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Abstract

A review and discussion of the general framework of deterministic dynamic decision-
making problems from the control theoretic point of view is given. Recent results ob-
tained by the author in developing new solution methods for nonclassical controller
problems and in studying their applicability in practical regulator design is summarized.
The summarized papers deal with nonlinear and game theoretic problems. The solution
methods for nonlinear optimal control problems were based on the use of the theory
of polynomial operators. Game theoretic design was considered in connection with
two-controller problems and with a new worst case design method. Solution algorithms
for general linear-quadratic two-player difference games with different solution concepts
and information structures were developed. The practical examples studied include re-
gulators for nonlinear systems, control constrained regulators, and a worst case design
approach. The systems considered were an analog simulation of a microbiological fer-
mentation process and a laboratory pilot process representing the headbox of a paper
machine. Direct digital control by a minicomputer and computer simulations were
studied.
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HALME, A. and HAMALAINEN, R.P., On the nonlinear regulator problem. Journal
of Optimization Theory and Applications 16(1975)3/4, p. 255...275. Ref. [44].

HALME, A., HAMALAINEN, R.P., HEIKKILA, O. and LAAKSONEN, O., On synthe-
tizing a state regulator for analytic nonlinear discrete-time systems. International
Journal of Control 20(1974)3, p. 497...515. Ref. [47].

HAMALAINEN, R.P. and HALME, A., A solution of nonlinear TPBVP’s occuring
in optimal control. Automatica 12(1976)5, p. 403...415. Ref. [64].

HAMALAINEN, R.P,, Nash and Stackelberg solutions to general linear-quadratic
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HAMALAINEN, R.P., Difference games with periodic information structures
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The research work reported in papers I-III was carried out in active collaboratorion
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1 Introduction

The rapid development of modern control theory began some twenty years ago.
The classical frequency-plane approach has been followed by the multivariable time-
domain state-space representation. Intensive research has been carried out on the
stability theory and on the algebraic and optimal control theory. Today increasing
attention is being paid to applications. It is often said, however, that the mathema-
tical theory has been separated from engineering practice [39]. This is partly due to
the vigorous advancements of the theory itself. The fact that PID controllers, which
are the tools prevailing in practice when designing stabilizing controllers, will always
remain useful for a wide class of simple problems does not mean that advanced theo-
retical methods would not be needed. The need for the so-called modern theory
originates from complicated problems which typically involve multivariable controls
and in which more detailed information such as a dynamic model of the system is
employed.

A closer examination of the control problems appearing in real systems reveals
that one on the main reasons for the small number of successful applications of
modern techniques is in fact due to shortcomings in the theories and mathematical
methods. For example in optimal controller design the standard linear-quadratic tech-
niques do not suffice, because a typical feature of practical problems is that the sys-
tems are nonlinear and very seldom low-dimensional. Moreover, decentralized decision
making is often encountered where more than one independent control agent is in-
volved. These characteristics are accompanied by theoretical problems which are not
yet sufficiently well known. Disturbances and system uncertainties are present in all
practical systems and it is very difficult to obtain reliable information which could
be used efficiently in the design process using known methods. Stochastic optimal
control can only seldom be employed in a straightforward manner in practical prob-
lems because of the difficulties caused by the a priori distributions of the disturbances.
Recently some attempts have been made to develop alternative approaches to such
problems. Among these are different worst case design methods.

Difficulties are also encountered in problem formulation and modeling. On the one
hand it is impossible for a systems theorist alone to find the relevant models and
design criteria in the various fields where systems research is done. On the other hand
specialists in application fields seldom possess the general picture of the possible ways
of approach. Thus intensive team work is needed between the systems theorists and
the specialists of the primary problem under consideration in order to obtain results
with practical control studies.

The aim of this paper is firstly to review the general framework for deterministic
dynamic optimization problems (see [50, 52, 54]) from the control theoretic point
of view and discuss some important theoretical and practical aspects related to these
problems. In addition to the traditional optimal control problems with one control



agent there are problems which include multiple control agents and criteria and in
which the information structures of the agents play an essential role. The appearance
and characteristics of these general optimal controller design problems in connection
with engineering, biological and economic systems are discussed in brief.

Secondly, the aim is to summarize recent results obtained by the author in devel-
oping new solution methods for some nonclassical controller problems and in studying
their applicability in practical regulator design. In the studies presented efforts have
been made to carry the new mathematical theories all the way to the practical level.
The original results which are reviewed here are found in references [44, 47, 60, 61,
64].

The method, which has been developed in [44, 47, 64] for the solution of non-
linear problems, is a functional analytic method where the solutions are based on the
use of the theory of generalized polynomial operators. The maximum principle app-
roach is considered and the nonlinear two-point boundaryvalue problems (TPBVP)
obtained in the optimal control problems were formulated as functional aperators
which can be solved by an inverse theorem concerning polynomial operators.

Problems with multiple controllers are considered in [60, 61] and solution algo-
rithms are derived for general linear-quadratic problems with two control agents
having different information structures and solution concepts. These results were
also used in the development of a new game theoretic worst case design technique.

The studies reported on practical design experiments were made on a laboratory
pilot-plant scale and the optimal regulator designs considered include nonlinear sys-
tem models, control constraints and a worst case approach to system uncertainties.



2 Optimal controller design problems

The history of controller design dates back to antiquity where heuristically designed
level controllers were used. The different stages of later development include e.g. the
speed regulator of Watt’s steam engine and the frequency — domain design techni-
ques which has been in use for the past forty years [33]. Recently there has been a
trend to replace techniques based essentially on trial and error by analytical methods
using integral criteria. However, there is also extensive work going on in the field of
algebraic control theory (see e.g. [14, 21, 116]) and generalized frequency plane met-
hods [102]. One of the basic ideas for introducing performance indices in the design
of stabilizing controllers was to obtain certain desirable properties for the system and
to simplifity the design process. Although optimal controllers are being studied inten-
sively and straightforward design algorithms developed, questions remain concerning
the relevance and applicability of this approach [39, 56, 103]. The class of linear-
quadratic — Gaussian controllers has received most attention and the main problems
have already been completely solved (see [67]). The solutions obtained are simple and
computationally efficient [10], but unfortunately practical controller design often in-
volves more general formulations. This has become more and more evident with the
expansion of the field where systems research is being done. Today the most import-
ant questions involve nonlinearities, multiple controllers, and large-scale systems. The
difficulties and complexities met with are on an essentially higher level than e.g. in
the classical linear-quadratic regulator studies. Recent developments have widened
perspectives and it has been recognized that optimal control should be viewed as a
special case in the framework of dynamic decision making problems which HO has
called generalized control theory [50, 52]. In this chapter the general classification
of deterministic control problems and some basic properties of the solutions are
briefly discussed. Finally typical characteristics of optimal controller design in en-
gineering, biology and economics are outlined.

