j=1 

z j (p) v j 
2 
, . . . , 

m ∑ 

j=1 

z j (p) v j n 

] 

Az(p) ≤ B (10)

z(p) ∈ { 0 , 1 } m 

There are several exact algorithms for solving medium-sized

MOZOLP problems (e.g., m = 60 ) in reasonable time (see, e.g.,

Kiziltan & Yucaoglu 1983; Liesiö, Mild, & Salo 2008; Villarreal &

Karwan 1981 ). Approximate algorithms can be used to solve larger
roblems with hundreds of projects (see, e.g., Mild et al. 2015 ).

owever, it is important to highlight that the number of projects

 also includes possible dummy projects needed to model inter-

ctions among the projects. In case the portfolio value function

s additive-linear, i.e., V (p, w ) = 

∑ 

x j ∈ p 
∑ n 

i =1 w i v 
j 
i 
, the set of non-

ominated portfolios P N ( W 

1 ) can be identified directly though MO-

OLP, which can be faster than solving the problem (10) (see Liesiö

t al., 2008 , for details). 

The set of potentially optimal portfolios P O ( W 

1 ) can be com-

uted with linear programming by checking, for each portfolio in

 ∈ P N ( W 

0 ), whether there exists w ∈ W in which the portfolio

as the highest overall value among all portfolios in P N ( W 

0 ) �[ p ],

here [ p ] is the equivalence containing portfolios that yield the

ame overall value as p for all weights. This check corresponds

o a linear programming problem (LP) as stated by the following

emma. 

emma 8. Let p ∈ P N ( W 

0 ) and W 

1 ⊆ W 

0 . Then p ∈ P O ( W 

1 ) if and

nly if 

ax 
d∈ R 

w ∈ W 1 

{ 

d 

∣∣∣ n ∑ 

i =1 

w i 

( 

V i 

( ∑ 

x j ∈ p 
v j 

i 

) 

− V i 

( ∑ 

x j ∈ p ′ 
v j 

i 

) ) 

≥ d ∀ p ′ ∈ P N (W 

0 ) \ [ p] 

} 

> 0 . (11)

LP problem (11) has n + 1 continuous decision variables and the

umber of constraints is linear in the number of non-dominated

ortfolios | P N ( W 

0 )|. 

Acceptability index computation with deterministic scores is

qual to polytope volume computation, which is known to be #P-

ard ( Dyer & Freeze, 1991; Lawrence, 1991 ). Therefore, in higher

imensionality problems their exact computation is intractable

nd the volumes within (9) have to be estimated numerically

 Lahdelma & Salminen, 2001 ). Tervonen, van Valkenhoef, Ba ̧s türk,

nd Postmus (2013) successfully applied the Markov Chain Monte

arlo hit-and-run technique for sampling weight vectors, allow-

ng to estimate acceptability indexes efficiently when the feasible

eight space is convex. For details on the procedure, see Tervonen

t al. (2013) , van Valkenhoef, Tervonen, and Postmus (2014) and

ervonen and Lahdelma (2007) . 1 

The set of weights compatible with given project preference

tatements is not necessarily convex ( Definitions 6 and 7 ). There-

ore, the potentially optimal portfolios cannot be computed with

inear programming when such statements are included in the

nalysis. We propose to estimate the set of potentially optimal

ortfolios numerically as follows. 

1. Construct convex weight space W 

1 by restricting W 

0 with lin-

ear constraints arising from any possible non-project preference

statements (such as w 1 > w 2 ). 

2. Generate portfolios that are non-dominated for W 

1 . 

3. Construct the possibly non-convex feasible weight space W 

2 by

restricting W 

1 with project preference statements. 

4. Draw a sufficient sample (e.g. 10 , 0 0 0 , see Tervonen &

Lahdelma, 2007 ) of weight vectors from W 

2 with simple rejec-

tion sampling where hit-and-run is used to generate candidate

draws from the convex weight space W 

1 . 

5. Use the final weight samples for estimating the set of poten-

tially optimal portfolios, i.e. those non-dominated ones that

have the highest value for at least one of the weight vector

draws, and core and acceptability indexes. 

https://cran.r-project.org/web/packages/hitandrun/
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The rejection rate in the above sampling procedure depends

n the acceptability indexes of the selected/rejected projects

 Lemma 5 ). The project acceptability indexes provide information

bout the robustness of the final portfolio choice recommendation,

nd the DM should avoid selecting projects with extremely low

cceptability indexes, or rejecting projects with extremely high ac-

eptability indexes, because such project preference statements are

ot robust (see Table 2 ). Therefore, the rejection sampling method

s tractable in most practical cases. 

. Application to infrastructure maintenance project selection 

We illustrate the use of project preference statements with data

rom a real-life case on infrastructure asset management reported

y Mild et al. (2015) in which a dedicated PDA model was used an-

ually to support the selection of a portfolio of bridges for main-

enance. This model included 6 attributes to measure the repair

rgency of each bridge: Damage Point Sum (DPS), Traffic signifi-

ance, Carrying deficiency, Width deficiency, exposure to Salt, Vi-

ual appearance; and three constraints: Annual maintenance bud-

et, minimum level for the portfolio DPS reduction, and a man-

gement capacity constraint limiting the number of bridges in the

ortfolio. The model results were delivered to DMs with a spread-

heet that included the bridge Core Index values, their attribute-

pecific scores and other technical information. The spreadsheet

llowed the DMs to manually construct the final portfolio by se-

ecting individual bridges and showed the resulting overall port-

olio performance in terms of attributes and resource consump-

ion. However, selections made by the DMs were not fed back

nto the PDA model to update the sets of non-dominated or po-

entially optimal portfolios and corresponding core index values.

ere we illustrate how such selections could be modeled as project

references statements in the PDA model using the developed

pproaches. 

