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A B S T R A C T   

This paper advances the use of the ranked nodes method (RNM) to portray probabilistic relationships of 
continuous quantities in Bayesian networks (BNs). In RNM, continuous quantities are represented by ranked 
nodes with discrete ordinal scales. The probabilistic relationships of the nodes are quantified in conditional 
probability tables (CPTs) generated with expert-elicited parameters. When ranked nodes are formed by dis-
cretizing continuous scales, ignorance about the functioning of RNM can lead to discretizations that make the 
generation of sensible CPTs impossible. While a guideline exists on this matter, it is limited by a requirement to 
define an equal number of ordinal states for all the nodes. This paper presents two novel discretization ap-
proaches that consider the functioning of RNM and allow the nodes to have non-equal numbers of ordinal states. 
In the first one, called the “static discretization approach”, the nodes can be given any desired discretizations that 
stay unchanged during the use of the BN. In the second one, called the “dynamic discretization approach”, the 
discretizations are algorithmically updated during the use of the BN to help manage the sizes of the generated 
CPTs. Both approaches are based on the original idea that, besides the RNM parameters, the nodes probabilistic 
relationship is defined by initial RNM-compatible discretizations elicited from the domain expert. Overall, the 
new approaches offer an easier and more versatile way of using RNM to depict the probabilistic relationships of 
continuous quantities. In doing so, they also facilitate the effective and diverse use of BNs in decision support 
systems.   

1. Introduction 

Numerous decision support systems utilize a Bayesian network (BN) 
or an influence diagram to represent uncertain knowledge and aid 
decision-making under uncertainty. Their application areas include, e. 
g., medical decision-making [1–5], risk and safety management [6–10], 
project management [11,12], maintenance and policy planning 
[13–15], financial forecasting [16], and military planning [17,18]. A BN 
[19] depicts probabilistic relationships between random variables both 
visually and numerically. The visual side of the BN is a directed acyclic 
graph in which nodes portray the random variables and arcs indicate 
their direct dependencies. The numerical side quantifies the probabi-
listic relationships, which are described with conditional probability 
tables (CPTs) of discrete nodes and indicated visually by the arcs. A CPT 
defines the probability distributions of a descendant, the child node, for 
all combinations of the states of its direct predecessors, the parent nodes. 
In an overall view, the BN encodes the joint probability distribution of 

all the nodes in the network. When evidence is entered into the BN, i.e., 
certain states of selected nodes are given 100% probability, the proba-
bility distributions of the other nodes can readily be updated with 
effective algorithms; see [20,21]. Through this feature, known as 
probabilistic inference, the BN provides a means to answer probabilistic 
queries about the random variables. The same feature is utilized also in 
influence diagrams, which are decision-theory extensions of BNs [22]. In 
these models, nodes representing random variables are joined with 
nodes representing the objectives and possible actions of a decision 
maker. While the contributions of this paper are applicable to influence 
diagrams, the remaining discussion refers solely to BNs for the sake of 
simplicity. 

BNs can be constructed on the basis of various information sources 
such as experimental data, historical data, and expert knowledge. If a 
comprehensive data collection is available, both the visual and the nu-
merical sides of a BN can be constructed by data-fitting approaches [23]. 
However, in many practical applications, the data available may be too 
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scarce or unsuitable for the needs of the BN construction [24,25]. For 
example, a specific fragment of a BN may consist of nodes whose 
probabilistic relationships have to be defined by expert elicitation. 
When the nodes represent continuous quantities, the ranked nodes 
method (RNM) [25] is a popular means of doing this. The method rep-
resents continuous quantities through ranked nodes with discrete 
ordinal scales and CPTs. The scales may consist of descriptive labeled 
states, e.g., {low, medium, high}, or they may be constructed by dis-
cretizing continuous scales, e.g., {[0 km, 2 km], [2 km, 5 km], [5 km, 
10 km]}. Since its introduction, RNM has been used in several BN 
models for decision support. The latest applications include the risk 
management of epidemics [26], early weed invasions [27], supplier 
selection in the automobile industry [28], and improvement of team-
work quality in software development [29]. In recent years, research on 
the methodological properties of RNM has also started to emerge. One 
study elaborates the theoretical principle of RNM and investigates how 
well CPTs in real-life BN models can be reproduced with RNM [30]. 
Another study explores how well CPTs constructed with RNM are able to 
portray probabilistic relationships typical in human reliability analysis 
[31]. There also exists a study on the capability of RNM to represent the 
explaining away property of binary variables [32]. In addition, expert 
elicitation practices for RNM have also been established [33,34]. This 
paper further elaborates RNM by first discussing challenges concerning 
its application to nodes with discretized continuous scales. The paper 
then resolves those challenges by presenting two novel discretization 
approaches to be used with RNM. The approaches allow the continuous 
scales of the nodes to be discretized in ways that are not possible with 
current RNM practices. They provide a more flexible means than before 
of eliciting the parameters used in RNM from a domain expert. In 
addition, the approaches enable the probabilistic relationship of the 
nodes to be portrayed in a more versatile manner than the existing 
practices. This improvement broadens the scope of the probabilistic 
analyses that can be performed for the nodes with the BN. 