2.1 Classification

Deterministic optimization problems are classified into different categories ac-
cording to the number of criteria and the number of control agents or decision makers
which appear in the problem definition. In traditional optimal control theory there is
only one controller and one performance measure. However, problems with more than
one criterion and with multiple independent decision makers can equally well arise in
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practical controller design. Different alternatives and the names of the corresponding
optimization problems in the dynamic case are listed as follows:

Controllers Criteria
Optimal control one one
Zero-sum differential game two two, J; = —J,
Vector-valued optimization problem one multiple
Dynamic team problem multiple one
Nonzero-sum differential game multiple multiple

Differential game theory was the first generalization of optimal control theory to
many person dynamic optimization. Von Neuman’s static games, formulated in the
forties, laid the foundation for this type of problems. However, the main developments
of dynamic game theory were made through advances in decision and control theory.
In zero-sum differential games, where the objectives of the two players are completely
antagonistic, pursuit-evasion problems have played a dominating role and the most im-
portant applications are found in the military area. Besides optimal control this is the
field most extensively studied in generalized control theory. For a survey of and in-
troduction to this subject see e.g. [20, 71, 100].

If there is one common criterion and two or more controllers we have a
perfectly cooperative situation and we are in the field of team theory. The name
is quite illustrative because a team in real life is an organization in which there is a
single goal for all the members. The theory was first developed by MARSCHAK and
RADNER (84, 85, 101] in the static form for economic applications. Control the-
orists established the importance of dynamic teams much later [26, 29, 52, 53, 55].
The, interesting questions in dynamic team theory arise from the different informa-
tion sets of the controllers.

Optimization with respect to multiple criteria leads to entirely new kinds of prob-
lems which are not encountered in the single criterion case. The main question with a
vector valued performance measure is how to devise methods for trading off one
criterion against another (see e.g. [34, 78, 80, 104]). When there is only one controller
utility theory has to be used to reduce the multiple objectives to one. From the mathe-
matical point of view this can be considered as a way of reformulating the problem.
This kind of decision making situation with no common measure for the different
objectives does, however, appear frequently in practice.

In nonzero-sum games where each controller has its own criterion the situation
is somewhat easier. Unique definitions for different types of solutions are available.
Yet difficulties arise as soon as the possibility of cooperative negotiations is allowed.
Research on nonzero-sum differential games has recently been extremely intensive
(see [15...18, 76, 89, 98, 100, 109, 110]) although it was initiated less than ten
years ago by STARR and Ho [112, 113] at a time when the theory for the zero-
sum case was already highly developed.
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2.2 Solutions

After the above classification it is necessary to comment shortly on the solutions
to these problems. There are five things that have to be fixed before the solution to
a general control problem can be determined. These are the specification of system
dynamics and constraints, the set of agents (controllers, players, decision makers) and
their admissible strategies, the information available to each of the agents, the perfor-
mance measures and finally the solution concept which is to be used. The effects of
changes in a certain specification on the solution usually are highly dependent on the
other specifications.

In classical deterministic optimal control problems the linear-quadratic case obtains
linear solutions. Nonlinearities are caused e.g. by inequality constraints on the state or
control variables, by nonquadratic cost functionals and naturally by nonlinear system
models. The meaning of an optimal solution is always well defined and no other con-
cepts are needed. »

In the multiple controller case there are nonlinear solutions even to linear-quadratic
problems [16]. This fact is related to the information structures of the controllérs
and it is an important feature which has to be taken into account when the solutions
are considered. The explanation is quite simple. Consider for example a dynamic two-
agent linear-quadratic problem where one of the controllers acts first. His optimal
affine control strategy is unique in value but because of the dynamics there may still
be different representations available for it. Since the other controller cannot assume
that its co-player uses a linear control law the resultant optimization problem faced
by this controller need no longer be quadratic, which again leads to nonlinear sol-
utions. The entire question of information becomes central when more than one
controller is involved. The most typical information structures are the open-loop
and the closed-loop (or perfect memory) cases. In the former case the decisions are
time functions which are solely based on information of the initial state. The perfect
memory information structure allows the use of more general state dependent strat-
egies. It is only in classical deterministic optimal control that these information struc-
tures always yield identical trajectories and costs for the solutions. In the multicontrol-
ler case we have to distinguish clearly between the values of the controls as functions
of time and the control strategies which are functions of the state variables.

The properties mentioned above are also manifested in the fact that the safe Prin-
ciple of Optimality does not extend directly to general multiple criteria problems.

When nonzero-sum differential games are considered the central role played by
information is also reflected in the need for more specific definitions of what is
meant by a solution. If we assume that the players do not cooperate and prefer a
safe solution, then the Nash equilibrium strategy is adopted. The Nash strategy
secures each player against unilateral attempts of one controller to improve his in-
dividual performance further [88, 112, 113]. The Stackelberg solution of a. two-player
game assumes that the roles, i.e. the information available to the players, are different.
There is a leader and there is a follower (see e.g. [109...111]). The setting is illustrated
by a situation where the leader knows the follower’s criterion but the follower is not
aware of the criterion of the leader. Another corresponding situation is one where the
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follower is forced to announce his strategy first due to different speeds in computing
the strategy or by the dominating strength of the leader. The Stackelberg solution is
obtained so that the leader optimizes his strategy first by simultaneously taking into
account the rational responses of the follower. In fact, the leader is the only decision
maker in the game. Yet, even if one can choose the roles, it is not necessarily the best
choice to be the leader [15].

The set of noninferior or Pareto optimal solutions is considered when information
exchange and cooperation are allowed. The noninferiority property appears so that
any deviation from the solution cannot result in simultaneous improvement of the per-
formance of all the controllers.

Solving for the Pareto optimal set is equal to solving a single controller problem
with a vector valued criterion [34, 78, 104, 107, 117]. Elements belonging to the
Pareto optimal set are found by solving a family of standard optimal control prob-
lems where the scalar cost criterion is given as a weighted sum of the individual criteria
of the controllers. A selection or negotiation procedure is further needed to obtain the
most satisfactory set of weights which determines the preferred solution.

The question of the value of information easily arises in connection with multi-con-
troller systems. The heuristic definition would be the best one can do with the infor-
mation minus the best one can do without it. However, a deeper insight into this sub-
ject reveals many intricate problems [55]. There are also the possibilities of coalition
formation and bargaining when many player games are considered. These situations
naturally lead to new solutions (see e.g. [30, 80]).

2.3 Optimal controllers in engineering

As was mentioned above, the practice in engineering controller design relies mostly
on the classical PID techniques. The theoretical advancements and the development of
efficient computational devices such as microprocessors have made it possible to take
the first steps in applying modern multivariable optimal control theory to the stabili-
zation problems in engineering. It can be said that the success of this new approach in
the design process depends greatly on the ability of the engineer to understand the
physics of the problem and to translate the physical requirements and constraints
into mathematical language. However, there are a number of questions such as the
handling of nonlinearities and configurations with multiple controllers, which need
further theoretical studies.

From the practical point of view one of the difficult problems in the application
of »optimal» design methods is the selection and interpretation of the performance
criteria. Stabilizing controllers are the most common ones used in engineering. The
system on which the design is based is usually a perturbation model and the cost a
quadratic functional of the perturbations of the state and control vectors from the
ideal desired values. Such an objective function is very seldom a direct measure of the
real cost caused by the state deviations and the correcting control efforts, the weighting
matrices being merely design instruments. Yet to a certain extent there is practical and
theoretical justification for using the optimal design procedures because the tuning be-
comes simple and the resulting regulators are computationally attractive and the stabi-
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lity questions are easily taken care of [10]. As a curiosity one can note that even a
PID-type approach can be realized by optimal controllers [9, 24].