Although in the original case the model was applied for data

ets containing hundreds of bridge projects, for brevity we ana-

yze here a subset of 46 projects from one of these data sets with

he constraints scaled accordingly (see Appendix B ). This analysis

as carried out on a standard laptop (2.93 gigahertz processor, 8

igabytes memory). RPM-Decisions software, which implements

he dynamic programming algorithm of Liesiö, Mild, and Salo

2008) , was used to compute the set of non-dominated portfo-

ios P N ( W 

0 ). This took approximately 20 seconds. Identification of

otentially optimal portfolios P O ( W ) for different sets of feasible

eights W and the computation of acceptability and core indexes

ere carried out with a custom implementation, which is avail-

ble online free of charge ( Tervonen & Liesiö, 2016 ). Each set of

otentially optimal portfolios P O ( W ) was obtained in less than 4

inutes, and the estimation of the acceptability and core indexes

ook less than 35 seconds. These results are presented in Table 3 .

pecifically, the set of potentially optimal portfolios P O ( W 

0 ) con-

ains 294 portfolios, each of which is a subset of the 24 borderline

rojects X B 
O 
(W 

0 ) as there are no core projects ( X C 
O 
(W 

0 ) = ∅ ). 
There are some projects (e.g., x 14 and x 30 ) with zero AI and

on-zero CI. This is due to imprecision in the AI estimation pro-

edure: Some of the potentially optimal portfolios may have very

mall optimal weight regions, and hence none of the sampled

0 , 0 0 0 weight vectors are in these regions. The differences be-

ween exact and Monte Carlo estimated indexes are larger than

hat has been observed in ranking and classification multiat-

ribute problems (cf. Kadzi ́nski & Tervonen, 2013a; 2013b ). This is

ikely due to the larger number of decision alternatives (potentially

ptimal portfolios) in the current study. 

In the second iteration of the analysis, we apply the prefer-

nce information from the original application, which includes in-

omplete ordinal statements about the importance of different at-
ributes as well as a weight lower bound of 0.02 to enforce some

mportance for every attribute. These statements yield the set of

easible weights 

 

1 = 

{
w ∈ R 

6 

∣∣∣∣w DPS ≥ w tra f f ic ≥ w i , for i ∈ { salt , visual } 
w DPS ≥ w car r y + w width ≥ w i , for i ∈ { salt , visual } 
w i ≥ 0 . 02 for i ∈ { DPS, traffic, carry, width, salt, visual } ∑ 

i 

w i = 1 

}
. (12) 

he number of potentially optimal portfolios is | P O (W 

1 ) | = 74 ,

hich is considerably less than the 294 potentially optimal port-

olios of the previous iteration. However, since the number of bor-

erline projects is 21, and there are no core projects ( X C 
O 
(W 

1 ) = ∅ ),
he DM may be inclined to provide project preferences to obtain

ore conclusive results. Moreover, core and acceptability indexes

an be used to assist in identifying candidates for such statements.

or example, project x 5 has a CI of 0.34, but a very low AI of 0.03.

lthough the DM could select this project into the optimal portfo-

io, the portfolio recommendation would not be particulary robust

ith regard to In( x 5 ) because x 5 is included in the optimal portfo-

io for only 3% of the weights in W 

1 . On the other hand, x 45 has

I of 0.22 and AI of 0.62, and is therefore a good candidate for

electing into the final portfolio. 

Assume that such considerations result in the DM providing a

ingle project preference statement In( x 45 ), and let W 

2 denote the

orresponding PO-compatible weight set ( Definition 6 ). Because

he AI of project x 45 is 0.62, this reduces the size of the feasible

eight set by 38%. The CI of project x 45 is 0.22, so 78% of the port-

olios included in P O ( W 

1 ) are not included in P O ( W 

2 ). Fig. 5 high-

ights the fact that many projects obtain a unit AI and CI as a result

f adding this single project preference statement. The number of

orderline projects reduces to | X B 
O 
(W 

2 ) | = 11 . 

Furthermore, the AI of projects x 1 , x 3 , x 6 , x 8 , x 18 and x 20 is close

o zero for the weight set W 

2 . Assume that after careful exami-

ation of the attribute performance scores of these projects, the

M decides that they can be rejected from the optimal portfolio

ogether with project x 17 . The AI of project x 17 is 0.56, which im-

lies that rejecting it results in 44% weight space reduction. In fact,

ith only linear constraints for the weights ( W 

1 ), the AI (x 17 , W 

1 ) =
 . 47 , which means that this decision is quite robust with regard to

ariation in preferences expressed by the linear constraints. 

Introducing the project preference statements Out( x k ), k ∈ {1, 3,

, 8, 17, 18, 30} results in the PO compatible weight set W 

3 with

nly | P O (W 

3 ) | = 3 potentially optimal portfolios. The DM could

ow choose one out of these three portfolios based on their at-

ribute scores. Note that p 1 and p 3 are considerably less robust

o changes in weights due to containing x 12 with AI of 0.05, and

herefore the DM might want to select p 2 . 

Minimum, maximum and average of the sampled weights in

 iterations of the analysis are presented in Tables 4 , 5 and 6 ,

espectively. Such descriptive statistics could be used for pro-

iding DM information on implications of the preference state-

ents. For some criteria (Width, Salt, Visual), the project prefer-

nce statements have little bearing on minimum and maximum

f the weights, whereas for others (DPS, Traffic, Carry) the project

reference statements affect the feasible ranges and the averages.

ote that these descriptive statistics are computed based on the

ampled weights, that is, they are estimates instead of exact values.

or instance, with W 

0 , the theoretical maximum of each weight is

, but none of the 10 , 0 0 0 sampled weight vectors contained values

lose to 1. 
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Table 3 

Project attribute measurements, acceptability (AI) and core indexes (CI) in 4 iterations of the analysis. Last three columns indicate the projects belonding to the three 

potentially optimal portfolios in the analysis with the feasible weight space W 

3 . The projects are sorted according to AI( x j , W 

0 ). AI and CI are only shown for entries where 

one of these is strictly positive. 

