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When choosing a portfolio of projects with a multi-attribute weighting model, it is necessary to elicit
trade-off statements about how important these attributes are relative to each other. Such statements
correspond to weight constraints, and thus impact on which project portfolios are potentially optimal or
non-dominated in view of the resulting set of feasible attribute weights. In this paper, we extend earlier
preference elicitation approaches by allowing the decision maker to make direct statements about the
selection and rejection of individual projects. We convert such project preference statements to weight
information by determining the weights for which (i) the selected project is included in all potentially
optimal or non-dominated portfolios, or (ii) the rejected project is not included in any potentially optimal
or non-dominated portfolio. We prove that the two complementary selection rules will exclude exactly
the same set of weights. However, analyses that apply the dominance structure often lead to multiple,
mutually exclusive feasible weight sets, and therefore the approach based on potential optimality is more
relevant for practical decision analysis. We also propose ex ante value of information measures to guide
the elicitation of project preference statements, and illustrate our results by analyzing a real case on the

selection of infrastructure maintenance projects.
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1. Introduction

The decision of allocating resources to a subset of many propos-
als is important in public administration and private firms which
launch new products, invest in infrastructure projects and make
commitments to policy actions. For this problem class, Portfolio
Decision Analysis (PDA) (Salo, Keisler, & Morton, 2011) offers a
collection of theory and methods. The use of PDA methods for
project portfolio selection is based on (i) the development of a
decision model which captures the salient properties of the avail-
able project proposals and the preferences of the Decision Maker
(DM) for risk and multiple objectives, and (ii) the solution of a
mathematical (integer) optimization problem which helps to de-
termine the most preferred portfolios subject to the relevant con-
straints. PDA methods are widely employed in practice, and nu-
merous high-impact applications have been reported in contexts
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such as R&D project selection (Grushka-Cockayne, de Reyck, & De-
graeve, 2008; Phillips & Bana e Costa, 2007; Toppila, Liesio, & Salo,
2011), healthcare capital budgeting (Kleinmuntz, 2007), military
resource allocation (Ewing, Tarantino, & Parnell, 2006), and infras-
tructure asset management (Mild, Liesid, & Salo, 2015).

Project portfolio selection usually involves multiple attributes
for evaluating the proposals. In order to lower the DM’s cognitive
load in providing information about the exact attribute trade-offs
(weights), much research has been carried out to develop methods
in which the DM can provide incomplete preference information
(Argyris, Figueira, & Morton, 2011; Fliedner & Liesio, 2016; Liesio,
Mild, & Salo, 2007; 2008; Lourengo, Morton, & Bana e Costa, 2012).
Many of these methods resemble those for choosing the best alter-
native out of many proposals (Argyris, Morton, & Figueira, 2015;
Hazen, 1986; Punkka & Salo, 2013; Salo & Hamadldinen, 1992; We-
ber, 1987). For instance, instead of requiring the DM to provide ex-
act attribute weights, she can make a holistic assessment of two
(real or hypothetical) projects and state that she prefers the first
project to the second. Such a statement corresponds to a linear
weight constraint that bounds the set of feasible weights.
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With incomplete preference information, no portfolio is typ-
ically optimal for all feasible weights. Hence, plenty of research
has focused identifying portfolios that are defensible alterna-
tives in view of incomplete information. Probably the two most
widely used concepts are non-dominated and potentially optimal
portfolios (see, e.g. Liesio et al., 2007; Lourenco et al., 2012; Liesio
& Punkka, 2014; Argyris et al., 2015; Fliedner & Liesio, 2016). The
concepts are not identical: A feasible portfolio is non-dominated
(or efficient) if no other feasible portfolio provides greater or equal
value for all feasible weights, whereas a potentially optimal (also
convex efficient) maximizes the overall value for some feasible
weights. Both of these solution concepts can be used to provide
well-founded decision recommendations on the project-level. In
particular, there usually exists projects that are included in all of
the potentially optimal or non-dominated portfolios. Such projects
should be selected, because if the available incomplete information
were to be refined so that the feasible weight space would contain
a single weight vector, the resulting optimal portfolio for this
weight vector would contain all such projects. Conversely, based
on the same rationale, all projects which do not belong to any
potentially optimal or non-dominated portfolio should be rejected.

Many decision support tools applied in practice allow the DM to
iteratively select or reject projects included in some but not all of
the non-dominated/potentially optimal portfolios, to construct the
final portfolio (Kleinmuntz, 2007; Mild et al., 2015). These tools are
heuristic in the sense that they do not model what implications
these project preference statements have on the set of feasible
weights and, in fact, the current literature offers no formal models
to capture such implications. This can be seen as a major short-
coming, because such models could be used to inform DM about
implicit judgments on the attributes’ importance that are implied
by the project preference statements, assuming that the model is
consistent. Furthermore, such information would be needed to ex-
amine whether the project preference statements are consistent
with preferences elicited through standard trade-off questions in-
volving project or portfolio consequences.

The importance of analyzing the implications of project pref-
erence statements on the set of feasible attribute weights is fur-
ther motivated by the apparent cognitive complexity of making
such statements. Even in a simple setting with a linear portfolio
value function, a DM selecting a project into the portfolio has to, in
theory, simultaneously take into account the project’s score profile
across all attributes, how this profile is in line with attributes’ im-
portance, and consider the project resource consumption. In more
complicated problems with non-linear portfolio value function and
project interactions, the DM may also have to consider how well
the project consequences supplement those of other projects in-
cluded in the portfolio, and whether including the project en-
ables utilizing some synergy effects. Despite these general chal-
lenges, it is possible that some decision support processes could
benefit from the use of project preference statements if proper
methodological support was available. In fact, behavioral research
on standard multiattribute single alternative choice problems sug-
gests that holistic preference elicitation can lead to more consistent
weights than direct methods (Korhonen, Silvennoinen, Wallenius, &
Oérni, 2013).

In this paper, we take the first step to bridge this apparent gap
in the PDA toolset by developing approaches for modeling project
preference statements as sets of feasible weights. Specifically, we
consider two alternative approaches based on analyzing sets of
(i) potentially optimal portfolios and (ii) non-dominated portfolios.
We identify challenges with the approach based on analyzing sets
of non-dominated portfolios, and show that it is as informative as
the approach that analyzes potentially optimal portfolios. We also
show how commonly used project performance indexes can be ex-
tended to build useful ex ante measures that support the elicita-

tion of additional project preference statements, and illustrate how
these indexes can be used to guide the preference elicitation pro-
cess. Finally, we demonstrate our approaches by analyzing a high-
impact application on infrastructure asset management.

Our contributions advance the theory and practice of PDA in
several ways. First, to our best knowledge, we provide the first
theoretical basis for modeling project preference statements by
using the concepts of dominance and potential optimality to de-
rive weight information in portfolio problems. Given that mod-
eling preference statements concerning selection and rejection
of multi-attribute alternatives in choose-one-out-of-many decision
problems has attracted much methodological and applied research
(Corrente, Greco, Kadzifiski, & Stowifnski, 2013; Greco, Mousseau,
& Stowinski, 2008; Kadzinski & Stowifski, 2015; Kadzifski & Ter-
vonen, 2013a; 2013b; Kadzinski, Tervonen, & Figueira, 2015; Spliet
& Tervonen, 2014; Tervonen, Sepehr, & Kadzinski, 2015), this con-
tribution has the potential to open a new stream of methodologi-
cal PDA research. Second, modeling project preference statements
as constraints on the feasible attribute weights makes it possi-
ble to use these statements in combination with other approaches
for eliciting incomplete weight information (see e.g. Liesio et al.,
2007). Finally, our methods can be readily implemented to enhance
existing processes and decision support tools for multi-attribute
project portfolio selection.

The approach developed here is based on the assumption that
project preference statements reveal meaningful information about
the attribute weights. By meaningful we mean, that the set of fea-
sible weights implied by the inclusion of a project in, or exclusion
of a project from the portfolio, is consistent with the DM’s prefer-
ences on trade-offs among the attributes. Whether this assumption
holds in practice can be debated, but the theory developed here
provides techniques for testing this assumption empirically. In par-
ticular, the models developed in this paper can be used to trans-
late project preference statements into a set of feasible attribute
weights. This set can be then compared to that obtained from the
DM'’s preference statements on attribute trade-offs.

The rest of the paper is structured as follows. Section 2 intro-
duces the additive value model for multi-attribute project port-
folio selection and defines the concepts of potential optimality
and dominance. Section 3 models project preference statements in
terms of constraints on the set of feasible weights, and examines
the structure of the resulting feasible weight set. Section 4 devel-
ops measures for assessing the ‘strength’ of these statements in
providing additional preference information, and shows how these
measures can be used to support portfolio decision processes.
Section 5 addresses computational aspects. Section 6 presents an
example analysis based on real-life data, and Section 7 concludes
by discussing the main results.