Recently the field where dynamic systems analysis and control theory has been
studied has rapidly expanded outside the classical areas of electrical and space engi-
neering. Stabilizing and optimizing control is currently a subject of active research
e.g. in biotechnical and environmental engineering (see e.g. [41, 45, 46, 62...66] and
the references therein). Dynamic optimization has also become an important factor in
production control and in large-scale systems [4, 42, 54, 86].

2.4 Optimal controllers in biology

Most dynamic biological phenomena involve control processes in one way or anot-
her. The efforts made to explain and understand the performance of biological control
systems have sometimes led to the use of optimal control theory. To speak of optima-
lity in connection with biology is somewhat dangereous because it may give rise to
teleological interpretations. However, it has been possible to model the operation of
some physiological subsystems with optimal controllers (see e.g. [57]). A general review
and discussion of these problems appears in a recent article [S8)]. There is a principal
difference in the way optimal control theory is used in engineering and biology. In the
former the studies aim at synthesis and in the latter they deal with analysis. Design
aspects are met with when optimal control models are utilized when operating artificial
assistive devices or when optimizing man machine systems. Optimal control models are
being employed to an increasing extent in the analysis of human performance and de-
cision making in general human operator systems.

2.5 Optimal controllers in economic systems

The solid foundation for model construction which natural laws provide in en-
gineering and biology is not usually available in economic analysis. This has somewhat
impeded the development of quantitative dynamic optimization research although dy-
namics and optimization are inherent characteristics of many economic systems. Not
until recently have control theorists and mathematical economists started to co-operate
and found that they have a common field of interest in dynamic decision problems.
This has inspired intensive research in both East and West which is manifested in the
increasing number of symposia [68, 69], review articles [6, 12, 36, 37, 73], special is-
sues [2, 3, 83, 114], and textbooks [7, 19] dealing with control and decision making
in management and economic systems. The questions studied range from optimal ad-
vertisement strategies [ 108] and competition between enterprises [ 112] to the plan-
ning of optimal economic growth [35, 70] and macroeconomic stabilization [73].

In economic problems the design criteria for the controllers are often expressions
reflecting some real expenses and profits which can be measured in practice [35]. As
in engineering applications the cost functionals used for stabilizing controllers in eco-
nomics are, however, primarily design instruments [79]. It is an essential characte-
ristic of economic problems that the system dynamics tend to be nonlinear and the
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cost criteria nonquadratic. Moreover, multiple controllers with different information
structures are frequently involved [76, 98].

There has been a lot of discussion on the role of control and systems theory in
economics (see. e.g. [8, 31]). Critical comments have been made e.g. on the relevance
of discussing optimal modes of action which have been obtained by using approxima-
tive quantitative models and exact performance criteria. It is clear that a direct im-
plementation of an optimal decision policy calculated in this way is very seldom
appropriate in the day-to-day management routines. Nonetheless, control theoretic
methods have to be used when one wants to evaluate e.g. the best result that could be
achiered in an organization evolving in time, the effects of the entrance of additional
control agents, the effects of different information structures, the price worth paying
for additional information, the structure of the optimal decision policy, and so on.
These are examples of questions which require more or less quantitative answers.
However, even questions of a qualitative nature concerning planning and decision
making often need to be approached through exact quantitative analysis.
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3 Nonlinear optimal control problems

Nonlinear problems are frequently met with in practical controller design situa-
tions, which has given rise to the development of new mathematical tools for hand-
ling nonlinearities. The methods presented so far are insufficient and unsatisfactory
in certain cases. Contrary to the linear problems, which have neat, elegant solutions
in closed form, the exact solution is obtained only for special classes of nonlinear
problems. Generally one has to be content with suboptimal solutions. In this section
the application of a new tool, the theory of generalized polynomial operators, to
solving nonlinear optimal control problems is described [44, 47, 64]. The theory
of polynomial operators and especially the local inverse theorem used here were
not developed until a few years ago by HALME and ORrava [43, 48, 49, 93, %4,
95]. The method presented is a functional analytic approach where the models of
dynamic systems are interpreted as operators between time function spaces. Re-
cently a corresponding approach using polynomial operators has also been applied
to the optimal state estimation of nonlinear systems [92].

Engineering applications very often require the controller be given in the feedback
form. From the computational point of view this is a crucial demand. It means that
the only practically realistic approaches are analytical solution techniques. The met-
hod may be approximate but the requirement is that the initial state is an explicit
parameter in the solution. The feedback form representation is also desired in certain
nonlinear economic stabilization and optimal growth problems [27, 28, 70]. For ex-
ample, the structure of the feedback form solution might be of interest although it
would in principle be possible to continuously solve successive open-loop problems as the
computation times needed are minimal in relation to the time scale of the economic
system itself.

There is an extensive body of literature on the purely numerical solutions to
optimal nonlinear controllers or correspondingly to nonlinear TPBVP’s, which arise
from the use of the maximum principle in these problems (see e.g. [38, 87, 96, 99).
These methods have the disadvantage that the solution procedure has to be repeated
for every new initial state because of the open-loop representation of the resulting
solution. However, these numerical methods should not be ignored in controller
design because there are many special applications even in engineering where an
open-loop strategy is sufficient, see e.g. [77].

Among the analytic methods of treating the problem are different linearization
techniques and methods that restrict the solutions to other fixed configurations and
employ parameter optimization (see e.g. [75, 81, 97, 105, 106]). A wide class of
methods is based on power series expansions of the solution. The best known of
these are perturbation methods where a small parameter e is associated with the
nonlinearity and the solution is represented in a power series with respect to e. The
parameter is either inherent in the system or is artificially introduced for computa-
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tional reasons. In the nonlinear regulator problem this method has been used for
the solution of the Hamilton-Jacobi equations (see e.g. [13, 40, 72, 115]) and for the
solution of the TPBVP obtained via the maximum principle by expanding the state
or the co-state equation in a power series with respect to € [72, 90, 91]. The pertur-
bation approach usually results in the solution of successive differential or partial
differential equations for the coefficients in the power series. Additional examples
of analytical successive approximation methods are found in references [1, 23, 74].
A new power series approach yielding a feedback form solution to a general class
of nonlinear TPBVP’s occurring in optimal controller design is described in the follo-
wing sections. First nonlinear TPBVB’s are considered and then examples of differ-
ent design problems are given. The original articles, in which this technique was
studied in more detail, are references [44, 47, 64]. The method is based on trans-
forming first the basic form of the TPBVP in question into an equivalent integral
equation in the continuous-time case and correspondingly into a summation equa-
tion in the discrete-time case by using Green’s functions and then solving this equa-
tion. This equivalent form is an operator equation over the solution function space
and the solution is obtained by inverting the operator. The inverse is found for
problems where the operator is of analytic or polynomial type by applying a local
inverse theorem concerning polynomial operators.

3.1 Solution by polynomial operators

This presentation of the method for solving nonlinear control problems deals with
the discrete-time case which has so far received minor attention in the literature even
though in practice controller design is often based on discrete-time models. Our tech-
niques apply equally well to the corresponding continuous time problems [44].