DPS Traffic Carry Width Salt Visual W 

0 W 

1 W 

2 W 

3 P O ( W 

3 ) 

AI CI AI CI AI CI AI CI p 1 p 2 p 3 

43 2.688 4.0 0 0 3.00 0.67 0.76 0.91 1.00 0.78 1.00 1.00 1.00 1.00 1 1 1 

10 2.864 2.5 0 0 3.00 0.67 0.70 0.59 0.99 0.77 1.00 1.00 1.00 1.00 1 1 1 

11 1.360 4.0 0 0 3.00 0.67 0.53 0.45 0.76 0.39 1.00 1.00 1.00 1.00 1 1 1 

34 0.448 4.0 0 3 3.00 0.00 0.47 0.37 0.45 0.34 0.47 0.31 0.95 0.67 1 1 0 

41 4.0 0 0 2.0 0 0 0.00 0.67 0.47 0.68 0.96 0.88 0.93 0.46 1.00 0.67 0 1 1 

45 1.256 4.0 0 0 3.00 0.67 0.46 0.21 0.62 0.22 1.00 1.00 1.00 1.00 1 1 1 

12 1.544 0.0 3 4 0.00 0.00 0.43 0.45 0.36 0.69 0.02 0.08 0.05 0.67 1 0 1 

5 0.120 0.0 4 4 0.00 0.67 0.42 0.33 0.03 0.34 0 0 0 

28 0.856 0.0 4 3 0.00 0.00 0.36 0.35 0.12 0.41 0.00 0.08 0 0 0 

3 0.472 0.0 4 2 0.00 2.00 0.33 0.49 0.05 0.22 0.01 0.08 0 0 0 

37 0.352 0.0 3 3 0.00 1.33 0.26 0.25 0 0 0 

17 1.688 3.0 0 0 3.00 0.67 0.25 0.22 0.47 0.20 0.56 0.38 0 0 0 

8 0.368 4.0 0 0 3.00 0.67 0.24 0.04 0.00 0.01 0.00 0.08 0 0 0 

24 0.280 0.0 4 3 0.00 0.67 0.08 0.15 0.00 0.11 0 0 0 

23 0.224 0.0 2 4 0.00 0.00 0.06 0.06 0.00 0.11 0 0 0 

22 1.912 1.0 1 2 0.00 0.67 0.05 0.20 0.19 0.34 0 0 0 

35 0.328 4.0 0 0 3.00 0.67 0.04 0.01 0 0 0 

1 0.944 3.0 0 1 3.00 0.00 0.03 0.05 0.00 0.04 0.00 0.08 0 0 0 

6 1.184 3.0 0 0 3.00 0.67 0.03 0.00 0.00 0.01 0.00 0.08 0 0 0 

20 0.824 4.0 0 0 3.00 0.00 0.02 0.04 0.01 0.05 0.01 0.31 0 0 0 

18 0.776 4.0 0 0 3.00 0.00 0.01 0.01 0.00 0.01 0.00 0.08 0 0 0 

36 1.496 0.0 2 2 0.00 0.67 0.01 0.07 0.01 0.07 0 0 0 

30 0.952 3.0 1 0 0.00 0.67 0.00 0.07 0.00 0.01 0 0 0 

14 1.968 4.0 0 0 3.00 0.67 0.00 0.01 0 0 0 

2 0.648 2.5 0 0 3.00 0.67 0 0 0 

4 0.656 1.0 0 0 0.00 0.00 0 0 0 

7 4.0 0 0 4.0 0 0 3.00 1.33 0 0 0 

9 1.176 0.0 1 2 0.00 0.00 0 0 0 

13 0.344 3.0 0 0 3.00 0.00 0 0 0 

15 1.336 0.0 2 1 0.00 0.67 0 0 0 

16 0.512 0.0 0 2 0.00 0.67 0 0 0 

19 0.784 0.0 2 2 0.00 0.67 0 0 0 

21 0.376 2.0 0 1 0.00 0.67 0 0 0 

25 0.184 0.0 0 0 0.00 0.00 0 0 0 

26 0.200 0.0 1 2 0.00 0.00 0 0 0 

27 0.256 0.0 0 1 0.00 0.00 0 0 0 

29 0.360 3.5 0 0 3.00 0.00 0 0 0 

31 0.328 4.0 0 0 3.00 0.00 0 0 0 

32 0.584 2.5 0 0 0.00 0.67 0 0 0 

33 0.464 2.0 0 0 3.00 0.00 0 0 0 

38 0.488 3.0 0 0 3.00 0.67 0 0 0 

39 0.616 0.0 0 1 0.00 0.67 0 0 0 

40 0.200 4.0 0 0 3.00 0.00 0 0 0 

42 0.280 3.0 0 0 3.00 0.67 0 0 0 

44 1.0 0 0 0.0 0 0 0.00 0.67 0 0 0 

46 0.448 0.0 2 1 0.00 0.67 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Minimums of weight samples in 4 iterations of the analysis. 

DPS Traffic Carry Width Salt Visual 

W 

0 0.00 0.00 0.00 0.00 0.00 0.00 

W 

1 0.22 0.02 0.02 0.02 0.02 0.02 

W 

2 0.21 0.10 0.02 0.02 0.02 0.02 

W 

3 0.24 0.15 0.02 0.02 0.02 0.02 

e  

p  

t  

s  

s  

b  

b  

a  

d  

w

 

7. Discussion 

In this paper we developed two approaches for modeling the

DM’s preference statements about which projects should be se-

lected in, or rejected from the final portfolio, as sets of feasible

attribute weights compatible with these statements. The first ap-

proach is based on identifying a set of feasible weights for which

every potentially optimal portfolio contains all the projects the DM

has selected, and none of the projects the DM has rejected. The

second approach follows a similar logic, but identifies a set of fea-

sible weights such that each non-dominated portfolio contains all

the projects the DM has selected, and none of the projects the DM

has rejected. Both approaches assume that the portfolio preference

statements reveal information about attribute trade-offs. Whether

or not this assumption holds in practice is debatable and should

be tested for empirically. 