2. Multiattribute project portfolio selection with incomplete
preference information

Let there be m project proposals X = {x!, ..., x™} which are
evaluated on multiple attributes i =1,...,n, and denote the per-
formance (score) of project ¥ on attribute i by v{ . A project port-
folio p € X is a subset of the m project proposals, and the set of
all possible portfolios is the power set P = 2X. In what follows, we
assume that the overall value of a portfolio can be expressed as

>v) M

xiep

n
V(p.w) =3 w;
i=1

where the attribute-specific portfolio value functions Vi,...,V;
are assumed to be strictly increasing. The functional (1) form
can model non-constant marginal attribute-specific portfolio val-
ues, and is thus more general than the widely applied additive-
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linear value function V(p, w) = ZX,-EP >y wiv'f (Golabi, Kirkwood,
& Sicherman 1981). This is a special case of (1) in which each V;(-)
is an identity function.

We assume that feasible portfolios are those which satisfy g lin-
ear inequalities defined by the coefficient matrix A ¢ RI<™ (al’ =
[A];;) and the vector B = [b, ..., bq]" € RY. That is,

Pe={peP|Az(p) <B}. (2)

where 2(-) is a bijection z: P — {0, 1}™ such that z;(p) =1 if ¥ e
p and z;(p) =0 if ¥ ¢p. For instance, with m = 5 projects, portfo-
lio p = {x!,x2,x*} corresponds to z(p) =[1,1,0,1,0]". For exam-
ple, if there is a single budget constraint R and the cost of the j-th
project is ¢;, then we have [ =1, a{ =c;j and by =R in (2). Non-
additive synergy and cannibalization effects among projects can be
modeled through linear constraints, which involve dummy projects
that represent project interactions (see, e.g., Stummer & Heiden-
berger 2003).

Given precise values for the attribute weights w, the best feasi-
ble portfolio is the one which maximizes the overall value (1). This
portfolio is the solution to the Non-linear Zero-One Programming
Problem

maxV(p, w)
pePr

S wivi[ Y z;(pv! | 1Az(p) <B. z(p)e{0. 1)}, (3)
i=1 j=1

= max
z(p)

2.1. Incomplete preference information

Providing complete weight information can be cognitively de-
manding for the DM (Weber & Borcherding, 1993). Several meth-
ods have been proposed to lower the cognitive load by allowing
the DM to provide incomplete preference statements (see e.g. Salo
& Hdmadldinen, 1992; Park & Kim, 1997; Mustajoki, Himadldinen, &
Salo, 2005). These define linear constraints that must be satisfied
by the closed set of feasible weights W < WP. For instance, with
n = 2 attributes, stating that improving the project’s score from the
worst to the best level on the first attribute is (weakly) preferred
over the similar swing on the second attribute corresponds to the
feasible weight set W = {w e W0 | w; > w,}. Often such sets are
convex, although incomplete ordinal statements can lead to non-
convex sets as well (Punkka & Salo, 2013).

In line with existing theory, we model incomplete preference
information through a non-empty, closed set of feasible weights
W < WP, which is derived from all preference statements, includ-
ing the project preference statements. We do not, however, require
the feasible weight set to be convex or even connected, but in-
stead assume that the set has a non-empty interior that spans
the whole set. Specifically, the interior of the set W, denoted by
int(W), includes those points w € W around which one can form

A A

w3 W3

wp

wq Wy

| 4 4

an e-neighborhood N (w) = {w' e WO | ||w/ — w||; < €} contained
entirely in W, i.e.,

int(W) ={weW | de > 0 s.t. Nc(w) c W}.

In turn, points w € W0 whose e-neighborhood includes a point
from the set W for any positive value of € make up the set’s clo-
sure cl(W), i.e.,

W) ={weW? | No(w)nW # ¢ Ve > 0}.

With these concepts, a feasible weight set is defined to be a non-
empty subset of W0, which has its interior’s closure equal to the
set itself.

Definition 1. The set of feasible weight sets is
W= {W c WO |cl(int(W)) =W, W # @},

Fig. 1 illustrates the structure of W. The set W' consisting of
two points and a line segment does not belong to W. This is since
its interior is an empty set, which implies that the closure is also
empty. The set W2 consists of two triangles and a separate line
segment, but the interior of W2 consists only of interior points of
the two triangles. Hence, the closure does not include the line seg-
ment and therefore W2 does not belong to W. Only the set W3 be-
longs to W since any point in W3 is arbitrarily close to an interior
point (and, equivalently, closure of its interior is the set itself).

The requirement stated in Definition 1 poses no limits for prac-
tical application of such sets in modeling preferences. Feasible
weight sets proposed in the literature almost without exception
satisfy the assumptions of W. Any DM preferences that are mod-
eled as regions in the weight space that do not contain the neigh-
boring interior points, such as the line segment in Fig. 1, can be
extended to include arbitrarily small neighborhoods without af-
fecting the portfolio decision recommendations. This extended set
would then belong to W. With incomplete preference informa-
tion, the portfolio which solves problem (3) may be different for
different selections of weight vector w from the set of feasible
weights. In this case, it is warranted to focus on the non-dominated
portfolios.

Definition 2. Portfolio p dominates p’ with respect to weight set
W e W, denoted by p>wp’, if V(p, w) > V(p’,w) for all w e W and
V(p.w) > V(p',w) for some w e W. Furthermore, the set of non-
dominated portfolios w.r.t. weight set W is

Py(W) ={p e P | p' € B such that p’ >y p}.

The concept of dominance is illustrated in Fig. 2, which shows
four feasible portfolios that are all non-dominated except for p*.
If the DM were to select a dominated portfolio, then one could
identify a non-dominated portfolio which yields at least as much
value for all weights and more value for some weights.

A portfolio can be non-dominated even if it is not optimal for
any weights (cf. portfolio p? in Fig. 2). Another widely used opti-

A

w3

w» W

Wy
4

Fig. 1. Three subsets of the 2-simplex W° such that W' c W2 c W3, and only W? belongs to W.
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Fig. 2. Attribute-specific values of portfolios p', .., p* (left) and their overall values as a function of attribute weights w e W = W° = {(w;, w>) € R2 |w; +w, = 1} (right).

Vip,w) =w,V; (Z vlj) + WZVZ(Z vzj)

The set of non-dominated portfolios is Py(W) = {p, p?, p?} and the set of potentially optimal portfolios is Po(W) = {p', p*}.

mality concept under incomplete information is potential optimal-
ity, which focuses on portfolios that have the highest overall value
for some weights (Hazen, 1986). However, there can be situations
in which portfolios have an equal value for some set of weights
W c W, while one dominates the other w.r.t. W (cf. portfolio p* in
Fig. 2). Hence, we define a portfolio to be potentially optimal if it
has the highest value for a subset of feasible weights with a non-
empty interior.

Definition 3. A feasible portfolio p € P is potentially optimal w.r.t.
W ew if

int({w e WIV(p.w) = V(p',w) Vp' € P}) # 0. (4)
The set of potentially optimal portfolios w.r.t. W is denoted by Po(W).

In particular, if a portfolio is potentially optimal with regard to
some feasible weight set W € W, then the closure of set (4), i.e.,

Wp,w) = cl(int({w eW|V(p.w)>V(p ,w)Vp e PF})), (5)

also belongs to the set of feasible weight sets W given by
Definition 1. Furthermore, for any feasible weight set in W there
always exists at least one potentially optimal portfolio, and each
potentially optimal portfolio is also non-dominated, as stated by
the following lemma.

Lemma 1. Let W € W. Then @ # Po(W) € Py(W).

Portfolios that are optimal for a set of weights with an empty
interior are not included in the set Po(W). This is a modeling
choice which has the potential drawback of excluding some port-
folios that the DM might be interested in. However, arguably these
excluded portfolios are not particularly robust as the set of weights
for which they maximize value has a dimension less than n. In
particular, the optimality of these portfolios is sensitive to er-
rors in the preference elicitation. Furthermore, for any weights for
which these excluded portfolios maximize value, there exists an-
other portfolio in the set Po(W) that yields equal value.

Both the set of potentially optimal and the set of non-
dominated portfolios can be used to provide recommendations for
project selection and rejection. Specifically, projects can be classi-
fied into (i) core projects that are included in all, (ii) exterior projects
that are not included in any, and (iii) borderline projects that are
included in some but not all potentially optimal or non-dominated
portfolios (Liesio et al., 2007).

Definition 4. The sets of core, borderline and exterior projects
based on potentially optimal portfolios w.r.t. W € W are

X§W) = {x*eX|x* e pV pe P (W)}

XE(W) = {x* € X| 3p, p’ € Py(W) such that x € p,x* ¢ p'}
X5W) = {x* e X|x* ¢ p¥p e Po(W) },

respectively.

Definition 5. The sets of core, borderline and exterior projects
based on non-dominated portfolios w.r.t. W € W are

XS(W) = {x* e X|xk e p Vp e Py(W)}

XBE(W) = {x* € X| 3p, p’ € Py(W) such that x* € p,x* ¢ p'}
X§W) = {x“ e X|x* ¢ pVp e Py(W) },

respectively.

Table 1 identifies the five projects x!,...,x° in Fig. 2 as core,
borderline or exterior projects, based on both potentially optimal
and non-dominated portfolios. By Lemma 1, the potentially opti-
mal portfolios are also non-dominated, and thus the classification
of projects has the following general properties.