Let the nonlinear TPBVP related to the dynamic optimization problem in question
be given in the following normal form

vk + 1) — y(k) = Fy(k + 1), y(k)) (1)
My(k,) + Ny(ks) = ¢ (2)
where the given time interval is {ko, ko+1,..., kf} and the state y is an n-vector,

M and N are given matrices, ¢ is a given vector and F is an analytic function having
a power series representation about the origin

F(y(k+1), y(k)) = Ay(k+1) + By(k) + [higher order terms]. 3)

Now, the original problem (1). . .(2) can be transformed into a summation equa-
tion, provided the set {4, B, M, N}is boundary compatible, i.e. the corresponding
linear problem has a unique solution for all c. Applying Green’s functions the equi-
valent representation for the problem is
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where Green’s functions G and H are defined by using the state transition matrix of
the linearized problem (see [38, 47, 64]). When F is given by a polynomial operator
then the left hand side of Equation (4) also has a polynomial structure and (4) can
be expressed in the following operator equation form

P(y)(k) = H(k;k,, k)c. (5)

This operator P can be represented by a power series in a region around the origin
of the time function space (R“){" or--kt} and the inverse theorem of polynomial
operators can be applied to solve Equation (5). The inverse theorem gives the sol-
ution closest to the origin which is also the only one that goes to zero together with
¢. This is the desired feasible solution when the boundary value problem (1). . .(2)
represents the canonical equations of an optimal regulator problem. The solution of
(5) is obtained in the series form

Y0 = 2y @@ ©)

where the terms y(P) depend on the homogeneous components H, of the operator
P, which are again easily expressed by the aid of the homogeneous components E,
of F. The terms are then given by the following recursive formulas:

¥ (k) = Hk;ky, kg)c Q)

YOW) = 5 Gl kg, k) E, GG+, 10 () ®

o

0

YO ) = 2°E 6k kg, kOBEENGDGH1), 5D ), (G41), 5D

©

ke—1
t 2 Gk, fiky, k)E, (/D G+1), y(D(G))
(o]

etc.
The notation pf(E,) appearing above means the polar form of the homogeneous
component E,. Its definition is given e.g. in [64].
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The theory of polynomial operators also provides us with methods for approxima-
ting the region of convergence of the solution series (6). However, these aspects will
not be treated here (see [44]).

The feedback form solution can easily be obtained from the series (6) since in op-
timal regulator problems the ¢ vector in the original TPBVP (1) ... (2) is given by the
initial condition. Note that the y vector of the general formulation now corresponds
to the state-costate vector of the Hamiltonian system. The initial state becomes a
parameter of the solution as is desired because ¢ stands in an explicit position in the
first order term (7) which again goes recursively to the subsequent terms of the power
series. The optimal feedback law is found by replacing the initial time k, by the cur-
rent time k, i.e. also the initial state x(k,) by the current time state x(k), and consid-
ering the solution at time points k¥ and k¥ + 1. When the discrete maximum principle
[25] is applied the optimal control u(k) is given as a function of the costate p(k+1).

The components of the terms of the solution series corresponding to p(k+1) are
also expressed as functions of x(k). Inserting the approximation of p(k+1) to the
equation of the optimal control in question gives a suboptimal controller for the
problem.

The structure of this suboptimal power series solution for a nonlinear regulator
is such that although additional higher degree terms are included the lower degree
terms of the controller remain unchanged, i.e. the solution is correct up to the degree
considered. Further discussion on the effects of truncation are found in [44]. '

The following sections demonstrate the applicability of this approach in some
specific examples of important nonlinear controller design problems. Primary interest
is paid to the presentation of the development of the polynomial structure of the
related TPBVP’s.

3.2 Quadratic design with nonlinear dynamics

Consider a system with nonlinear dynamics of the following form
x(k+1) — x(k) = AGx(K))x(k) + Bx(k))u(k) (10)

where 4 and B are matrix functions of the state vector x. (Note that they do not

correspond to A and B in Equations (3) and (4)). The assumed nonlinear system is
of the general type, where the only restriction is that the control appears linearly.

The performance index is the standard quadratic function

k
Horg )= 4 3 (x0T Qx(6) + u()T Rul)] (1)

o

with Q > 0, R > 0 and free final state x(k;). Application of the maximum principle
yields the following equations for the state and costate vectors
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x(e+1) | | x(k) | | AGe(R)x(k) + B(x(k))R"! B(x(k))T p(k+1)

(12)
ple+1) | | p(k) Ox(k) + C(x(k), p(k+1)T p(k+1)

where

Clx, p) = — % [A(x)x + B(x)u] with u = R'1B(x)Tp (13)
The boundary conditions are given by

I 0f x(k,) 0 O x(kp) | | x,
+ = (14)
0 O}ipk,) 0 I |ipkys) 0

and the optimal control is obtained from equation
u*(k) = R B(x (k)T p(k+1). (15)

Sometimes the minimum principle is used, resulting in equivalent equations but with

different signs in the above representation. The TPBVP (12) ... (14) is of the desired

polynomial type if the matrix functions 4 and B are originally polynomials or if they
can be expanded into a power series form. For a continuous-time formulation of this
problem in the general time-variant case see [44].

3.3 Bilinear systems

Recently, increasing interest has been shown in the control of the so-called bilinear
systems. These form a special subclass of nonlinear problems. A bilinear model is
linear separately with respect to state and control; the nonlinearity is due to the cross
product terms of these two variables. Besides applications in physics and biology
important phenomena are modelved by bilinear equations in economic problems.
Variables such as rate of change or percentage of change are more natural for use in
economics than the absolute changes in magnitude, an example being the tax rate
[5, 22]. The literature contains very few special notes on the design of optimal con-
trollers for bilinear systems. Bilinear dynamics and quadratic criteria lead to nonlinear
TPBVP’s which are in a convenient polynomial form for solution by the proposed
method. Consider, for example, a system with scalar control

x(k+1) — x(k) = Ax(k) + Bu(k) + B, x(k)u(k) (16)
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and the quadratic criterion (11). Equation (12) now has the following simple form
with second and third degree nonlinearities [64]

x+) | (x| o B,R1BT| [x@+1)| |4 ol x)

— = +
ple+D) | |p)| [0 4T | |pe+D)] [@ 0] p(®)
[ B R1x(k)TBY p(k+1) + B, x(k)R" BYp (k-+1)
+ a7
i BT p(k+1R1 BT p(k+1)

—szx(k)R-lx(k)T BIp(k+1)

i —B] p(k+1)R 1 x(k)T BY p(k+1) |.

3.4 Nonquadratic criteria

Nonquadratic cost functions are often encountered when the controller design is
based on performance criteria which represent real costs. In practical realizations
inequality constraints on the state variables are frequently met with. One way of
solving such problems is to consider nonquadratic criteria which include higher order
penalty terms for the state constraints.

As an example consider the following controller design problem

x(k+1) — x(k) = Ax(k) + Bu(k) (18)

k
Jxgr) = 4 % 1aG®) + ut)T Ru(k) (19)

o

with final state free, constant matrices A and B, a suitable nonnegative scalar valued
function ¢ and R > 0. The maximum principle yields the equations

x(k+1) | | x(k) | |.Ax(k) + BR! BT p(k+1)

(20
pe+1) | |.p(k) D(x(k)T —ATp(k+1)

where D(x) = % (3g(x)/0x) with the boundary conditions (14). The TPBVP (20), (14)
has a polynomial structure and the proposed solution technique may be employed here
if g(x) is a polynomial or if it can be suitably approximated by a power series. The
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case where g(x) includes only a quadratic and a quartic term is especially easy to deal
with. Then the TPBVP has only third degree nonlinear terms and the homogeneous
components of the operator become quite simple; moreover, the even degree terms
are zero. Previous attempts to solve this problem are few in number and they only
deal with the scalar control case (see [64]).