Based on the comparison of these two approaches, we have ar-

gued that the first approach based on the use of potential optimal-

ity may be better suited for decision support, because it provides

a unique set of feasible weights compatible with the project pref-
 F  
rence statements. The second approach based on non-dominated

ortfolios can produce several sets of compatible weights. Al-

hough one could argue that in such a setting the union of these

ets would be an appropriate way of modeling the preference

tatements, it turns out that this union is always equal to the feasi-

le weight set obtained from the first model. Finally, in the analysis

ased on the set of potentially optimal portfolios, project core and

cceptability indexes provide a priori information on how much

ifferent project preference statements reduce the set of feasible

eights and potentially optimal portfolios. 

Our results suggest at least two avenues for future research.

irst, empirical research is needed to analyse to what extent the
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Fig. 5. Acceptability and core indexes for the four iterations with increasing amount of preference information. The analyses are without preferences ( W 

0 ), with weight 

constraints ( W 

1 ), and with project preference statements In( x 45 ) ( W 

2 ) and Out( x 17 , x 1 , x 3 , x 6 , x 8 , x 18 , x 20 , x 28 ) ( W 

3 ). The figure includes only projects for which 0 < CI ( x k , W 

0 ) 

< 1. 

Table 5 

Maximums of weight samples in 4 iterations of the analysis. 

DPS Traffic Carry Width Salt Visual 

W 

0 0.82 0.84 0.82 0.92 0.86 0.86 

W 

1 0.78 0.41 0.39 0.41 0.24 0.23 

W 

2 0.68 0.44 0.30 0.29 0.23 0.23 

W 

3 0.51 0.41 0.28 0.28 0.20 0.23 

D  

f  

a  

o  

h  

e  

d  

o  

Table 6 

Averages of weight samples in 4 iterations of the analysis. 

DPS Traffic Carry Width Salt Visual 

W 

0 0.17 0.17 0.16 0.17 0.16 0.17 

W 

1 0.41 0.19 0.12 0.12 0.08 0.08 

W 

2 0.38 0.23 0.11 0.10 0.09 0.09 

W 

3 0.35 0.25 0.09 0.14 0.09 0.09 

t  

e  

t  

t  

h  

(  

t  

s  
Ms’ project preference statements actually capture preferences

or the attribute-specific project values and how much they are

ffected by factors that are external to the value model (e.g. ge-

graphical location of the bridge in our application). On the one

and, such biases might occur more often with the project pref-

rence statements, which focus on actual projects, than with stan-

ard techniques, which focus on hypothetical projects with their

utcomes set at the most or least preferred levels of the at-
ribute measurement scales. On the other hand, eliciting prefer-

nces using real projects may result in higher DM involvement

hat could in turn lead to less biases. In standard single alterna-

ive choice problems, the use of hypothetical reference alternatives

as been shown to lead to more consistent preference statements

 Vetschera, Weitzl, & Wolfsteiner, 2014 ), but it is unclear whether

his result is generalizable to the PDA context. Second, our results

uggest that potential optimality may provide a more intuitive and
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Fig. A.6. Illustration of proof of Theorem 1 part (i). 

Fig. A.7. Illustration of proof of Theorem 1 part (ii). 
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readily extendable solution concept than dominance for multiat-

tribute portfolio decision analysis under incomplete information.

Yet, the literature on both exact and heuristic algorithms for solv-

ing potentially optimal portfolios is almost non-existent compared

to wide literature on algorithms for solving non-dominated portfo-

lios (see e.g. Villarreal & Karwan, 1981; Stummer & Heidenberger,

2003; Liesiö et al., 2008 ). 

Acknowledgments 

Juuso Liesiö received funding for this research from the

Academy of Finland (Grant number 253583 ). This research has

been partly supported by the project Platform Value Now, funded

through the grant 293446 of the Strategic Research Council of the

Academy of Finland. The authors acknowledge useful comments

from three anonymous reviewers and the editor. 

Appendix A. Proofs 

We first establish the following auxiliary lemma that will be

used in other proofs. 

Lemma 9. Let W ∈ W . If V (p, w ) = V (p ′ , w ) for all w ∈ W then

 (p, w ) = V (p ′ , w ) for all w ∈ W 

0 , i.e., p ∈ [ p ′ ] . 

Proof. Take any w 

0 ∈ W 

0 and w ∈ int (W ) . Then there exists ε > 0

such that w 

′ = w + ε(w 

0 − w ) ∈ W . Since, V is linear in weights 

0 = V (p, w 

′ ) − V (p ′ , w 

′ ) = V (p, w ) + εV (p, w 

0 ) − εV (p, w ) 

−V (p ′ , w ) − εV (p ′ , w 

0 ) + εV (p ′ , w ) 

= (1 − ε) [ V (p, w ) − V (p ′ , w )] ︸ ︷︷ ︸ 
=0 , since w ∈ W 

+ ε[ V (p, w 

0 ) − V (p ′ , w 

0 )] , 

which implies V (p, w 

0 ) = V (p ′ , w 

0 ) . �

Lemma 1 

Proof. P O ( W ) � = ∅ : We prove P O (W ) = ∅ ⇒ int (W ) = ∅ . Assume

P O (W ) = ∅ , which implies that int ( ̂  W (p, W )) = ∅ for all p ∈ P F .