Lemma 2. Let W € W. Then
Xy(W) < X§(W)
X§(W) 2 X5(W)
XEW) c XE(w).

As a result of introducing additional preference statements, the
revised set of feasible weights W' may become smaller but not
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229

Project classification in the example of Fig. 2. For the weight set W’ = {(wy, w;) € W°|w; > 0.5} the classification based on non-dominated and potentially optimal portfolios

is equivalent since Py(W') = Py(W') = {p'}.

v v Xy (W0) XFWo) Xy (W0) X§(W) X§wW0) X5 (W) XEW') XEw’) XEWw’)
X! 0.75 0.75 X X X
x? 1 0.5 X X X
x3 0.5 1 X X X
x* 0.75 0.6 X X X
x° 1 0.25 X X X

larger, and thus W < W. If W has a non-empty interior (i.e.
W’ e W), the sets of non-dominated and potentially optimal port-
folios will therefore either become smaller or remain unchanged.
Without the assumption of non-empty interior, additional prefer-
ence statements can enlarge the set of non-dominated portfolios.
For instance, if in the example of Fig. 2 the weight set would be
reduced to a single point W’ = {(0,1)T}, then portfolio p* would
not be dominated by any of the other portfolios, although p> has a
strictly better value for any infinitely small perturbation of weights
from the value (0, 1)7. The following lemma formalizes the im-
pact that additional preference statements have on the sets of non-
dominated and potentially optimal portfolios, and on the sets of
core, borderline and exterior projects.

Lemma 3. Let W/, W e W such that W < W. Then, for * € {N, 0},

P.(W') € P.(W)
XEW') 2 XE(W)
XEw’) c xBw)
XEW) 2 XEw).

The DM is advised to select core projects and to reject exte-
rior ones, because core and exterior projects will retain their status
even if the set of feasible weights becomes smaller. Furthermore,
additional preference statements cannot expand the set of border-
line projects. For instance, the last three columns of Table 1 show
the classification of projects after adding the preference statement
w; > w, to the example in Fig. 2. Specifically, only portfolio p! is
non-dominated and potentially optimal for the resulting set of fea-
sible weights.

The decision support process is often iterative so that the in-
troduction of additional preference information into the prefer-
ence model decreases the number of borderline projects. This pro-
cess will eventually lead to the identification of only few non-
dominated or potentially optimal portfolios; it is also possible that
only one such portfolio remains. However, the DM may be un-
able to provide preference statements that reduce the set of feasi-
ble portfolios sufficiently. In such situations, she may wish to con-
sider which borderline projects could either be selected into the
final portfolio or, alternatively, rejected so that they are excluded
from it.

3. Modeling project preference statements

This section develops approaches for modeling the DM’s state-
ments about which borderline projects should be included in the
final portfolio. In particular, we consider two types of statements:

« Statement In(x¥): ‘Select project x¥".
« Statement Out(x): ‘Reject project x¥’.

The developed approach interprets these statements through
the feasible weight set, thus enabling the use of project prefer-
ences together with standard preference statements. The key chal-
lenge with this approach is that unlike standard preference state-
ments, the project preference statements do not contain a compar-
ison of two (hypothetical) portfolios, which could be interpreted

as a constraint for the feasible weights in a straightforward man-
ner. Hence, we seek to identify set of weights for which each non-
dominated or potentially optimal portfolio satisfies the statement.

This modeling approach is in line with methods developed for
capturing holistic statements in a setting were the objective is to
choose one of several decision alternatives (see, e.g., Punkka & Salo,
2013). In particular, each feasible portfolios can be viewed as one
decision alternative and the set of possible decision alternatives
can be partitioned into two mutually exclusive groups based on
any project x: (i) those alternatives that include project x¥, and
(ii) those that do not include project x¥. Hence, the preference
statement In(x¥) can be interpreted as the DM stating that only
alternatives in group (i) should be considered as possible choices,
and therefore the statement should result in such a set of feasi-
ble weights that only alternatives belonging to group (i) are non-
dominated or potentially optimal. The two approaches based on
using the sets of non-dominated or potentially optimal portfolios
as the basis of interpreting project preference statements are de-
veloped in the following sections.

3.1. Project selection and rejection based on potentially optimal
portfolios

Additional project preference statements reduce the set of fea-
sible weights W to a subset W’. If W’ is compatible with the state-
ment In(x¥), then it is logical to require that x¥ is contained in
all potentially optimal portfolios in Po(W’). This requirement en-
sures that x¥ is a core project, and it imposes no additional as-
sumptions on the preference model. Furthermore, W’ should be
the largest such set, i.e., augmenting it by adding other weight vec-
tors would cause x¥ to lose its core classification. Maximality of
W' is required because the resulting weight constraints should ex-
clude only those weights for which x¥ is no longer a core project,
even though choosing any subset of W would also make x¥ a core
project (cf. Lemma 3).

Definition 6. Let W € W be the current feasible weight set. The
subset of weights W' € W, W' € W, is PO-compatible with the pref-
erence statement In(x) if

i) xke
(i) x*eXSW’)
(i) x*¢X5(W") for any W” € W, such that W c W" cW.

Clearly, the PO-compatible weight set does not exist if x¥ is an
exterior project with regard to the original weight set W. However,
even if X e Xg (W), but for each feasible weight vector there exists
two potentially optimal portfolios such that one of them includes
project x* and the other one does not, then the PO-compatible
weight set does not exist. Otherwise there exists a unique com-
patible weight set which can be formulated as a finite union of
convex subsets of W. This is formalized by the following theorems,
in which [p] denotes the equivalence class of feasible portfolios
whose value is the same for all weights, i.e.,

[pl={p e P | V(P',w) =V (p,w) Vw e W°}.

Theorem 1. Let W € W. There exists a weight set W' PO-compatible
with the preference statement In(xX) if and only if there exists



230 T. Tervonen et al./European Journal of Operational Research 263 (2017) 225-239

0 2 6 1 W

Fig. 3. Values of portfolios p', p> and p? as a function of attribute weights w e
W = {(wy,w;) e RZ|w;y +w, =1}. The set W] ={weW | wy €[0,0.2]U[0.6,1]} is
PO-compatible with the statement In(x') and the set W) ={w e W | w; €[0,0.2]}
is PO-compatible with the statement Out(x3).

p € Po(W) such that x* e p’ for all p’ € [p], and this weight set is
given by
w= (J Wew). (6)

pePo (W) sit.
Xkep'vp'e[p]

In most applications, not allowing the DM to provide In(x¥)
statements on exterior projects x exg (W) is sufficient to ensure
that a PO-compatible weight set exists. However, to be completely
safe, In(x¥) statements cannot be given about those borderline
projects x¥ exg (W) that meet the following condition: For each
portfolio p containing x¥, there exists another portfolio p’ which (i)
does not contain x¥, and (ii) has exactly the same overall value for
all weights (i.e., p’ € [p]).

Fig. 3 illustrates Definition 6 and Theorem 1; the set W] = {w ¢
W | wy; €[0,0.2]U[0.6,1]} is PO-compatible with the statement
In(x!). Furthermore, if there existed a portfolio p* = {x2,x°} € [p!],
then for {weW | w; €[0.6,1]} both p! and p* would be po-
tentially optimal, and because p* does not contain x!, the PO-
compatible set would be W, = {w e W | w; € [0, 0.2]}. This exam-
ple shows that the set of compatible weights may not be con-
nected, because it is formed as a union of the weight sets for
which all potentially optimal portfolios include/exclude a specific
project. If the set of potentially optimal portfolios Po(W’) is known,
then constructing the set W’ is relatively straightforward, because
it suffices to construct the sets W(p, W) defined through linear
constraints (cf. Eq. (4)).

The set of weights compatible with a project rejection state-
ment is defined analogously.

Definition 7. Let W € W be the current feasible weight set. The
subset of weights W < W, W’ ¢ W, is PO-compatible with the pref-
erence statement Out(x¥) if

(i) xFeXEW)
(i) x* ¢ XE(W") for any W” € W such that W c W/ c W .

Theorem 2. Let W € W. There exists weight set W' PO-compatible
with the preference statement Out(x*) if and only if there exists p
Po(W) such that x*¢p’ for all p’ € [p], and this weight set is given
by

w= | Wpw. (7)

pePp(W) s.t.
XKgp'vp'elp]
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Fig. 4. With the feasible weight set W = {(w1, w,) € R2|w; +w, = 1} each of port-
folios p!, p? and p* is non-dominated. Both weight sets W, and W, are ND-
compatible with the preference statement In(x*). These sets are also ND-compatible
with the statement Out(x3). However, the union of these sets is not ND-compatible
with either statement since W] UW, =W.

3.2. Project selection and rejection based on non-dominated
portfolios

Another approach for modeling project preference statements
is to interpret them using the set of non-dominated portfolios.
Specifically, for a weight set W to be compatible with the state-
ment In(x¥) (Out(x¥)), project x* must be included in (excluded
from) each non-dominated portfolio in Py(W').

Definition 8. Let W € W be the feasible weight set. The subset of
weights W < W, W/ e W, is ND-compatible with the preference
statement In(x*) if

(i) xFeXSW)
(ii) xk ¢ XG(W") for any W” € W such that W c W cW.