3.5 Bounded controls

In most applications the magnitudes of the control variables have upper bounds
e.g. due to undesired side effects or due to the limiting ranges of the operating de-
vices. In spite of this fact stabilizing feedback controllers are designed ignoring the
effects of the control constraints. The reason is simply the serious difficulties en-
countered with analytic solution methods. As far as the author knows, feedback
form solutions have not been presented previously. It is only in very special cases
where the optimal solution is obtained by saturating the values of the corresponding
unconstrained linear regulator, although this solution was once suggested to be valid
in general. To illustrate the application of polynomial techniques here let us consider
the linear quadratic problem (11), (18) where the components of the control vector
u (dim u =r) are bounded in magnitude by

lu; (k)| < 1, i=1,2 ,..,1. 21
The necessary conditions for optimum yield

xtk+D)| | x(®)| |4 © x(k) | | B sat (R"1BTp(k+1))
— = + (22)
pk+D) | |p®)| | Q O | pk) -ATp(k+1)

with the boundary conditions (14). The optimal control is now
u*(k) = sat(R"1BT p(k+1)). (23)
The saturation function appearing in these equations is defined componentwise by

z, z; , when |z;] <1

sat| | - | = (24)

n sign z;, when |z, > 1, i=1,2,..,n.
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The solution difficulties are caused by this sat-function. However, the TPBVP
(22), (14) can again be transformed into polynomial form by replacing the satu-
ration function componentwise by its polynomial approximation on a given interval.
The desired accuracy can be achieved by using polynomials whose degree is high
enough. This approximate saturation problem can be assumed to have solutions
which are close to the solution of the original problem if the saturation function
approximation is done on a sufficiently large interval. Computationally the appro-
ximated problem is simple because due to the odd-symmetry of the sat-function
the even terms are zero. The feedback law for the controller is obtained by applying
the power series solution for the costate p in the controller equation (23) (see [47,
64]).
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4 Problems with multiple controllers and game theoretic design

Problems with multiple controllers can arise in different ways, the primary source
being decentralized control. Two different types of situation can be found. One of
them is the decentralized formulation of a complex system by decomposition so that
a set of interacting local subcontrollers is hierarchically coordinated by a higher level
supervisory controller [86]. This is either a description of the mathematical procedure
used to solve the global problem or the structure of the controller configuration of
the decision making system in practice by which one wishes to realize the optimal
control of the overall system. It is often hoped that the considerations could be
simplified by breaking the overall problem into a number of simple subproblems.

In spite of the decentralized representation the aggregate problem usually has to be
solved by the co-ordinator who is assumed to possess a complete description of the
system [11, 26, 86].

In the other situation the multicontroller structure is given a priori with the con-
trollers having non-identical information and possibly different objectives. This is
what is most often meant by a decentralized problem [4, 54]. The appearance of
more than one independent control agent is typical of economic systems (see [7,

73, 76, 98]). Market competition between enterprises and macro-economic stabili-
zation by independent agents controlling monetary and fiscal policy can be mentioned
as examples. Many kinds of systems with interconnected subprocesses are found in
engineering. Consider for example electric networks consisting of several power gener-
ator stations which have individual local controllers [54].

The performance criteria of the control agents can generally differ from each other
although the overall objective is to stabilize the system. From the local point of view
of one agent some of the state components and the agent’s own control cost can be
considered more important than the others. The problem is thus a nonzero-sum game.
For the solution it is reasonable to assume the noncooperative Nash equilibrium solution
concept because it gives strategies which are stable against unilateral deviations from
the equilibrium. This is often a desirable property in decentralized control systems.
The Stackelberg strategy is relevant when one agent has a dominating position. Coop-
erative solutions can offer better results to the controllers but require centralized de-
cision making which is somewhat conflicting to the original decentralized setting of
the problem. Altogether, these concepts are strongly bound to the specific problem
in question. If it is only a case of a decentralization of the information available to
the controllers with one common performance measure then we are dealing with a
dynamic team problem.

Another source of multiple controller problems is the design and solution techni-
ques where a fictitious auxiliary control agent is introduced, game theoretic worst
case design being an important and illustrative example. The aim is to design a
controller which would preserve good performance even in the presence of unpre-
dictable disturbances. Worst case design is based on the solution of a game between
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the controller and an anticontroller representing a fictitious intelligent disturbance
[61].

The saddle point condition in optimization theory has also given rise to game
theoretic interpretations where the Lagrange multiplier is considered a fictitious
player. Moreover, there are a number of solution algorithms for hierarchical coor-
dination and decentralized control problems where the discrepancy or interaction
term is given the role of an antagonizing fictitious controller {32, 82, 86].

In the following sections we discuss the formulation of design problems with two
controllers from the game theoretic point of view. Special attention is paid to the
role of the controllers’ information structures. Some new solution algorithms to
general linear quadratic difference games are dealt with and a game theoretic worst
case design method is described. A more detailed treatment of these questions in-
cluding references to previous literature is found in the author’s articles [59...61}.

4.1 Nonzero-sum difference games

In Section 2.2 the solutions of nonzero-sum differential games were already dis-
cussed. Here the definition of the necessary concepts in connection with two-player
games shall be shortly described. It is illustrative first to consider an example of a
static minimization game, shown in Figure 1 in the lines of [109], where the players’
costs J; and J, are convex with respect to their scalar controls u and v corresponding
to players 1 and 2 respectively. The broken lines denoted by u® and v° going through
the individual minimal points 0, and 0, represent the locus of optimal controls of one
player for fixed values of the control of the other player. The intersection N of these
lines, if it exists, determines the Nash equilibrium solution. The Stackelberg strategy
S, where player 1 is the leader is given by the point of tangency between the con-
stant J, contours and the v° line i.e. by the point of v° which gives the smallest cost
to player 1. The point S, correspondingly represents the Stackelberg solution where
player 2 is the leader and player 1 the follower. The cooperative Pareto optimal sol-
ution set is the locus of tangency points between the constant cost contours which

»  Figure 1. A static two-player game.
v
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connects 0, and 0,. The shaded area represents the intersection of solution sets which
give smaller costs to the players than their individual Stackelberg leader’s strategies.
That part of the Pareto optimal set which lies in the shaded area can be called the

set of negotiation solutions. The cooperative solutions are interesting from the point
of view of general decision making problems but in controller design mainly noncoo-
perative situations are considered because of their decentralized character and because
they are conceptually clear and have straightforward solutions.

In reference [60] discrete-time deterministic problems are treated and we first de-
fine the information zg") of the past and present values of the state vector that player
i has access to at stage k. The perfect memory information structure where all the
past states are available is expressed for each keK by

28 = {x(0), x(1) ..., x(k)} (25)

where K ={0, 1 ,..., N — 1} is the set of time points of the interval considered. In
the zero-memory case only the current time value of the state is known, that is

ZF) = {x(k)}. (26)
The open-loop information structure means that only the initial state is available:
z{®) = {x(0)} for all keK. (27)

The decisions of the players depend on the available information at different stages
and the control laws 7, (k)(zl )) are picked from the given class of admissible strategies
at each stage. To distinguish between controls depending on the perfect memory and
the zero-memory information the former are called closed loop and tkle latter feedback

strategies. The pair of strategy sequences ((71 0% ,’11 ) (7 e V2 -1 )) is
a Nash solution to the game if the following inequalities hold for all adm1551b1e 'y(" ) keK

N— * * _1\*
LIGOT . AN @7 L N-DYy,
. , , (28)
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In practice the stagewise definition of the solution is often more important. Instead
of the two inequalities (28) and (29) for the strategy sequences the stagewise definition
requires that the corresponding inequalities are satisfied at each stage with controls at
other stages being fixed to the optimal strategies. The stagewise definition of solutions
is convenient from the computational point of view because recursive dynamic pro-
gramming type techniques are available. For the definition of the stagewise Nash and
Stackelberg solutions see [60].