Since each 

ˆ W (p, W ) is closed and has an empty interior it

is nowhere dense. The Baire category theorem states that a

union of nowhere dense sets is nowhere dense, which gives

int ( 
⋃ 

p∈ P F 
ˆ W (p, W )) = ∅ . On the other hand, take any w ∈ W and

p ∗ ∈ arg max p∈ P F V (p, w ) , then w ∈ 

ˆ W (p ∗, W ) ⊆ W, which implies

 ⊆ ∪ p∈ P F ˆ W (p, W ) . Thus, int (W ) ⊆ int ( 
⋃ 

p∈ P F 
ˆ W (p, W )) = ∅ , which

implies int (W ) = ∅ . 
P O ( W ) ⊆ P N ( W ): Take any p ∈ P O ( W ), which implies W 

′ =
int ( ̂  W (p, W )) � = ∅ . For any p ′ ∈ P F either (i) V (p, w ) > V (p ′ , w ) for

some w ∈ W 

′ ⊆ W, in which case p ′ �W 

p , or (ii) V (p, w ) = V (p ′ w )

for all w ∈ W 

′ , in which case Lemma 9 implies V (p, w ) = V (p ′ , w )

for all w ∈ W 

0 ⊇ W and hence p ′ �W 

p . �

Lemma 2 

Proof. X C 
N 
(W ) ⊆ X C 

O 
(W ) : Assume x j ∈ p ∀ p ∈ P N ( W ). Take arbitrary

p ∈ P O ( W ), then Lemma 1 implies p ∈ P N ( W ) and hence x j ∈ p ,

which implies x j ∈ X C 
O 
(W ) . 

X E 
N 
(W ) ⊆ X E 

O 
(W ) : Assume x j �∈ p ∀ p ∈ P N ( W ). Take arbitrary p ∈

P O ( W ), then Lemma 1 implies p ∈ P N ( W ) and hence x j �∈ p , which

implies x j ∈ X E 
O 
(W ) . 

X B 
N 
(W ) ⊇ X B 

O 
(W ) : x j ∈ X B 

O 
(W ) ⇒ x j / ∈ X E 

O 
(W ) ∪ X C 

O 
(W ) ⇒ x j / ∈ X E 

N 

(W ) ∪ X N 
O 
(W ) ⇒ x j ∈ X B 

N 
(W ) . �

Lemma 3 

Proof. P N ( W 

′ ) ⊆ P N ( W ): Assume p ∈ P F and p �∈ P N ( W ). Then there

exists p ′ ∈ P F such that p ′ �W 

p , i.e., V (p ′ , w ) ≥ V (p, w ) for all

w ∈ W 

′ ⊆ W and V (p ′ , w 

∗) > V (p, w 

∗) for some w 

∗ ∈ W . Take any
 ∈ int( W 

′ ). Then there exists ε ∈ (0, 1] such that w 

′ = w + ε(w 

∗ −
 ) ∈ W 

′ , and the value difference of portfolios p ′ and p then eval-

ated at w 

′ ∈ W 

′ is 

 (p ′ , w 

′ ) − V (p, w 

′ ) = V (p ′ , w ) + εV (p ′ , w 

∗) − εV (p ′ , w ) 

−V (p, w ) − εV (p, w 

∗) + εV (p, w ) 

= (1 − ε) [ V (p ′ , w ) − V (p, w )] ︸ ︷︷ ︸ 
≥0 , since w ∈ W 

′ 

+ ε [ V (p ′ , w 

∗) − V (p, w 

∗)] ︸ ︷︷ ︸ 
> 0 

> 0 , 

ince V is linear in weights. Hence, p ′ �W 

′ p and thus p ′ �∈ P N ( W 

′ ). 
P O ( W 

′ ) ⊆ P O ( W ): Assume p �∈ P O ( W ) which implies int ( ̂  W (p,

 )) = ∅ . Furthermore, since W 

′ ⊆ W , ˆ W (p, W 

′ ) ⊆ ˆ W (p, W ) , which

mplies int ( ̂  W (p, W 

′ )) = ∅ , i.e., p �∈ P O ( W 

′ ). 
X C ∗ (W 

′ ) ⊇ X C ∗ (W ) : x j ∈ X C ∗ (W ) ⇒ x j ∈ p ∀ p ∈ P ∗(W ) ⇒ x j ∈ p ∀
p ∈ P ∗(W 

′ ) ⊆ P ∗(W ) ⇒ x j ∈ X C ∗ (W 

′ ) . 
X E ∗ (W 

′ ) ⊇ X E ∗ (W ) : x j ∈ X E ∗ (W ) ⇒ x j / ∈ p ∀ p ∈ P ∗(W ) ⇒ x j / ∈ p ∀ p

 P ∗(W 

′ ) ⊆ P ∗(W ) ⇒ x j ∈ X E ∗ (W 

′ ) . 
X B ∗ (W 

′ ) ⊆ X B ∗ (W ) : x j ∈ X B ∗ (W 

′ ) ⇒ x j / ∈ X E ∗ (W 

′ ) ∪ X C ∗ (W 

′ ) ⇒ x j /∈
 

E ∗ (W ) ∪ X N ∗ (W ) ⇒ x j ∈ X B ∗ (W ) . �

heorem 1 

roof. Let 

 

′ = 

⋃ 

p∈ P O (W ) 

s.t.x k ∈ p ′ ∀ p ′ ∈ [ p] 

ˆ W (p, W ) . (A.1)

y Definition 3 ˆ W (p, W ) � = ∅ , p ∈ P O (W ) . Hence the (A.1) can be an

mpty set if and only if there does not exists p ∈ P O ( W ) such that

 

k ∈ p ′ for all p ′ ∈ [ p] . As ∅ / ∈ W an empty set is not PO–compatible.

o prove a non-empty (A.1) is PO-compatible we need to show that

atisfies properties (i) and (ii) of Definition 6 ( Figs. A.6 and A.7 ). 