Definition 9. Let W € W be the feasible weight set. The subset of
weights W < W, W’ e W, is ND-compatible with the preference
statement Out(x¥) if

(i) xFeXEW)
(i) x* ¢ XE(W") for any W” e W such that W c W’ cW.

Thus, if W’ is compatible, then x¥ is included in all (none) non-
dominated portfolios Py(W’) and no additional weight vectors can
be included in W’ without x* losing its core (exterior) classifica-
tion. Note that an ND-compatible W’ is not necessarily unique and
hence there can exist several sets in W that satisfy the require-
ments of Definition 8 or 9. For instance, in Fig. 4, the two sets

W, = {(wy,w)T e W? | w; €0, 0.6]}
Wy = {(w;,w2)T e W° | wy €[0.4,1]}

are ND-compatible with the statement Out(x3). Both sets are ND-
compatible with the statement In(x*), which shows that when
working with non-dominated portfolios, the project preference
statements can result in a situation where incomplete preference
information corresponds to multiple sets of feasible weights.

A borderline project x¢ can become a core one (included in all
non-dominated portfolios) only if every non-dominated portfolio
in which x* does not belong to becomes dominated by at least one
feasible portfolio in which x¥ belongs to. This gives an upper bound
on the number of sets that are ND-compatible with the preference
statement In(x¥).

Lemma 4. Let W € W be the current feasible weight set. The upper
bound for the number of subsets of weights that are ND-compatible
with the statement In(x*) is IPl:rl‘Pﬂ, where PF = {p e Py(W)|x¥ € p}
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and P = {p e Py(W) | x* ¢ p} are the sets of portfolios in which the
borderline project x* does and does not belong to, respectively.

The worst-case exponential number of ND-compatible weight
sets makes it difficult to explain the results of the analysis to the
DM: if the DM questions results of the analysis, there can be a
large number of possible sets of mutually exclusive constraints that
all explain the results. Furthermore, the weights that can be elimi-
nated from the feasible weight set are equal when project selection
statements are interpreted based on potentially optimal portfolios
(Definitions 6 and 7) and non-dominated portfolios (Definitions 8
and 9). This is stated in Theorem 3.

Theorem 3. Assume that the set W ¢ W is PO-compatible with the
preference statement In(x¥), and that Wi e w,j=1,2,...,], are all
the sets ND-compatible with the preference statement In(xX). Then
W=, wi.

Theorem 3 implies that the information gained from project
selection statements is essentially the same in analyses based on
non-dominated and potentially optimal portfolios (see e.g. sets that
are ND- and PO-compatible with In(x*) in Fig. 4). Recall that holis-
tic preference statements can be used in PDA to narrow down the
feasible weight set until a sufficiently informed portfolio selection
can be made. Thus, as there are multiple, worst-case exponen-
tial number of ND-compatible weight sets but only a single PO-
compatible set, from the viewpoint of practical decision analysis
with a focus on interacting with the DM, it makes little sense to
interpret the project selection statements based on ND-compatible
portfolios. For brevity, we state without proof a similar result for
project rejection statements: If the set W ¢ W is PO-compatible
with the preference statement Out(x¥), then W’ = Uﬁa Wi, where

Wiew,j=1,2,....] are all the sets ND-compatible with the
preference statement Out(x¥).

4. Targeting project preference statements

In many project portfolio selection problems there are dozens
or hundreds of project candidates (see e.g. Ewing et al., 2006;
Mild et al., 2015), and even after some preference information
about the attribute weights have been elicited, the number of
borderline projects may still be large. It is therefore useful to iden-
tify all those borderline projects about which project preference
statements are likely to reduce the number of potentially optimal
portfolios as much as possible. The DM can be asked to consider
if she is willing to select or reject some of the corresponding
borderline projects. Furthermore, the decision process should
result in selecting a robust portfolio which is optimal (has the
largest overall value with the portfolio value model in Eq. (1))
for a large share of feasible attribute weights. Hence, the size of
the compatible weight set resulting from the project preference
statements is also a relevant criterion for prioritizing borderline
projects to be evaluated by the DM.

To support the prioritization of borderline projects in prefer-
ence elicitation, we adapt and extend two measures that have
been suggested in the literature. The first is the Core Index, which
measures the share of non-dominated portfolios that include a
particular project (Liesio et al., 2007). Because analyses with non-
dominated portfolios are not very useful when eliciting project
preference statements (see previous Section), we compute core
indexes over the set of potentially optimal portfolios. Specifically,
the Core Index (CI) of project xk with respect to a set of feasible
weights W e W is

|{p e W) |x* € p}|
|Po(W)]

Cl(x*, W) = (8)

Table 2

Classification of projects for selection in (In(x¥)) and rejection from (Out(x)) the
final portfolio. Bold entries indicate the best candidates for eliciting project prefer-
ence statements.

In(x*) Low CI High CI

Low Al Non-robust, large reduction Non-robust, small

of Po(W) reduction of Po(W)

High Al Robust, large reduction of Robust, small reduction of
Po(W) Po(W)

Out(xk) Low CI High CI

Low Al Robust, small reduction of Robust, large reduction of
Po(W) Po(W)

High Al Non-robust, small Non-robust, large reduction
reduction of Po(W) of Po(W)

The CI of any core (exterior) project is equal to one (zero), while
the CI of borderline projects is in the open interval (0, 1).

The second measure is based on the Acceptability Index intro-
duced by Lahdelma, Hokkanen, and Salminen (1998). The original
acceptability index describes the share of weights for which a par-
ticular alternative is optimal in single alternative choice problems.
For use in PDA, we define the project’s Acceptability Index (Al) as
the relative size of the subset of weights for which the project is a
core one, and thus included in all potentially optimal portfolios (cf.
Definition 6). Specifically, given a set of feasible weights W € W,
the Al of project x¥ is

vol(W')
vol(W)’

where W' is PO-compatible with In(x¥) and vol(-) denotes the
n — 1-dimensional volume of the given set.

Core and acceptability indexes can be used for identifying those
borderline projects that are good candidates for the elicitation of
project preference statements. Specifically, the lower (higher) the
Cl of project x¥ is, the smaller is the set of potentially optimal
portfolios w.r.t. the set of weights compatible with the preference
statement In(x¥) (statement Out(x¥)). In turn, if a project with a
high (low) Al is selected (rejected), then a large share of weights
will remain feasible. These results are stated formally in the fol-
lowing lemmas.

Lemma 5. Let W.W' e W . If W < W is PO-compatible with the
preference statement In(x*), then

[Po(W)| < CL(x*, W)|Po(W)]

vol(W') = AI(x*, W)vol(W)

Al(x*, W) = (9)

Lemma 6. Let W, W’ e W. If W < W is PO-compatible with the pref-
erence statement Out(x), then

IPo(W")| < (1 —CI(x*, W))|Po(W)]
vol(W’) < (1 — Al(x*, W))vol(W)

From another point of view, Als describe the robustness of
project preference statements. If a borderline project has a very
high acceptability, then alterations of previously elicited preference
statements are unlikely to make it an exterior one. If the project
has a very low Al then even a small alteration in one of the pre-
viously elicited preference statements could lead it to becoming
an exterior one. Therefore, the DM may wish to avoid selecting
projects with an extremely low Al, because feasibility of the final
portfolio would otherwise be highly dependent on validity of all
preference statements. Table 2 classifies project preference state-
ments based on the corresponding core and acceptability indexes.
Note, however, that if the DM is sure about including a project
with low Al and low CI (or excluding one with high Al and high
CI), such a statement should not be discouraged, as it would re-
duce the set of feasible weights considerably.
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Although core and project acceptability indexes can be com-
puted for any W € W, they are not very useful metrics for decision
support at the beginning of the analysis when W = W0, because
the “real” DM preferences may lie on a small region of W® which
could be formed by eliciting linear inequality constraints. We rec-
ommend to start the process by first eliciting incomplete prefer-
ence information in form of linear weight constraints, and only af-
terwards to elicit the project preference statements. The core and
project acceptability indexes are useful only in this second phase.

Selecting projects on which to provide preference statements
can be viewed as a portfolio problem itself. However, it is impor-
tant to highlight that the core and acceptability indexes of a par-
ticular project reflect the marginal effect a statement about this
project would have on the weight set, or the number of potentially
optimal portfolios, but these indexes cannot as such be used eval-
uate the effect of combinations of such statements. This is since
CI and Al are contingent of the set of feasible weights W, which
will change as the result of each statement. Hence, rather than en-
couraging DM to provide a sequence of, for instance, In(-) state-
ments on projects with low CI(-, W) values, it is better to ask for
one statement at a time and update the Al and CI values based on
the set of feasible weights W/, resulting from this single statement.

Continuous update of CI values also provides a way of giving
feedback to the DM about the implications of each project prefer-
ence statement. In particular, after providing a project preference
statement, the DM can immediately be provided with the updated
CI values, to show which other projects the statement causes to
be excluded from, or included in all potentially optimal portfolios.
The DM can then reflect on this information and has the option
of removing the preference statement if the project implications
are not consistent with her intentions. In addition, it is important
also to illustrate effects the statements have on the set of feasi-
ble weights (e.g., average and range of each weight). These types
of feedback are particularly important in real-life applications in
which the DM is likely to base the statements at least partly on
considerations not explicitly included in the portfolio value model.