RNM enables the construction of CPTs consisting of dozens or even 
hundreds of elements just with a handful of parameters elicited from a 
domain expert. First, the expert selects a generic rule, called the weight 
expression, according to which the parent nodes affect the child node. 
Then, the expert selects weight and variance parameters that define in 
more detail the relationship of the nodes within the frames of the weight 
expression. The weights reflect the parents’ relative strengths of influ-
ence on the child node. The variance parameter describes the dispersion 
level of the child node’s conditional probability distributions. Given 
these parameters, the CPT can be generated for further verification. If 
necessary, different parts of the CPT can also be generated using 
different weight expressions or values of the weights and the variance 
parameter. 

When ranked nodes are formed by discretizing continuous scales, 
there are various sources of complication regarding the use of RNM. 
First, if the discretizations are formed in ignorance of the functioning of 
RNM, all the weight expressions of RNM may be unable to portray the 
probabilistic relationship between the nodes [33]. To deal with this 
problem, a guideline for the construction of RNM-compatible dis-
cretizations is provided in [33]. RNM-compatible discretization means 
discretizing the continuous scales of the nodes into equal numbers of 
ordinal states in a coordinated manner that takes into account the 
functioning of RNM. Defining RNM-compatible discretizations for the 
nodes supports the discovery of suitable RNM parameters as well as the 
construction of sensible CPTs. However, the requirement to use the same 
number of states for all the nodes can be undesirable in some applica-
tions. Furthermore, the elicitation effort required from the expert to 
construct RNM-compatible discretizations increases with the number of 
discrete ordinal states to be defined for the nodes. Therefore, the number 
of states of the nodes is likely to stay small. These features limit the ease 
and level of detail by which the probabilistic relationship of the nodes 
can be represented and explored. Another challenge concerns a property 
of RNM: CPTs generated using fixed RNM parameters, but with 

alternative discretizations, generally contradict each other with regard 
to their probabilistic implications about the nodes. Therefore, if a CPT 
constructed with RNM is to be regenerated with alternative discretiza-
tions, the RNM parameters have to be elicited again. This property may 
confuse or be ignored by users of RNM. The additional elicitation effort 
also complicates the representation and exploration of the probabilistic 
relationship of the nodes. 

To resolve the above challenges, this paper presents two new dis-
cretization approaches concerning the application of RNM to continuous 
nodes. Both are based on the original idea that the probabilistic rela-
tionship between a child node and its parents is completely encoded by 
the RNM-compatible discretizations and the RNM parameters elicited 
from the domain expert. In both approaches, this encoding principle is 
utilized to allow the nodes to have alternative discretizations, which 
otherwise would lead to the aforementioned problems under the exist-
ing RNM practices. 