(i) Take any p 1 ∈ P O ( W 

′ ) and w 

1 ∈ int ( ̂  W (p 1 , W 

′ )) , which is

on-empty by Definition 3 . Let ε1 > 0 be such that N ε (w 

1 ) ⊆

http://dx.doi.org/10.13039/501100002341
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⇔
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b  

Pareto optimal solution to problem (10) . �
ˆ 
 (p 1 , W 

′ ) . Because 

 

1 ∈ 

ˆ W (p 1 , W 

′ ) ⊆ W 

′ = 

⋃ 

p∈ P O (W ) 

s.t.x k ∈ p ′ ∀ p ′ ∈ [ p] 

ˆ W (p, W ) , 

here must exist p 2 ∈ { p ∈ P O ( W ) | x k ∈ p ′ ∀ p ′ ∈ [ p ]} such that

 

1 ∈ 

ˆ W (p 2 , W ) . Since ˆ W (p 2 , W ) ∈ W there exists w 

2 ∈ N ε1 / 4 
(w 

1 ) ∩
nt ( ̂  W (p 2 , W )) . Since w 

2 ∈ int ( ̂  W (p 2 , W )) exists ε2 ∈ (0, ε1 /4]

uch that N ε1 / 4 
(w 

2 ) ⊆ ˆ W (p 2 , W ) . Also N ε1 / 4 
(w 

2 ) ⊆ N ε1 
(w 

1 ) ⊆
ˆ 
 (p 1 , W 

′ ) . Hence, V (p 1 , w ) = V (p 2 , w ) for all w ∈ N ε1 / 4 
(w 

2 ) and

emma then 9 implies p 1 ∈ [ p 2 ], which yields x k ∈ p 1 . Since the

hoice of p 1 ∈ P O ( W 

′ ) was arbitrary, x k ∈ X C 
O 
(W 

′ ) . 
(ii) Take any W 

′′ ∈ W such that W 

′ ⊂ W 

′ ′ ⊂ W . Take any point

n w 

′′ ∈ W 

′′ \ W 

′ and let d = min w 

′ ∈ W 

′ || w 

′′ − w 

′ || . Since W 

′′ ∈
there exists w ∈ N d/ 4 (w 

′′ ) ∩ int (W 

′′ ) . Furthermore, there ex-

sts ε ∈ (0, d /4) such that N ε (w ) ⊆ W 

′′ (since w ∈ int (W 

′′ ) ) and

 ε (w ) ∩ W 

′ = ∅ (since N ε (w ) ⊂ N d/ 2 (w 

′′ ) and N d/ 2 (w 

′′ ) ∩ W 

′ = ∅ ).
emma 1 implies P O (N ε (w )) � = ∅ . Take any p ∈ P O (N ε (w )) . By

emma 3 p ∈ P O ( W 

′ ′ ) ⊆ P O ( W ). But since ˆ W (p, W ) ⊇ N ε (w ) is not

ontained in W 

′ there must exists p ′ ∈ [ p ] such that x k �∈ p ′ . Hence,

 

k �∈ X C ( W 

′ ′ ). �

heorem 2 

roof. The proof is equivalent to that of Theorem 1 in which state-

ents ‘ x k ∈ ’ and ‘ x k �∈ ’ have been replaced by ‘ x k �∈ ’ and ‘ x k ∈ ’,

espectively. �

emma 4 

roof. According to Definition 8 , any ND-compatible set W 

′ ∈ W is

uch, that x k ∈ X C 
N 
(W 

′ ) . By Definition 5 , x k ∈ p ∀ p ∈ P N ( W 

′ ). There-

ore, by Definition 2 , for each p ∈ P F such that x k �∈ p, ∃ p ′ ∈ P F such

hat x k ∈ p ′ and p ′ �W 

p . Because p , p ′ ∈ P F , it follows that p , p ′ ∈
 N ( W ). Thus, for each p ∈ P −

k 
, there must exist p ′ ∈ P + 

k 
such that

 

′ �W 

p , and there are | P + 
k 
| | P −k | such combinations. Some of these

ombinations might not be valid as there might exist W 

1 , W 

2 ∈ W
uch that W 

1 ⊂ W 

2 and x k ∈ p ∀ p ∈ P N ( W 

1 ), x k ∈ p ∀ p ∈ P N ( W 

2 ),

nd from these two only W 

2 would satisfy the second condition of

efinition 8 . Therefore | P + 
k 
| | P −k | is an upper bound. �

heorem 3 

roof. W 

′ ⊆ ⋃ 

j W 

j : Take arbitrary w 

∗ ∈ W 

′ . Theorem 1 then im-

lies that there exists p ∗ ∈ P O ( W 

′ ) (i.e. int ( ̂  W (p ∗, W 

′ )) � = ∅ ), such

hat w 

∗ ∈ 

ˆ W (p ∗, W 

′ ) , and x k ∈ p for all p ∈ [ p ∗]. Now consider

he set P N ( ̂  W (p ∗, W 

′ )) which is non-empty by Lemma 1 since

nt ( ̂  W (p ∗, W 

′ )) � = ∅ , and take arbitrary p ′ ∈ P N ( ̂  W (p ∗, W 

′ )) . By

onstruction V (p ∗, w ) ≥ V (p ′ , w ) for all w ∈ 

ˆ W (p ∗, w ) , but since

 

′ is non-dominated there cannot exist w ∈ 

ˆ W (p ∗, W 

′ ) such

hat V (p ∗, w ) > V (p ′ , w ) . Hence, V (p ∗, w ) = V (p ′ , w ) for all w ∈
ˆ 
 (p ∗, W 

′ ) , and thus Lemma 9 implies p ′ ∈ [ p ∗]. Hence, x k ∈ p ′ and

ince selection of p ′ was arbitrary we have x k ∈ X C 
N 
( ̂  W (p ∗, W 

′ )) . By

efinition 8 ˆ W (p ∗, W 

′ ) ⊆ W 

j for some j , which implies 
⋃ 

j W 

j ⊇
ˆ 
 (p ∗, W 

′ ) � w 

∗. 