5. Computational considerations

Applying the developed models for capturing project pref-
erences requires identification of the set of potentially optimal
portfolios Po(W) to identity sets of core, borderline and exterior
projects. The feasible weight set W1 ¢ W is assumed to capture
preference information in form of linear weight constraints. In case
no such preference information exists, then W1 =W?9, However,
the current literature offers no exact algorithms to compute the set
of potentially optimal portfolios Po(W') directly. Hence, we base
our approach on first computing the set of non-dominated port-
folios Py(W?), since Lemmas 1 and 3 together imply that Po(W!)
C Py(W') € Py(WP). Even if the attribute-specific portfolio value
functions V; in (1) are non-linear, the set Py(W?) can be identified
by solving a Multi-Objective Zero-One Linear Programming (MO-
ZOLP) problem as stated by the following lemma.

Lemma 7. p € Py(WP?) if and only if z(p) is a Pareto optimal solution
to the n-objective MOZOLP problem

v—zr(rpl)ax sz(p)uf,sz(p)vj,...,sz(p)vf;
j=1 j=1 Jj=1
Az(p) <B (10)

z(p) € {0, 1}™

There are several exact algorithms for solving medium-sized
MOZOLP problems (e.g., m = 60) in reasonable time (see, e.g.,
Kiziltan & Yucaoglu 1983; Liesio, Mild, & Salo 2008; Villarreal &
Karwan 1981). Approximate algorithms can be used to solve larger

problems with hundreds of projects (see, e.g., Mild et al. 2015).
However, it is important to highlight that the number of projects
m also includes possible dummy projects needed to model inter-
actions among the projects. In case the portfolio value function
is additive-linear, i.e., V(p,w) = Yxiep S wiv{, the set of non-
dominated portfolios Py(W?) can be identified directly though MO-
ZOLP, which can be faster than solving the problem (10) (see Liesio
et al., 2008, for details).

The set of potentially optimal portfolios Po(W!) can be com-
puted with linear programming by checking, for each portfolio in
p € Py(W9), whether there exists w e W in which the portfolio
has the highest overall value among all portfolios in Py(WO)\[p],
where [p] is the equivalence containing portfolios that yield the
same overall value as p for all weights. This check corresponds
to a linear programming problem (LP) as stated by the following
lemma.

Lemma 8. Let p € Py(WP) and W! < WO. Then p e Po(W') if and
only if

n
max d‘ZW,» Vil Yovl ) -vi Yo v
i-1

wew1 xiep Xiep

=dVp ebyW)\I[pli >0. (11)

LP problem (11) has n + 1 continuous decision variables and the
number of constraints is linear in the number of non-dominated
portfolios |Py(W0)|.

Acceptability index computation with deterministic scores is
equal to polytope volume computation, which is known to be #P-
hard (Dyer & Freeze, 1991; Lawrence, 1991). Therefore, in higher
dimensionality problems their exact computation is intractable
and the volumes within (9) have to be estimated numerically
(Lahdelma & Salminen, 2001). Tervonen, van Valkenhoef, Bastiirk,
and Postmus (2013) successfully applied the Markov Chain Monte
Carlo hit-and-run technique for sampling weight vectors, allow-
ing to estimate acceptability indexes efficiently when the feasible
weight space is convex. For details on the procedure, see Tervonen
et al. (2013), van Valkenhoef, Tervonen, and Postmus (2014) and
Tervonen and Lahdelma (2007).!

The set of weights compatible with given project preference
statements is not necessarily convex (Definitions 6 and 7). There-
fore, the potentially optimal portfolios cannot be computed with
linear programming when such statements are included in the
analysis. We propose to estimate the set of potentially optimal
portfolios numerically as follows.

1. Construct convex weight space W! by restricting W with lin-
ear constraints arising from any possible non-project preference
statements (such as wy > wy).

2. Generate portfolios that are non-dominated for W1,

3. Construct the possibly non-convex feasible weight space W2 by
restricting W! with project preference statements.

4, Draw a sufficient sample (e.g. 10,000, see Tervonen &
Lahdelma, 2007) of weight vectors from W2 with simple rejec-
tion sampling where hit-and-run is used to generate candidate
draws from the convex weight space W1.

5. Use the final weight samples for estimating the set of poten-
tially optimal portfolios, i.e. those non-dominated ones that
have the highest value for at least one of the weight vector
draws, and core and acceptability indexes.

T An open source R package implementing the hit-and-run procedure is available
from CRAN (https://cran.r-project.org/web/packages/hitandrun/).
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The rejection rate in the above sampling procedure depends
on the acceptability indexes of the selected/rejected projects
(Lemma 5). The project acceptability indexes provide information
about the robustness of the final portfolio choice recommendation,
and the DM should avoid selecting projects with extremely low
acceptability indexes, or rejecting projects with extremely high ac-
ceptability indexes, because such project preference statements are
not robust (see Table 2). Therefore, the rejection sampling method
is tractable in most practical cases.

6. Application to infrastructure maintenance project selection

We illustrate the use of project preference statements with data
from a real-life case on infrastructure asset management reported
by Mild et al. (2015) in which a dedicated PDA model was used an-
nually to support the selection of a portfolio of bridges for main-
tenance. This model included 6 attributes to measure the repair
urgency of each bridge: Damage Point Sum (DPS), Traffic signifi-
cance, Carrying deficiency, Width deficiency, exposure to Salt, Vi-
sual appearance; and three constraints: Annual maintenance bud-
get, minimum level for the portfolio DPS reduction, and a man-
agement capacity constraint limiting the number of bridges in the
portfolio. The model results were delivered to DMs with a spread-
sheet that included the bridge Core Index values, their attribute-
specific scores and other technical information. The spreadsheet
allowed the DMs to manually construct the final portfolio by se-
lecting individual bridges and showed the resulting overall port-
folio performance in terms of attributes and resource consump-
tion. However, selections made by the DMs were not fed back
into the PDA model to update the sets of non-dominated or po-
tentially optimal portfolios and corresponding core index values.
Here we illustrate how such selections could be modeled as project
preferences statements in the PDA model using the developed
approaches.

Although in the original case the model was applied for data
sets containing hundreds of bridge projects, for brevity we ana-
lyze here a subset of 46 projects from one of these data sets with
the constraints scaled accordingly (see Appendix B). This analysis
was carried out on a standard laptop (2.93 gigahertz processor, 8
gigabytes memory). RPM-Decisions software, which implements
the dynamic programming algorithm of Liesio, Mild, and Salo
(2008), was used to compute the set of non-dominated portfo-
lios Py(WP). This took approximately 20 seconds. Identification of
potentially optimal portfolios Po(W) for different sets of feasible
weights W and the computation of acceptability and core indexes
were carried out with a custom implementation, which is avail-
able online free of charge (Tervonen & Liesid, 2016). Each set of
potentially optimal portfolios Po(W) was obtained in less than 4
minutes, and the estimation of the acceptability and core indexes
took less than 35 seconds. These results are presented in Table 3.
Specifically, the set of potentially optimal portfolios Po(W?) con-
tains 294 portfolios, each of which is a subset of the 24 borderline
projects X5(W?) as there are no core projects (X5(W?) = #).

There are some projects (e.g., x4 and x30) with zero Al and
non-zero Cl. This is due to imprecision in the Al estimation pro-
cedure: Some of the potentially optimal portfolios may have very
small optimal weight regions, and hence none of the sampled
10,000 weight vectors are in these regions. The differences be-
tween exact and Monte Carlo estimated indexes are larger than
what has been observed in ranking and classification multiat-
tribute problems (cf. Kadzinski & Tervonen, 2013a; 2013b). This is
likely due to the larger number of decision alternatives (potentially
optimal portfolios) in the current study.

In the second iteration of the analysis, we apply the prefer-
ence information from the original application, which includes in-
complete ordinal statements about the importance of different at-

tributes as well as a weight lower bound of 0.02 to enforce some
importance for every attribute. These statements yield the set of
feasible weights

wl = {w € R®|Wpps = Wyrqppic = Wi, for i e {salt, visual}

Wpps > Wearry + Wyigen > Wi, for i € {salt, visual}
w; > 0.02 for i € {DPS, traffic, carry, width, salt, visual}

Zw,:1}. (12)

The number of potentially optimal portfolios is |[Py(W1)| = 74,
which is considerably less than the 294 potentially optimal port-
folios of the previous iteration. However, since the number of bor-
derline projects is 21, and there are no core projects (Xg W1y =p),
the DM may be inclined to provide project preferences to obtain
more conclusive results. Moreover, core and acceptability indexes
can be used to assist in identifying candidates for such statements.
For example, project x> has a CI of 0.34, but a very low Al of 0.03.
Although the DM could select this project into the optimal portfo-
lio, the portfolio recommendation would not be particulary robust
with regard to In(x®) because x° is included in the optimal portfo-
lio for only 3% of the weights in W'. On the other hand, x*> has
CI of 0.22 and Al of 0.62, and is therefore a good candidate for
selecting into the final portfolio.