4.2 Solution algorithms for general linear-quadratic problems

The standard linear-quadratic two player difference game has been studied extensively
in the literature. Recently, interest has primarily been paid to uniqueness questions and
to the structure of the solution strategies while important computational questions have
remained untreated (see e.g. [16...18]). Here we shall consider the general quadratic case
with all the cross terms included and review the solution algorithms developed for these
games with different information structures [ 59, 60].

Consider the linear system

x(k+1) = A(k)x(k) + B, (k)u(k) + B, (k)v(k), x(0) = x, (30)

where the state x is an n-vector, the control of player 1, u, is a p-vector and the control
of player 2, v, is a g-vector, the time varying matrices 4, B, and B, being of suitable
dimensions. The performance measure for player i is given by

J= ExTOSXN) + 5 E ! [T000,00x(K) + 2T ()M (eYul)
+ 2T (M, (k)w(k) + uT(K)R;; (Ku(k) + 2uT (k)N (k) (k) (1)

+TRR, K WK)]  ,  i=1,2

where S;, Q; (k), R, (k),R,;(k) = 0and R,,(k),R,,(k)> O forall k. These general
quadratic criteria are encountered when for example the performance measures of the
players are defined in terms of the output of the controlled system.

4.2.1 Open-loop solutions

When determining the open-loop solutions the cost criteria have to be expressed .in
terms of the initial state vector. This is accomplished by introducing augmented vectors

2 T X2 . 1 XTEN)IT (32)
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%, B xT(O); xT(©)F ... ixT(O)]T 33)
72 T uT()} .. {uT(N=1)T (34)
78 T 1T . ET(N-DT 35)

by which it is possible to transform the problem into a static form depending only on
X, - Both the Nash and the Stackelberg strategies to this game are linear functions of the
initial state given in the augmented form by

u'=-Hx, (36)
e - _
P*=Hx, 37

where the H, and H,, matrices can be obtained from the same type of formulas for
both solution concepts [60]. The difference is that in the Stackelberg case certain
additional terms enter the definition of the auxiliary matrices which are related to
the player being the leader. A corresponding augmented vector representation for
the Nash open-loop strategy in the more simple standard linear-quadratic case has
already been presented earlier [17). However, the practical applicability of solution
algorithms which involve operations such as inversions of augmented matrices de-
creases when the number of stages in the interval of play increases. It would there-
fore be useful to have the solutions in a form where high dimensional matrix equa-
tions are transformed into a series of low dimensional equations. The author has
shown [60] that such a representation is indeed available for the Nash open-loop
solution. No equally simple recursive procedure is, however, found for the Stac-
kelberg open-loop solution. The low dimensional algorithm for the Nash open-
loop strategy gives the solutions first stage by stage in a feedback form

u*(k) = —H, (k) x(k) (38)
v*(k) = —H (k) x(k) (39

where the feedback gains H, (k) and H (k) are defined in terms of matrices P, (k+1) and
P, (k+1) which are again obtained by solving recursively a couple of asymmetric Riccati-
type matrix difference equations

,Pl(k) = Ql(k) —M“(k) Hu(k) “Mlz(k) Hv(k)

(40)
+ ATRP, (k+1)[A(k) — B(OH,, (k) — B,(OH, (k)]
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Pz(k) = Qz(k) _le(k) Hu(k) _Mzz(k) Hv(k)
(41
+ AT(k) Pz(k+l)[A(k) —B,(k)H, (k) —B,(k) H (k)]

with P,(N)=S§;,i=1, 2.

The solution algorithm proceeds stagewise backwards so that at a stage k the gains
H, (k) and H (k) are first determined using P, (k+1) and P, (k+1) which are known
from the precedmg stage. Then the gains are used to obtalnP 1 (k) and P,(k) from the
difference equations (40) and (41). When the feedback gains have been computed in
this manner for the whole interval the state transition matrix is obtained from a for-
ward recursion and used to yield the open-loop form representation for the strategies.

4.2.2 Feedback solutions

The feedback solutions for a game are probably the most important ones from the
practical point of view. For example in the design of decentralized multiple controller
systems it is natural to assume that at each stage the optimization of controls is solely
based on the current-time values of the state vector. Linear strategies of the form (38)
...(39) are again obtained for both the Nash and the Stackelberg solutions. In this case
the related difference equations are symmetrie:

P (k) =0, “MnHu_HZML _MnHv‘HIM{z
+HIR,H, + HIN,H, + HIN|H, + HIR ,H, 42)
+[A-B,H,—B,H,|"P,(k+1)[A-B,H,—B,H ]

and
Py(k)=Q, ‘leHu“HZM; —M22HV—H3M§2
+ HYR, H,+HIN,H,+HINJH, +H R ,H, (43)
+[A-B,H,~B,H, \"P,(k+1)[A-B H,~B,H,)

with P(N)=S§; , i=1,2.

The presented algorithms have been developed into a form where the Nash and Stackel-
berg feedback strategies can be determined using the same procedures. Only some ad-
ditional terms enter the formulas defining the gain matrices H, (k) and H (k) when the
Stackelberg solution is considered [60].
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4.2.3 Open-closed solutions

The information structures of the control agents are often different, e.g. in economic
problems, so that we have to consider open-closed strategies. So far solution algorithms
for these problems have received minor attention in the literature, probably due to the
complexity of these problems. Suppose now that player 1 has access to open-loop infor-
mation and player 2 to perfect memory information. The solution procedure is initiated
by deriving first the strategy of player 2 when the control of player 1 is fixed to an arbi-
trary open-loop strategy. The form of the optimization problem faced now by player 2
when choosing his closed-loop strategy will be the same even if he plays a Nash strategy
or if he plays Stackelberg follower’s strategy. The Stackelberg problem where the leader
has perfect memory information is not considered because the solution cannot be found
using the stagewise solution techniques. The author has shown [60] that the closed-loop
optimal control of player 2 which minimizes J, with a fixed open-loop strategy for player
1 is the following affine feedback law

v*(k) = G5! (K)F,(k)x(k) + t(k) (44)

where #(k) depends on the initial state vector through the open-loop strategy of player 1.
The vector #(k) and the matrices G, (k) and F, (k) are defined in terms of P, (k+1) which
satisfies the symmetric matrix Riccati difference equation

Py (k) = Q,(kK)+AT (k)P (k+1)A(K)—[M, (k)}+B3 (k)P, (k+ 1) A(K)]T
(45)
+[R (k) +BY(K)P, (k+1) B, (k+1)] ! [ML(K)+BT(K)P, (k+1)A(K))

with P,(N) = S,.

It may be noted that in this form the affine feedback law obtained resembles the
solution of the classical linear-quadratic tracking problem of regulator theory.