W 

′ ⊇ ⋃ 

j W 

j : Take any W 

j . Then by Definition 8 x k ∈ X C 
N 
(W 

j )

nd hence Lemma 2 implies x k ∈ X C 
O 
(W 

j ) . By Definition 6 , W 

j ⊆
 

′ . Since the choice of W 

j was arbitrary, 
⋃ 

j W 

j ⊆ W 

′ . �

emma 5 

roof. By Definition 6 , x k ∈ X C 
O 
(W 

′ ) which implies x k ∈ p for all p

 P O ( W 

′ ). Thus, 

 P O (W 

′ ) | = |{ p ∈ P O (W 

′ ) | x k ∈ p}| 
≤ |{ p ∈ P O (W ) | x k ∈ p}| = |{ p ∈ P O (W ) | x k ∈ p}| | P O (W ) | 

| P O (W ) | 
= CI (x k , W ) | P O (W ) | , 
here the inequality holds since W 

′ ⊆ W and hence P O ( W 

′ ) ⊆
 O ( W ) by Lemma 3 . Note that the inequality is strict if there are

wo portfolios p , p ′ ∈ P O ( W ) such that p ∈ [ p ], and x k ∈ p but

 

k �∈ p ′ . In this case p �∈ P O ( W 

′ ) and hence |{ p ∈ P O ( W 

′ )| x k ∈ p }| < |{ p

 P O ( W )| x k ∈ p }|. The second result follows trivially from (9) . �

emma 6 

roof. By Definition 7 , x k ∈ X E 
O 
(W 

′ ) which implies x k �∈ p for all p ∈
 O ( W 

′ ). Thus, 

 P O (W 

′ ) | = |{ p ∈ P O (W 

′ ) | x k / ∈ p}| ≤ |{ p ∈ P O (W ) | x k / ∈ p}| 
= 

(
| P O (W ) | − |{ p ∈ P O (W ) | x k ∈ p}| 

) | P O (W ) | 
| P O (W ) | 

= (1 − CI (x k , W )) | P O (W ) | , 
here the inequality holds since W 

′ ⊆ W and hence P O ( W 

′ ) ⊆
 O ( W ) by Lemma 3 . 

To prove the second inequality denote P + = { p ∈ P O (W ) | x k ∈
p ′ ∀ p ′ ∈ [ p] } and P − = { p ∈ P O (W ) | x k / ∈ p ′ ∀ p ′ ∈ [ p] } . Then by

heorems 1 and 2 PO-compatible weight sets with preference

tatements In( x k ) and Out( x k ) are W 

+ = ∪ p∈ P + ˆ W (p, W ) and

 

− = ∪ p∈ P − ˆ W (p, W ) respectively. W 

+ ∩ W 

− is a union of sets

ˆ 
 (p + , W ) ∩ 

ˆ W (p −, W ) , p − ∈ P −, p + ∈ P + . For any p + ∈ P + and

p − ∈ P − clearly p + / ∈ [ p −] and hence Lemma 9 implies that

nt ( ̂  W (p + , W ) ∩ 

ˆ W (p −, W )) = ∅ . By Baire category theorem, the

nion of these also has an empty interior, i.e., int (W 

+ ∩ W 

−) = ∅ .
hus vol (W 

+ ∩ W 

−) = 0 which can be used to obtain 

ol (W 

−) = vol ((W 

− ∩ W 

+ ) ∪ (W 

− ∩ (W \ W 

+ ))) 

= vol (W 

− ∩ (W \ W 

+ )) ≤ vol (W \ W 

+ )) 

= vol (W ) − vol (W 

+ ) = vol (W ) − vol (W 

+ ) 
vol (W ) 

vol (W ) 

= (1 − AI (x k , W )) vol (W ) . 

�

emma 7 

roof. Denote δ(w ) = V (p, w ) − V (p ′ , w ) = 

∑ n 
i =1 w i (V i ( 

∑ 

x j ∈ p v 
j 
i 
) −

 i ( 
∑ 

x j ∈ p ′ v 
j 
i 
)) which is clearly linear in w . Hence, by Definition 2 

p �W 

p ⇔ 

{
δ(w ) ≥ 0 for all w ∈ W 

δ(w ) > 0 for some w ∈ W 

⇔ 

{
δ(w ) ≥ 0 for all w ∈ ext (W ) 

δ(w ) > 0 for some w ∈ ext (W ) , 
(A.2) 

ince δ(w ) is linear in w . Now, since W = W 

0 the extreme points

re w 

1 , ..., w 

n such that w 

k 
k 

= 1 and w 

k 
i 

= 0 for all i ∈ { 1 , . . . , n } \
 k } . Hence 

p �W 

0 p ⇔ 

{
V i ( 

∑ 

x j ∈ p v 
j 
i 
) ≥V i ( 

∑ 

x j ∈ p ′ v 
j 
i 
) for all i ∈ { 1 , . . . , n } 

V i ( 
∑ 

x j ∈ p v 
j 
i 
) ≥V i ( 

∑ 

x j ∈ p ′ v 
j 
i 
) for some i ∈ { 1 , . . . , n } 

(A.3) 

 

{ ∑ 

x j ∈ p v 
j 
i 
≥ ∑ 

x j ∈ p ′ v 
j 
i 

for all i ∈ { 1 , . . . , n } ∑ 

x j ∈ p v 
j 
i 
≥ ∑ 

x j ∈ p ′ v 
j 
i 

for some i ∈ { 1 , . . . , n } (A.4) 

here the last equivalence is due to the fact that each V i is a

trictly increasing function. Now consider p ∈ P N ( W 

0 ) then there

oes not exist another feasible portfolio that dominates it. Based

n (A .3) –(A .4) , this holds if and only if z ( p ) is a solution to the

OZOLP problem (10) , and there does not exists another solution

hich has a better value in each objective function and a strictly

etter in at least one. This, by definition, means that z ( p ) is a
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Lemma 8 