Assume that such considerations result in the DM providing a
single project preference statement In(x**), and let W2 denote the
corresponding PO-compatible weight set (Definition 6). Because
the Al of project x*> is 0.62, this reduces the size of the feasible
weight set by 38%. The CI of project x** is 0.22, so 78% of the port-
folios included in Po(W') are not included in Po(W2). Fig. 5 high-
lights the fact that many projects obtain a unit Al and CI as a result
of adding this single project preference statement. The number of
borderline projects reduces to [X8(W?2)| = 11.

Furthermore, the Al of projects x!, x3, x5, x8, x'® and x20 is close
to zero for the weight set W2, Assume that after careful exami-
nation of the attribute performance scores of these projects, the
DM decides that they can be rejected from the optimal portfolio
together with project x17. The Al of project x!7 is 0.56, which im-
plies that rejecting it results in 44% weight space reduction. In fact,
with only linear constraints for the weights (W'), the AI(x17, W1) =
0.47, which means that this decision is quite robust with regard to
variation in preferences expressed by the linear constraints.

Introducing the project preference statements Out(x), k € {1, 3,
6, 8, 17, 18, 30} results in the PO compatible weight set W3 with
only |Pp(W3)| =3 potentially optimal portfolios. The DM could
now choose one out of these three portfolios based on their at-
tribute scores. Note that p' and p® are considerably less robust
to changes in weights due to containing x'2 with Al of 0.05, and
therefore the DM might want to select pZ2.

Minimum, maximum and average of the sampled weights in
4 iterations of the analysis are presented in Tables 4, 5 and 6,
respectively. Such descriptive statistics could be used for pro-
viding DM information on implications of the preference state-
ments. For some criteria (Width, Salt, Visual), the project prefer-
ence statements have little bearing on minimum and maximum
of the weights, whereas for others (DPS, Traffic, Carry) the project
preference statements affect the feasible ranges and the averages.
Note that these descriptive statistics are computed based on the
sampled weights, that is, they are estimates instead of exact values.
For instance, with W0, the theoretical maximum of each weight is
1, but none of the 10, 000 sampled weight vectors contained values
close to 1.
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Table 3

Project attribute measurements, acceptability (Al) and core indexes (CI) in 4 iterations of the analysis. Last three columns indicate the projects belonding to the three
potentially optimal portfolios in the analysis with the feasible weight space W3. The projects are sorted according to Al(x;, W0). Al and CI are only shown for entries where
one of these is strictly positive.

DPS Traffic Carry Width Salt Visual weo wt w2 w3 Po(W3)

Al c Al c Al c Al a p! p? p?
43 2.688 4.0 0 0 3.00 0.67 0.76 0.91 1.00 0.78 1.00 1.00 1.00 1.00 1 1 1
10 2.864 2.5 0 0 3.00 0.67 0.70 0.59 0.99 0.77 1.00 1.00 1.00 1.00 1 1 1
1 1.360 4.0 0 0 3.00 0.67 0.53 0.45 0.76 0.39 1.00 1.00 1.00 1.00 1 1 1
34 0.448 4.0 0 3 3.00 0.00 0.47 0.37 0.45 0.34 0.47 0.31 0.95 0.67 1 1 0
4 4.000 2.0 0 0 0.00 0.67 0.47 0.68 0.96 0.88 0.93 0.46 1.00 0.67 0 1 1
45 1.256 4.0 0 0 3.00 0.67 0.46 0.21 0.62 0.22 1.00 1.00 1.00 1.00 1 1 1
12 1.544 0.0 3 4 0.00 0.00 0.43 0.45 0.36 0.69 0.02 0.08 0.05 0.67 1 0 1
5 0.120 0.0 4 4 0.00 0.67 0.42 0.33 0.03 0.34 0 0 0
28 0.856 0.0 4 3 0.00 0.00 0.36 0.35 0.12 0.41 0.00 0.08 0 0 0
3 0.472 0.0 4 2 0.00 2.00 0.33 0.49 0.05 0.22 0.01 0.08 0 0 0
37 0.352 0.0 3 3 0.00 1.33 0.26 0.25 0 0 0
17 1.688 3.0 0 0 3.00 0.67 0.25 0.22 0.47 0.20 0.56 0.38 0 0 0
8 0.368 4.0 0 0 3.00 0.67 0.24 0.04 0.00 0.01 0.00 0.08 0 0 0
24 0.280 0.0 4 3 0.00 0.67 0.08 015 0.00 011 0 0 0
23 0.224 0.0 2 4 0.00 0.00 0.06 0.06 0.00 011 0 0 0
22 1912 1.0 1 2 0.00 0.67 0.05 0.20 0.19 0.34 0 0 0
35 0.328 4.0 0 0 3.00 0.67 0.04 0.01 0 0 0
1 0.944 3.0 0 1 3.00 0.00 0.03 0.05 0.00 0.04 0.00 0.08 0 0 0
6 1184 3.0 0 0 3.00 0.67 0.03 0.00 0.00 0.01 0.00 0.08 0 0 0
20 0.824 4.0 0 0 3.00 0.00 0.02 0.04 0.01 0.05 0.01 0.31 0 0 0
18 0.776 4.0 0 0 3.00 0.00 0.01 0.01 0.00 0.01 0.00 0.08 0 0 0
36 1.496 0.0 2 2 0.00 0.67 0.01 0.07 0.01 0.07 0 0 0
30 0.952 3.0 1 0 0.00 0.67 0.00 0.07 0.00 0.01 0 0 0
14 1.968 4.0 0 0 3.00 0.67 0.00 0.01 0 0 0
2 0.648 2.5 0 0 3.00 0.67 0 0 0
4 0.656 1.0 0 0 0.00 0.00 0 0 0
7 4.000 4.0 0 0 3.00 1.33 0 0 0
9 1176 0.0 1 2 0.00 0.00 0 0 0
13 0.344 3.0 0 0 3.00 0.00 0 0 0
15 1.336 0.0 2 1 0.00 0.67 0 0 0
16 0.512 0.0 0 2 0.00 0.67 0 0 0
19 0.784 0.0 2 2 0.00 0.67 0 0 0
21 0.376 2.0 0 1 0.00 0.67 0 0 0
25 0.184 0.0 0 0 0.00 0.00 0 0 0
26 0.200 0.0 1 2 0.00 0.00 0 0 0
27 0.256 0.0 0 1 0.00 0.00 0 0 0
29 0.360 3.5 0 0 3.00 0.00 0 0 0
31 0.328 4.0 0 0 3.00 0.00 0 0 0
32 0.584 2.5 0 0 0.00 0.67 0 0 0
33 0.464 2.0 0 0 3.00 0.00 0 0 0
38 0.488 3.0 0 0 3.00 0.67 0 0 0
39 0.616 0.0 0 1 0.00 0.67 0 0 0
40 0.200 4.0 0 0 3.00 0.00 0 0 0
42 0.280 3.0 0 0 3.00 0.67 0 0 0
44 1.000 0.0 0 0 0.00 0.67 0 0 0
46 0.448 0.0 2 1 0.00 0.67 0 0 0

7. Discussion Table 4
Minimums of weight samples in 4 iterations of the analysis.

In this paper we developed two approaches for modeling the DPS Traffic Carry Width Salt Visual
DM'’s preference statements about which projects should be se- Wo 0.00 0.00 0.00 0.00 0.00 0.00
lected in, or rejected from the final portfolio, as sets of feasible wt 022 0.02 0.02 0.02 0.02 0.02
attribute weights compatible with these statements. The first ap- w2 0.21 0.10 0.02 0.02 0.02 0.02
proach is based on identifying a set of feasible weights for which w? 024 015 0.02 0.02 0.02 0.02

every potentially optimal portfolio contains all the projects the DM

has selected, and none of the projects the DM has rejected. The
second approach follows a similar logic, but identifies a set of fea-
sible weights such that each non-dominated portfolio contains all
the projects the DM has selected, and none of the projects the DM
has rejected. Both approaches assume that the portfolio preference
statements reveal information about attribute trade-offs. Whether
or not this assumption holds in practice is debatable and should
be tested for empirically.

Based on the comparison of these two approaches, we have ar-
gued that the first approach based on the use of potential optimal-
ity may be better suited for decision support, because it provides
a unique set of feasible weights compatible with the project pref-

erence statements. The second approach based on non-dominated
portfolios can produce several sets of compatible weights. Al-
though one could argue that in such a setting the union of these
sets would be an appropriate way of modeling the preference
statements, it turns out that this union is always equal to the feasi-
ble weight set obtained from the first model. Finally, in the analysis
based on the set of potentially optimal portfolios, project core and
acceptability indexes provide a priori information on how much
different project preference statements reduce the set of feasible
weights and potentially optimal portfolios.

Our results suggest at least two avenues for future research.
First, empirical research is needed to analyse to what extent the
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Fig. 5. Acceptability and core indexes for the four iterations with increasing amount of preference information. The analyses are without preferences (W°), with weight
constraints (W'), and with project preference statements In(x**) (W2) and Out(x"7, x, x3, x5, x8, x18, x20, x28) (W?3). The figure includes only projects for which 0 < CI(x*, W?)