When deriving the open-loop strategy of player 1 the current time state has to be
eliminated and the problem must again be transformed into the static form by augmen-
tation techniques in such a way that the structure of player 2’s strategy is suitably in-
corporated. A linear augmented form solution of the type (36) is obtained for the Nash
and Stackelberg leader’s strategy. The solution of the whole problem is thus partly ex-
pressed by augmented form equations. As in the open-loop problem it has been possible
to develop recurrence equations replacing the augmented matrices of the Nash solution
[60]. The open-loop strategy of player 2 and the #(k) term depending on it in (44) is
again first given in the feedback form by

u*(k) = —H,, (k) x(k) (46)

t*(k) = —H (k) x(k) 47
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where the feedback gains H,, (k) and H (k) are defined in terms of P, (k+1) and
P;(k+1) which satisfy the pair of coupled asymmetric difference equations

P, (k) = Q5(K) — M3, (k) H, (k) ~M, (k) H (k)
(48)
+ A°T(OP, (k+ 1[A°(K) — B, (R, (k) —B,()H (k)]

P, (k) = K, (OH, (k)+A°T (k)P4 (k+ D[A°()-B, (H, (k) ~B,(H (k)] (49)

with P,(N) = §, and P3(N) = 0.

This pair of equations is moreover implicitly coupled with the independent difference
equation for P, (45). The computational algorithm proceeds here in the same manner as
in the open-loop case. First the matrices P,, P, and P, are determined backwards in time
and secondly a forward recursion is solved to obtain the open-loop representation for
u*(k) and t*(k).

The solution to this problem presented here is the only one of practical interest alt-
hough it is not unique due to the closed-loop information structure of one of the
players. Uniqueness of this solution would be guaranteed if a random disturbance
term were included in the formulation of the system dynamics. [17].

4.3 Periodic information structures

Up to these days the literature has been lacking almost completely the treatment of
multiple controller problems with periodicity in the information structures. Successive
economic planning periods give an example of a practical situation where problems with
periodic information structures arise in a natural way [73]. Other examples include
coordination procedures for large organizations which result in corresponding problems
[26].

The two periodic information structures of main importance are called periodic
open-loop and periodic perfect memory [61]. In the former case the decision maker
knows at each stage only the value of the state vector at the beginning of the current
period. Formally we have for each ke {0, 1 ,..., N—1}

z*) = {x(mL)}
(50)
mL<k<mL+L, me{0,1,., M-1}

where ml is the last updating stage, L is the lentgh of the period and M is the total
number of periods in the game with ML = N. Correspondingly the periodic perfect
memory information is defined by
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z®) = {x(mL), x(mL+1) ..., x(k) }

mL<k< mL+L, me{0,1,., M-1}. G

In this case the decision maker has a perfect memory information structure within
the period but the memory is periodically cleared every L :th stage. A correspondingly
defined periodic zero-memory information structure would naturally not differ from
the standard zero-memory case.

By using the recursive algorithms described in Sections 4.2.1 and 4.2.3 it is possible
to obtain the Nash solutions to linear-quadratic games with periodic information struc-
trures. There are two interesting problems. One is a game where both of the players
have access to periodic open-loop information. The other is a game where one of the
players has access to periodic open-loop and the other to periodic perfect memory in-
formation. It is assumed that the length of the period is the same for both players and
that the updatings occur simultaneously. Special cases with nonidentical timing and
different lengths of the periods have not been considered. The Nash solution procedures
are based on the linear feedback form representations of the open-closed strategies,
which make it possible to apply dynamic programming type techniques because a
quadratic expression of the current time state can be developed for the optimal cost-
to-go at each updating stage. It is shown in [61] how the solution of the game (30)...
(31) with periodic open-open or periodic open-closed information is obtained by
repeatedly solving open-loop games or open-closed games, respectively, whose duration
equals the length of the information updating period. The difference between the suc-
cessive games is that the terminal cost terms in the performance criteria are changed
from period to period. Computationally this means that the terminal ' conditions of
the related sets of difference equations (40)...(41) and (45), (48)...(49) above, are
repeatedly updated. The updating values are again obtained from a pair of coupled
difference equations which are similar to (42)...(43). The same comment on the
uniqueness which was made in connection with the open-closed games applies here,
too. Corresponding algorithms for Stackelberg strategies cannot be given because the
feedback form representation of the open-loop and open-closed solutions are not
available.

4.4 A two controller formulation for worst case design

It was established quite early that differential games provide potential tools when
approaching worst case design problems. Worst case design of controllers is proposed
as an alternative approach to avoid the difficulties related to the a priori distrjbutions
of disturbances which are encountered in stochastic optimal control. This method is
sometimes also used when the system parameters are subject to unpredictable changes.
Suboptimal worst case design methods are well motivated in many engineering and
economic problems, although economists have so far paid no attention to these techni-
ques. The basic idea is to replace the nominal optimal design by a suboptimal one which
results in a less sensitive performance in cases of bad disturbances and parameter changes
or which is computationally simpler to deal with than the original stochastic design
problem. Game theoretic worst case design is a deterministic formulation where the
disturbance is given the role of an anticontroller which is trying to oppose the actions
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of the controller. Thus, instead of the nominal optimal controller we consider a sub-
optimal controller determined by the solution of a two-player game between the control
agent and the disturbance agent. If completely antagonist criteria, i.e. zero-sum games,
are considered the result is usually too pessimistic. The methods previously presented

to resirict the possibilities of the anticontroller and to obtain less pessimistic controllers
have not lead to satisfactory practical design procedures (see [61] for a complete list of
references).

The author’s formulation [61] of the worst case design problem assumes that the
information available to the anticontroller is restricted to the periodic open-loop type
so that the disturbances entering, the system are considered time functions of given
length which are only periodically re-evaluated with respect to the values of the system
state. The performance criteria of the controller and the anticontroller are conflicting
and the design is based on the Nash strategies of the resulting nonzero-sum game with
periodic open-closed strategies. In the design procedure the length of the information
updating period of the anticontroller is a design parameter. It is used to restrict the
possibilities of the disturbance so that the resulting suboptimal worst case controller
would not be too pessimistic. In practice it is easy to use the proposed method because
the design procedure can be initiated from the nominal deterministic optimal con-
troller solution which is obtained as a limiting case of the worst case solutions.

4.5 Nonlinear nonzero-sum differential games

The computation of approximative solutions to nonzero-sum differential games is
considerably more difficult than the computation of solutions to control problems
or to two-person zero-sum differential games. The basic difficulty with Nash and
Stackelberg solutions is that they depend on the type of strategies (e.g. open-loop or
closed-loop) assumed for the players. Thus it is very difficult to know to what strategy
direct iterative numerical algorithms will converge. The same difficulty is found with
methods based on an iterative solution of the related Hamiltonian system because for
a closed-loop problem the partial derivatives of one player’s Hamiltonian with respect
to the other players’ control are not zero. However, an analytic power series method
resembling the one proposed here has been shown to be applicable for solving the Nash
feedback strategies [89]. By omitting a more general consideration of the potential appli-
cability of the polynomial operator approach to nonlinear game problems it is sufficient
to note that it can be directly applied to determine the nonlinear Pareto optimal strategies
in nonzero-sum games. Consider for example an n-player game with performance criteria
J;,i=1,2, ... n. Members belonging to the Pareto optimal set are found by solving the
following problem with a scalar cost

n
J= N, N> 0,

i 1

n

=21 A =1 (52)
for different values of \;. This is equivalent to the solution of standard optimal control
problems. Thus all nonlinear differential game problems corresponding to the different
types of nonlinear control problems discussed in Chapter 3 can be solved by the present
method when Pareto optimal strategies are considered.