The first new approach is called the “static discretization approach”, 
where “static” means that the discretizations of the nodes remain un-
altered during the use of the BN. In this approach, initial RNM- 
compatible discretizations are first elicited from the expert with the 
existing discretization guideline [33]. Initial here refers to the fact that 
the nodes can be rediscretized at later steps of the approach. Yet, at this 
point, the RNM-compatible discretization leads to the nodes obtaining 
an equal number of ordinal states that partly define their probabilistic 
relationship. Next, the RNM parameters are elicited from the expert. To 
facilitate the elicitation, the expert can freely rediscretize the nodes. 
That is, the expert can redivide the continuous scales of the nodes into 
arbitrary and non-equal numbers of discretization intervals based on, e. 
g., the expert’s natural tendency to comprehend and describe the 
probabilistic relationship of the nodes. Once the RNM parameters are 
elicited, one can generate a CPT and use the BN with the discretizations 
selected by the expert for the parameter elicitation. However, it is also 
possible to assign for the nodes any other discretizations that may better 
serve the analyses to be carried out with the BN. No matter what dis-
cretizations are selected, the CPT generated with them represents a 
probabilistic relationship that is encoded by the initial RNM-compatible 
discretizations and the RNM parameters. The option to freely redis-
cretize the nodes both before and after the elicitation of RNM parame-
ters is possible because of this encoding principle. The rediscretization 
ability separates the static discretization approach from the present 
RNM practices. Like the existing practice [33], the static discretization 
approach takes into account the functioning of RNM and the related 
need for RNM-compatible discretizations. However, the new approach 
manages to do so without forcing one to operate only with a small and 
equal number of states for all the nodes. Furthermore, unlike with RNM 
at present, rediscretizing the nodes after the parameter elicitation does 
not lead to probabilistic inconsistencies between the original and the 
regenerated CPTs. Therefore, compared to the present practices, the 
static discretization approach eases the elicitation of RNM parameters 
from the expert and broadens the way RNM can be used to represent and 
explore probabilistic relationships between continuous quantities. 

In principle, the static discretization approach enables the estab-
lished probabilistic relationship of a child node and its parents to be 
represented through arbitrary dense discretizations. However, with high 
enough discretization densities or numbers of discretized nodes in the 
BN, the sizes of the generated CPTs may cause problems concerning the 
computer memory requirements for their storage or the conducting of 
probabilistic inference in the BN [19,35]. To mitigate this problem, the 
paper presents another new discretization approach, which combines 
the application of RNM and a dynamic discretization algorithm of Neil 
et al. [35]. In this “dynamic discretization approach”, the discretizations 
of the ranked nodes are not static but updated with the dynamic dis-
cretization algorithm whenever new evidence is entered into the BN 
during its use. The dynamic approach can be applied once the initial 
RNM-compatible discretizations and the RNM parameters have been 
elicited from the expert by means of the static approach. The 
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discretizations formed by the algorithm are not uniform, but denser in 
those areas of the nodes’ continuous scales in which the probability mass 
is more concentrated under the entered evidence. Therefore, if the use of 
the static approach causes a need to generate impractically large CPTs, 
the dynamic approach can provide a better means to depict the proba-
bilistic relationship of the nodes with the desired level of detail. For 
instance, the dynamic approach readily allows entering point-valued 
evidence into the nodes. Moreover, it enables accurate statistics on the 
nodes’ probability distributions, e.g., when the conditional mean values 
cover a wide scale and the conditional variances are small. The dynamic 
updating of the discretizations is possible because the nodes’ probabi-
listic relationship is encoded by the initial RNM-compatible discretiza-
tions and the RNM parameters. This is in contrast to the existing 
practices, which do not enable combining the use of RNM with the dy-
namic discretization algorithm. 

The paper is organized as follows. Section 2 provides an overview 
and comparison of existing methods that are complementary to RNM. 
Section 3 briefly explains the functioning of RNM and gives short de-
scriptions of the guidelines [33] for applying RNM to nodes with 
continuous scales. Section 4 presents the motivation, underlying prin-
ciple and application of the static discretization approach. Section 5 
contains a corresponding presentation on the dynamic discretization 
approach. Section 6 provides concluding remarks. Sections 3–5, use an 
example BN to demonstrate the discussed matters. 

2. Overview of parametric methods for constructing conditional 
probability tables 

The size of a CPT grows exponentially with the number of parent 
nodes. Therefore, if a child node with three parent nodes each have five 
states, the CPT of the child node already consists of 625 elements. 
Assessing dozens or hundreds of conditional probabilities of a CPT is 
often impossible for a domain expert, due to cognitive strain or lack of 
time. To mitigate this problem, several parametric methods have been 
developed to ease the construction of CPTs by expert elicitation. These 
methods allow constructing a CPT through expert-assessed parameters 
whose number is significantly smaller than the number of elements in 
the CPT. In the literature, these methods have also been referred to as 
parametric probability distributions [23], canonical models [36], ca-
nonical distributions [21], and filling-up methods [31,24]. In the 
following, existing parametric methods are discussed and compared to 
RNM. 