<1

Table 5 Table 6

Maximums of weight samples in 4 iterations of the analysis. Averages of weight samples in 4 iterations of the analysis.

DPS Traffic Carry Width Salt Visual DPS Traffic Carry Width Salt Visual

wo 0.82 0.84 0.82 0.92 0.86 0.86 wo 0.17 0.17 0.16 0.17 0.16 0.17
wt 0.78 0.41 0.39 0.41 0.24 0.23 w! 0.41 0.19 0.12 0.12 0.08 0.08
w2 0.68 0.44 0.30 0.29 0.23 0.23 w2 0.38 0.23 0.11 0.10 0.09 0.09
w3 0.51 0.41 0.28 0.28 0.20 0.23 w3 0.35 0.25 0.09 0.14 0.09 0.09

DMs’ project preference statements actually capture preferences
for the attribute-specific project values and how much they are
affected by factors that are external to the value model (e.g. ge-
ographical location of the bridge in our application). On the one
hand, such biases might occur more often with the project pref-
erence statements, which focus on actual projects, than with stan-
dard techniques, which focus on hypothetical projects with their
outcomes set at the most or least preferred levels of the at-

tribute measurement scales. On the other hand, eliciting prefer-
ences using real projects may result in higher DM involvement
that could in turn lead to less biases. In standard single alterna-
tive choice problems, the use of hypothetical reference alternatives
has been shown to lead to more consistent preference statements
(Vetschera, Weitzl, & Wolfsteiner, 2014), but it is unclear whether
this result is generalizable to the PDA context. Second, our results
suggest that potential optimality may provide a more intuitive and
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readily extendable solution concept than dominance for multiat-
tribute portfolio decision analysis under incomplete information.
Yet, the literature on both exact and heuristic algorithms for solv-
ing potentially optimal portfolios is almost non-existent compared
to wide literature on algorithms for solving non-dominated portfo-
lios (see e.g. Villarreal & Karwan, 1981; Stummer & Heidenberger,
2003; Liesio et al., 2008).
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Appendix A. Proofs

We first establish the following auxiliary lemma that will be
used in other proofs.

Lemma 9. Let WeW. If V(p,w)=V(p/,w) for all weW then
V(p.w)=V(p/,w) forall we WO, ie, p € [p].

Proof. Take any w® ¢ W0 and w ¢ int(W). Then there exists € > 0
such that W = w + e (W? — w) € W. Since, V is linear in weights
0=V(p,w)-V(p,w)=V(p,w)+eV(p,w’) —eV(p,w)
V(' w)—eV(p W) +eV(p,w)
=1 -e)[V(p,w) -V, w)]+e[V(p,w®) -V (p/,w)],

=0, since weW

which implies V(p, w?) =V (p/,w°). O

Lemma 1

Proof. Po(W) # @: We prove Pp(W) =@ = int(W) = @. Assume
Pp(W) =9, which implies that int(W(p,W)) =9 for all p € Pp.
Since each W(p,W) is closed and has an empty interior it
is nowhere dense. The Baire category theorem states that a
union of nowhere dense sets is nowhere dense, which gives
int(UPePFW(p, W)) =@. On the other hand, take any w e W and
p* € argmax,ep,V(p,w), then we W (p*,W) c W, which implies
W C Upep W (p, W). Thus, int(W) € int(Upcp, W(p,W)) = 4, which
implies int(W) = ¢.

Po(W) < Py(W): Take any p e Po(W), which implies W’ =
int(W(p, W)) # ¢. For any p’ € Pr either (i) V(p,w) > V(p',w) for
some w € W/ € W, in which case p’+y p, or (ii) V(p,w) =V (p'w)
for all w e W/, in which case Lemma 9 implies V(p, w) =V (p’, w)
for all w e WO > W and hence p’+yp. O

Lemma 2

Proof. X{(W) € X§5(W): Assume ¥ € pVp € Py(W). Take arbitrary
p € Po(W), then Lemma 1 implies p € Py(W) and hence ¥ < p,
which implies x/ € X§(W).

XE(W) c XE(W): Assume ¥ ¢pVp e Py(W). Take arbitrary p e
Po(W), then Lemma 1 implies p € Py(W) and hence ¥ ¢p, which
implies x/ e X5(W).

XEw) ;xg(W): X eXBW) = x/ ¢ XEW) UXSW) = x/ ¢ XE
WH)uxfw) =x exBw). O

Lemma 3

Proof. Py(W') € Py(W): Assume p € Pr and p ¢ Py(W). Then there
exists p’ € Pp such that p’>yp, ie, V(p,w)>V(p,w) for all
weW' CcW and V(p/,w*) > V(p, w*) for some w* ¢ W. Take any

W, w)

Fig. A.6. Illustration of proof of Theorem 1 part (i).

Fig. A.7. lllustration of proof of Theorem 1 part (ii).

w eint(W’). Then there exists € e (0, 1] such that w = w + e(w* —
w) e W/, and the value difference of portfolios p’ and p then eval-
uated at w' e W’ is

V(p.w)-V(p.w) =V . w)+eV(p w) —eV(p' w)
—V(p.w) - €V(p,w") +€V(p,w)
=(1-e)[V(p,w) -V(p,w)]
>0, since weW’
+e[V(p',w*) =V (p.w*)] >0,

>0

since V is linear in weights. Hence, p’ >y p and thus p’ ¢ Py(W').

Po(W') < Po(W): Assume p¢&Po(W) which implies int(W(p,
W)) = ¢. Furthermore, since W < W, W (p, W’) € W (p, W), which
implies int(W (p,W’)) = 9, i.e., pgPo(W').

XEWHY o2 XEW): xieXW)=xiepVYpePW)=xlepV
peP. (W) CP.(W) = xi e XS(W').

XEW) o XEW): X e XE(W) = %) ¢ pVpe P.(W) = x/ ¢ pVp
e P,(W') C P, (W) = x/ e XEW').

XBW') c XB(W): xieXBW) = xl ¢ XEWHUXSW') = ) ¢
XEW)UXNW) = xi e XB(W). O

Theorem 1

Proof. Let
w= J Wprw).

pePy (W)
stxkep Vp/e[p)

(A1)

By Definition 3 W (p, W) # @, p € Po(W). Hence the (A.1) can be an
empty set if and only if there does not exists p € Po(W) such that
xk e p’ for all p’ € [p]. As ¥ ¢ W an empty set is not PO-compatible.
To prove a non-empty (A.1) is PO-compatible we need to show that
satisfies properties (i) and (ii) of Definition 6 (Figs. A.6 and A.7).
(i) Take any p! e Po(W') and w! € int(W(p!,W’)), which is
non-empty by Definition 3. Let €; > 0 be such that Ne, (W!) €
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W (p!, W’). Because

weWp'.W)cw' = | Wew.

peP (W)
stxkep’ Vp/e[p]
there must exist p2 € {p € Po(W)|xk € p'Vp' € [p]} such that
w! e W(p?, W). Since W(p?, W) e W there exists w? € N, ,4(w') N
int(W(p2, W)). Since w? e int(W(p?,W)) exists €5 € (0, €1/4]
such that N ,a(W?) CW(p?. W). Also N a(w?) S Ne, (W') C
W (p!,W’). Hence, V(p!,w) =V (p?, w) for all we N€1/4(w2) and
Lemma then 9 implies p! € [p2], which yields x* € p!. Since the
choice of p' e Po(W') was arbitrary, xk e XS(W’).

(ii) Take any W” ¢ W such that W c W/ c W. Take any point
in weW’\W’ and let d=min, - |[W —w||. Since W" ¢
W there exists w e Ny,4(wW”) nint(W”). Furthermore, there ex-
ists € e (0, d/4) such that Ne(w) € W” (since w e int(W”)) and
Ne(w) "W’ = ¢ (since Ne(w) C Ny (W”) and Ny, (wW") nW' = @)
Lemma 1 implies Py(Ne(w)) # @. Take any p € Po(Ne(w)). By
Lemma 3 p € Po(W'') € Po(W). But since W (p, W) 2 N¢(w) is not
contained in W’ there must exists p’ € [p] such that xK ¢p’. Hence,
xkgX(W'). O

Theorem 2

Proof. The proof is equivalent to that of Theorem 1 in which state-

ments ‘¥¥ € ’ and ‘xX ¢’ have been replaced by ‘x¥ ¢’ and ‘x¥ < °,
respectively. O

Lemma 4

Proof. According to Definition 8, any ND-compatible set W/ € W is
such, that x¥ € X{(W’). By Definition 5, x¢ € pVp e Py(W’). There-
fore, by Definition 2, for each p € P such that x¢ ¢ p, p’ € P such
that XX € p’ and p’>yp. Because p, p’ € Py, it follows that p, p’
Pyn(W). Thus, for each p e P, there must exist p’ € PkJr such that
p’>wp, and there are |P,:“||Plﬂ such combinations. Some of these
combinations might not be valid as there might exist W1, W2 e W
such that W' c W2 and x¥ € pVp e Py(W?), xk € pV¥p e Py(W2),
and from these two only W2 would satisfy the second condition of
Definition 8. Therefore |P|/%! is an upper bound. O

Theorem 3

Proof. W' c |J; Wi: Take arbitrary w* e W’. Theorem 1 then im-
plies that there exists p* e Po(W') (i.e. int(W (p*, W')) # @), such
that w* e W(p*,W’), and x* < p for all p € [p*]. Now consider
the set Py(W(p*,W)) which is non-empty by Lemma 1 since
int(W(p*,W’)) #£9, and take arbitrary p’ e Py(W(p*,W’)). By
construction V(p*,w) > V(p',w) for all we W(p*,w), but since
p’ is non-dominated there cannot exist we W(p*,W’) such
that V(p*,w) > V(p’,w). Hence, V(p*.w) =V (p.,w) for all we
W (p*,W’), and thus Lemma 9 implies p’ € [p*]. Hence, x* e p’ and
since selection of p’ was arbitrary we have x¥ ¢ X,S(W(p*, W’")). By
Definition 8 W (p*,W’) c WJ for some j, which implies U;wio
W(pr, W) > wr.