Proof. ‘ ⇒ ’: Assume p ∈ P 0 ( W 

1 ). Then any w ∈ int ( ̂  W (p, W 

1 )) is a

feasible solution for some strictly positive value for d . ‘ ⇐ ’: Assume

d > 0. Then there exists w ∈ W 

1 such that V (p, w ) > V (p ′ , w ) for

all p ′ ∈ P N ( W 

0 ) �[ p ]. Since V (·, w ) is linear in w these strict inequal-

ities have to hold inside some open ball N ε (w 

∗) ⊆ W 

1 , i.e., 

N ε (w 

∗) ⊆ { w ∈ W 

1 | V (p, w ) > V (p ′ , w ) ∀ p ′ ∈ P N (W 

0 ) \ [ p] } 
= { w ∈ W 

1 | V (p, w ) ≥ V (p ′ , w ) ∀ p ′ ∈ P N (W 

0 ) } 
= { w ∈ W 

1 | V (p, w ) ≥ V (p ′ , w ) ∀ p ′ ∈ P F } . 
Since int (N ε (w 

∗)) = N ε (w 

∗) � = ∅ , this result implies that int ({ w ∈
 

1 | V (p, w ) ≥ V (p ′ , w ) ∀ p ′ ∈ P F } � = ∅ , which by Definition 3 im-

plies that p ∈ P O ( W 

1 ). �

Appendix B. Project performances and costs for the application
See Table B.7 below. 

Table B.7 

Bridge data used in the analysis. The model has three portfolio feasibility con- 

straints: The total cost cannot exceed the budget of b 1 = 1 , 030 , 260 euros, the to- 

tal DPS reduction must be at least b 2 = 873 points, and the maximum number of 

bridges included in the portfolio is b 3 = 6 . 

j DPS Traffic Carry Width Salt Visual Cost DPS 

( v j 
1 
) ( v j 

2 
) ( v j 

3 
) ( v j 

3 
) ( v j 

5 
) ( v j 

6 
) ( a j 

1 
) Red ( a j 

2 
) 

1 0.944 3.0 0 1 3.00 0.00 90 0 0 71 

2 0.648 2.5 0 0 3.00 0.67 59,0 0 0 49 

3 0.472 0.0 4 2 0.00 2.00 22,0 0 0 35 

4 0.656 1.0 0 0 0.00 0.00 108,0 0 0 49 

5 0.120 0.0 4 4 0.00 0.67 19,0 0 0 9 

6 1.184 3.0 0 0 3.00 0.67 90 0 0 89 

7 4.0 0 0 4.0 0 0 3.00 1.33 1,117,0 0 0 971 

8 0.368 4.0 0 0 3.00 0.67 237,0 0 0 28 

9 1.176 0.0 1 2 0.00 0.00 14,0 0 0 88 

10 2.864 2.5 0 0 3.00 0.67 36,0 0 0 322 

11 1.360 4.0 0 0 3.00 0.67 29,0 0 0 102 

12 1.544 0.0 3 4 0.00 0.00 21,0 0 0 116 

13 0.344 3.0 0 0 3.00 0.00 31,0 0 0 26 

14 1.968 4.0 0 0 3.00 0.67 711,0 0 0 246 

15 1.336 0.0 2 1 0.00 0.67 15,0 0 0 100 

16 0.512 0.0 0 2 0.00 0.67 16,0 0 0 38 

17 1.688 3.0 0 0 3.00 0.67 350,0 0 0 127 

18 0.776 4.0 0 0 3.00 0.00 108,0 0 0 58 

19 0.784 0.0 2 2 0.00 0.67 18,0 0 0 59 

20 0.824 4.0 0 0 3.00 0.00 16,0 0 0 62 

21 0.376 2.0 0 1 0.00 0.67 34,0 0 0 28 

22 1.912 1.0 1 2 0.00 0.67 11,0 0 0 143 

23 0.224 0.0 2 4 0.00 0.00 19,0 0 0 17 

24 0.280 0.0 4 3 0.00 0.67 50 0 0 21 

25 0.184 0.0 0 0 0.00 0.00 26,0 0 0 14 

26 0.200 0.0 1 2 0.00 0.00 17,0 0 0 15 

27 0.256 0.0 0 1 0.00 0.00 13,0 0 0 19 

28 0.856 0.0 4 3 0.00 0.00 99,0 0 0 96 

29 0.360 3.5 0 0 3.00 0.00 30,0 0 0 27 

30 0.952 3.0 1 0 0.00 0.67 101,0 0 0 71 

31 0.328 4.0 0 0 3.00 0.00 238,0 0 0 25 

32 0.584 2.5 0 0 0.00 0.67 17,0 0 0 44 

33 0.464 2.0 0 0 3.00 0.00 280,0 0 0 35 

34 0.448 4.0 0 3 3.00 0.00 18,0 0 0 34 

35 0.328 4.0 0 0 3.00 0.67 20,0 0 0 25 

36 1.496 0.0 2 2 0.00 0.67 23,0 0 0 112 

37 0.352 0.0 3 3 0.00 1.33 760 0 0 26 

38 0.488 3.0 0 0 3.00 0.67 10,0 0 0 37 

39 0.616 0.0 0 1 0.00 0.67 81,0 0 0 46 

40 0.200 4.0 0 0 3.00 0.00 58,0 0 0 15 

41 4.0 0 0 2.0 0 0 0.00 0.67 176,0 0 0 627 

42 0.280 3.0 0 0 3.00 0.67 26,0 0 0 21 

43 2.688 4.0 0 0 3.00 0.67 272,0 0 0 302 

44 1.0 0 0 0.0 0 0 0.00 0.67 68,0 0 0 75 

45 1.256 4.0 0 0 3.00 0.67 80 0 0 94 

46 0.448 0.0 2 1 0.00 0.67 12,0 0 0 34 
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