5 Practical design examples

In the works considered the mathematical development of new algorithms for
controller design problems was only one part of the research objective. The other
part, which is of equal importance, was to test the applicability of the methods in
connection with practical numerical examples. The consideration of trivial scalar
examples seldom reveals the real weaknesses and the computational burden of the
procedures. In this chapter the solution of different controller problems is discussed
using the methods described in the previous sections. The performance of the con-
trollers obtained was studied by computer simulation and by implementing them in
the direct digital control of pilot processes.

5.1 Continuous time nonlinear problems

The literature on the design of quadratic controllers for nonlinear systems con-
tains a number of common reference examples. One of them is the continuous time
optimization problem with the following second order system

X 0 1'\ X 0 0
X3

and the performance index
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= +e + u (53)
0 OJ X9

It 10
J= %.{)(x'l"[o 1]x-l-uz) dz. (54)

The main difficulty in the application of the power-series solution method to
continuous time problems is the determination of the state-transition matrix which
is needed in the definition of the Green’s matrices. In this specific problem (53) ...
(54) the state transition matrix is obtained in an analytic form and the solution
algorithm proceeds in a straightforward manner [44]. Figure 2 shows the optimal
trajectories for both finite and infinite regulation times. The same time invariant
steady-state suboptimal solution which is obtained by the present method is found
also by a perturbation method in [90]. A somewhat different result is presented in
[40]. Compared with the previous methods the foremost advantages of the present
techniques are that a time-variant system, time-variant weighting matrices and a
finite regulation time do not cause additional difficulties, provided the necessary
state transition matrix can be determined. However, all the methods for solving
nonlinear problems require substantially more computational effort than is needed
in the linear case.
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[44].

5.2 Regulators for nonlinear systems

For the following pilot process examples the discrete-time formulation is used
because in practice controller design is often based on discrete-time models. The
difficulties that may arise with the state transition matrix in continuous-time
problems are not met with in the discrete-time case, where recurrence equations
can be employed for the determination of the transition matrix. In order to
obtain experience with both the relevance of nonlinear design and the applicability
of the present solution method the design was initiated by identifying the nonlinear
model from measurement data with simulation and regression techniques.

Stabilizing steady-state controllers were studied for an analog computer simulation
of a microbiological continuous cultivation process [64] and for a pilot process rep-
resenting the headbox of a paper machine [47] (see Figure 3). Third degree polyno-
mial models with two state components were used. The headbox systems has a two
dimensional control consisting of the water pump and the air pump whereas there is

Yz

AP

b

U 2

WP

Figure 3. Schema of the continuous cultivation process (a) and the headbox pilot process (b).
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only one control variable in the cultivation process, i.e. the dilution rate. The con-
trollers were implemented in a minicomputer which performed the direct digital
control of the processes. Third degree truncations of the first three terms of the
power series solutions of the related TPBVP’s were considered. The resulting regu-
lators then had nonlinear terms up to degree three. Without going into the details
of the solution procedure (see [47, 64]) the performance of the nonlinear regulators
can be compared with the corresponding linear ones in Figures 4 and 5. The differ-

10 10
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Figure 4. Compensation of a setpoint change in the headbox system with linear regulator (a)
and nonlinear regulator (b) [47].
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ences are not very striking, but the nonlinear regulators are seen to compensate more
rapidly and at a lower cost than the linear regulators. Moreover, the suboptimal non-
linear regulators do not leave steady-state setpoint errors.

5.3 Control constrained regulator

The headbox pilot process was also used when studying control constrained regu-
lators [64]. The control bounds are due to the real upper and lower limits of the
driving voltages of the pumps. The design object was to minimize a quadratic criterion
with a linearized discrete-time model subject to bounded controls.

In solving this problem a ninth degree polynomial approximation was used for the
saturation function in Eq. (22). The solution of the TPBVP includes only odd terms,
and the first, third and fifth terms were calculated. Then a fifth degree truncation was
used for the costate variable in the feedback law. Compensation of a setpoint change
with this suboptimal nonlinear regulator and with the so-called dual mode regulator
is shown in Figure 6. The dual mode regulator means the saturated solution of the
corresponding linear unconstrained problem. It is clearly seen that the nonlinear regu-
lator employs the saturation value of the air pump only for a short period of time
and it is much more rapid than the dual mode regulator. Similar results were also
obtained in other compensation experiments.
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Figure 6. Compensation of a setpoint change in the headbox system with magnitude bounds on
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Altogether it was shown that the polynomial approximation for the sat-function
here gives a good suboptimal solution both in cases where the limiting values have to
be used actively and in cases where the control bounds do not become active con-
straints.

5.4 Worst case design of regulators

In this context practical experimentation is done only with one design procedure
which is based on a muitiple controller configuration, specifically the game theoretic
approach to the worst case design of regulators. Decentralized controllers are not
dealt with.

Although game theoretic notions are frequently suggested to be well applicable
to worst case design techniques there have not been many studies dealing with the
evaluation of the developed methods in connection with practical numerical design
problems. Here I shall shortly describe the application of the suggested worst case
method (Section 4.4) to the headbox process [61].

The worst case design approach was in this particular case motivated by the fact
that large unpredictable disturbances in the pipe lines occasionally enter the water
pump system in practical operating conditions. In the design scheme (see Figure 7)
the disturbance was modelled by an additive input to the water pump by which
the anticontroller tries to deviate the system from its operating point. The design
was based on the linearized discrete-time model of the system and on quadratic
criteria. The anticontroller’s weight on the state deviation term was opposite to
that of the controller with the controls’ weights being equal. Comparisons with the
nominal optimal regulator showed that in the presence of bad disturbances the per-
formance could be significantly improved by using worst case regulators (see Figure
8). When the disturbance is zero or a zero-mean random signal the control cost for
the nominal and worst case regulators are not very different, which shows that the
present method does not have the common disadvantage of being too pessimistic.
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Figure 7. Schema of the worst case design U
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6 Concluding remarks

Nonlinearities, multiple control agents, and worst case approaches are among the
problems which are of current interest in the field of optimal controller design. The
present article reviews recent works of the author dealing with these problems. The
main aim of the papers reviewed here, has been to develop solution algorithms. For
this reason, formal questions about the existence and uniqueness of the solutions
are not considered in greater detail. The presented power series solution method
for nonlinear optimal control problems and the recursive algorithms for two-player
difference games are computationally straightforward although in both cases the
computer programming becomes a rather heavy task. This is a general feature of
solution algorithms for this kind of problems. The increasing number of terms and
components which have to be handled in the program restricts the use of the pre-
sented power-series technique to low-dimensional problems. The examples considered
do however demonstrate that the developed nonlinear and game theoretic methods
can be successfully employed in practical controller design. Compared with the pre-
vious methods the greatest improvements are seen in the results of the examples
dealing with the control constrained problem and the worst case design problem.
The selection of weights in the performance criteria remains an important but
difficult problem related to the design of stabilizing optimal controllers in practice,
which has not been considered here.

Manuscript received 1976—12—16
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