W’ 2 |J;Wi: Take any WA, Then by Definition 8 xk e Xg(W/)
and hence Lemma 2 implies x* € XS(W/). By Definition 6, W <
W'. Since the choice of W/ was arbitrary, U wWicw’. O

Lemma 5

Proof. By Definition 6, x* € X§(W’) which implies x* e p for all p
€ Po(W'). Thus,

[Po(W")| = |{p € Po(W")|x* € p}|

< [{p & PoAW)lt € P} = [{p € Po W)k < p} 12W))

[Po(W)|

= CI(x W) [P (W),
where the inequality holds since W < W and hence Po(W') C
Po(W) by Lemma 3. Note that the inequality is strict if there are
two portfolios p, p’ € Po(W) such that p e [p], and xX € p but
xk ¢ p’. In this case p ¢ Po(W') and hence |{p € Po(W')|x* € p}| < [{p
€ Po(W)|x* € p}|. The second result follows trivially from (9). O

Lemma 6

Proof. By Definition 7, x € X5 (W’) which implies x* ¢p for all p €
Po(W"). Thus,

[PoW")| = [{p € B(W")x* ¢ p}| < [{p € Po(W) X" ¢ P}
= (W] - l(p < Wi e pi) TR0

[Po(W)|
= (1= CI* W) [PB(W)],
where the inequality holds since W < W and hence Po(W') <
Po(W) by Lemma 3.

To prove the second inequality denote P™ = {p e Py(W)|xk e
pP'Vp' elpl} and P~ ={pePy(W)|x*¢p'Vp e[pl}. Then by
Theorems 1 and 2 PO-compatible weight sets with preference
statements In(x¥) and Out(x¥) are W+ =U,p+W(p.W) and
W~ = Upep-W(p,W) respectivel. W nW~ is a union of sets
W(pT,W)nW(p~,W),p~ e P~,pt e P*. For any p'eP* and
p~ P~ clearly p* ¢[p~] and hence Lemma 9 implies that
int(W(p™,W)nW(p~,W)) =@. By Baire category theorem, the
union of these also has an empty interior, i.e., int(WTnW~) = 4.
Thus vol(W* NnW~) = 0 which can be used to obtain

vol(W™) = vol(W- nWHu (W~ n W \WH)))
=volW~-n(W\WH)) <vol(W \WH))

= VOl(W) - VO](W+) = VOl(W) _ VOKW‘F)Zg}Ew;
= (1 - AI(x*, W))vol(W).
O

Lemma 7
Proof. Denote §(w) =V (p.w) —V(p'.w) = X1y wi(Vi(X,5, ) -
V,-(ijep, v{)) which is clearly linear in w. Hence, by Definition 2

S(w)y>0forallweWwW

prwp < {5(W)>0f01‘$01’1‘1€W€W

{S(W) > 0 for all w € ext(W) (A2)

8(w) > 0 for some w e ext(W),

since 8(w) is linear in w. Now, since W = W? the extreme points

are w!, .., w" such that wk =1 and wk =0 for all ie{1,....n}\
{k}. Hence
Drwo D& {Vi(foep vi) ZVI’(ZXJ'ep’ vi) for all ie{'L T Tl}
Vi aicp V) 2Viyicy Vi) for some ie{1,...,n}
(A3)
. ; )
- ijepvfl > ey vi' forallie{l,...,n} (A4)
SwiepVl = Yoy vl for someie (1,....n}

where the last equivalence is due to the fact that each V; is a
strictly increasing function. Now consider p € Py(W?) then there
does not exist another feasible portfolio that dominates it. Based

n (A.3)-(A.4), this holds if and only if z(p) is a solution to the
MOZOLP problem (10), and there does not exists another solution
which has a better value in each objective function and a strictly
better in at least one. This, by definition, means that z(p) is a
Pareto optimal solution to problem (10). O
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Lemma 8

Proof. ‘='": Assume p € Po(W'). Then any w e int(W (p, W!)) is a
feasible solution for some strictly positive value for d. ‘<’: Assume
d > 0. Then there exists w e W' such that V(p,w) > V(p’,w) for
all p’ € Py(WO)\[p]. Since V (-, w) is linear in w these strict inequal-
ities have to hold inside some open ball Ne (w*) c W1, ie.,

New*) c {weW! | V(p.w) > V(p',w) Vp' e y(W°) \ [p]}
{(weW! | V(p.w) =2V(p',w) Vp' e By(W?)}
={weW!' | V(p.w) =V(p/,w) Vp' € P}

Since int(Ne (W*)) = Ne (W*) # @, this result implies that int({w e
Wl | V(p,w) >V(p,w) Vp' € Pr} ##», which by Definition 3 im-
plies that p € Po(W'). O

Appendix B. Project performances and costs for the application
See Table B.7 below.

Table B.7

Bridge data used in the analysis. The model has three portfolio feasibility con-
straints: The total cost cannot exceed the budget of by = 1,030, 260 euros, the to-
tal DPS reduction must be at least b, = 873 points, and the maximum number of
bridges included in the portfolio is b3 = 6.

j DPS Traffic Carry Width Salt  Visual Cost DPS
) @) ) (1) W) () (a}) Red (aj)

1 0944 3.0 0 1 3.00 0.00 9000 71
2 0.648 2.5 0 0 3.00 0.67 59,000 49
3 0472 0.0 4 2 0.00 2.00 22,000 35
4 0.656 1.0 0 0 0.00 0.00 108,000 49
5 0.120 0.0 4 4 0.00 0.67 19,000 9

6 1184 3.0 0 0 3.00 0.67 9000 89
7 4.000 4.0 0 0 3.00 133 1,117,000 971
8 0.368 4.0 0 0 3.00 0.67 237,000 28
9 1176 0.0 1 2 0.00 0.00 14,000 88
10 2864 25 0 0 3.00 0.67 36,000 322
11 1360 4.0 0 0 3.00 0.67 29,000 102
12 1544 00 3 4 0.00 0.00 21,000 116
13 0344 3.0 0 0 3.00 0.00 31,000 26
14 1968 4.0 0 0 3.00 0.67 711,000 246
15 1336 00 2 1 0.00 0.67 15,000 100
16 0.512 0.0 0 2 0.00 0.67 16,000 38
17 1688 3.0 0 0 3.00 0.67 350,000 127
18 0.776 4.0 0 0 3.00 0.00 108,000 58
19 0.784 0.0 2 2 0.00 0.67 18,000 59
20 0.824 40 0 0 3.00 0.00 16,000 62
21 0376 20 0 1 0.00 0.67 34,000 28
22 1912 1.0 1 2 0.00 0.67 11,000 143
23 0224 00 2 4 0.00 0.00 19,000 17
24 0280 0.0 4 3 0.00 0.67 5000 21
25 0184 0.0 0 0 0.00 0.00 26,000 14
26 0200 0.0 1 2 0.00 0.00 17,000 15
27 0256 0.0 0 1 0.00 0.00 13,000 19
28 0856 0.0 4 3 0.00 0.00 99,000 96
29 0360 35 0 0 3.00 0.00 30,000 27
30 0952 3.0 1 0 0.00 0.67 101,000 71
31 0328 40 0 0 3.00 0.00 238,000 25
32 0584 25 0 0 0.00 0.67 17,000 44
33 0464 20 0 0 3.00 0.00 280,000 35
34 0448 4.0 0 3 3.00 0.00 18,000 34
35 0328 40 0 0 3.00 0.67 20,000 25
36 1496 0.0 2 2 0.00 0.67 23,000 112
37 0352 0.0 3 3 0.00 133 76000 26
38 0488 3.0 0 0 3.00 0.67 10,000 37
39 0616 0.0 0 1 0.00 0.67 81,000 46
40 0.200 4.0 0 0 3.00 0.00 58,000 15
41 4.000 2.0 0 0 0.00 0.67 176,000 627
42 0280 3.0 0 0 3.00 0.67 26,000 21
43 2688 4.0 0 0 3.00 0.67 272,000 302
44 1.000 0.0 0 0 0.00 0.67 68,000 75
45 1256 4.0 0 0 3.00 0.67 8000 94
46 0448 0.0 2 1 0.00 0.67 12,000 34
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