In the noisy-OR [36] and noisy-MAX [37,38] methods, the basic idea 
is that the parent nodes are individual causes for a common effect rep-
resented by the child node. In turn, the parameters elicited from the 
expert are CPT entries that indicate the abilities of the causes to bring 
about the effect individually. The remaining elements of the CPT are 
calculated with the assumption that, in the presence of several causes, 
each cause affects the child node independently of the others. Noisy-OR 
can handle only binary nodes whereas noisy-MAX is applicable to nodes 
with non-binary ordinal scales. According to [25], RNM enables a 
greater range of probabilistic relationships to be portrayed than does 
noisy-MAX. In addition, RNM has been shown to allow representing the 
explaining away property of binary variables more extensively than 
noisy-OR [32]. 

The EBBN method (Elicitation for Bayesian Belief Networks) [39], 
the weighted sum algorithm [40] and the Cain calculator [41] utilize 
interpolation of conditional probability distributions. In these methods, 
the expert first assesses the probability distributions of the child node for 
the so-called anchor combinations of states of the parent nodes. The 
other conditional probability distributions of the CPT are then derived 
by interpolating between the anchor distributions. The anchor state 
combinations and interpolation techniques used are specific to each 
method. Similarly to RNM, each of the methods involves the parent 
nodes receiving weights that reflect their strength of influence on the 
child node. On the other hand, unlike in RNM, the dispersion of the 

derived distributions is not user-controlled, but reflects those of the 
anchor distributions. 

The functional interpolation method [42] and the InterBeta method 
[43] also utilize the principle of interpolation to derive missing proba-
bility distributions of a CPT from method-specific anchor distributions 
assessed by the expert. However, in these methods, the interpolation 
does not directly focus on the probabilities of the anchor distributions. In 
the functional interpolation method, a normal distribution is fitted to 
each anchor distribution so that best-fit estimates of the mean and 
variance parameters are determined. The missing probability distribu-
tions of the CPT are formed through normal distributions whose mean 
and variance parameters are interpolated from those of the anchor dis-
tribution estimates. In the InterBeta method, the principle is similar 
except that Beta distributions are utilized instead of normal distribu-
tions. Furthermore, in the InterBeta method, the expert may assign 
weights to parent nodes, their states, or their state combinations. 
Increasing the weighting detail increases the elicitation effort of the 
expert. On the other hand, it enables portraying the probabilistic rela-
tionship of the nodes more accurately. In that regard, the use of the 
alternative weighting options of InterBeta is similar to the use of parti-
tioned weight expressions in RNM. 

A method presented by Røed et al. [44] is similar to RNM in the sense 
that the construction of a CPT is based on a functional relationship be-
tween the parents and the child node. Moreover, like in RNM, the par-
ents get weights reflecting their strengths of influence on the child, and a 
single parameter defines the dispersion of the probability distributions. 
However, whereas RNM provides four basic weight expressions to 
describe the probabilistic relationship of the nodes, the method of Røed 
et al. uses only one function. This function is similar to a weight 
expression of RNM called WMEAN, in which weighted averages are 
taken of the states of the parent nodes. Also, in a method suggested by 
Hassall et al. [45], the conditional probability distributions of the child 
node are calculated utilizing weighted averages of the parent states. 
However, unlike RNM, this method does not involve the expert evalu-
ating the dispersion of the distributions. Furthermore, for a child node 
with an odd number of states m, the middle state obtains the probability 
1/m for any combination of the parent states. Therefore, the CPTs 
generated with this method are likely to require more manual editing 
than CPTs generated with RNM. 

In the likelihood method [46], the idea is that in the absence of any 
information about the parent nodes, the child node has a so-called 
typical distribution that has been assessed by the expert. Different 
state combinations of the parent nodes then tend to move the probability 
distribution of the child node away from the typical distribution in 
systematic ways. The CPT is constructed by multiplying the typical 
distribution by likelihood terms consisting of weighting factors that the 
expert has selected for the states of the child node and the parent nodes. 
The presentation of the method in [46] does not include any detailed 
guideline for the elicitation of the weighting factors. Some instruction is 
provided in [47] along with a remark that the method becomes very 
complex if the child node has more than three states. On the other hand, 
with RNM, exact guidelines for the weight elicitation exist [33,34], and 
the number of parameters to be elicited does not increase with the 
number of states of the nodes. 

Chin et al. [48] utilize the Analytic Hierarchy Process (AHP) for the 
construction of a CPT. In their method, the expert performs pairwise 
comparisons of the probabilities of the states of the child node given the 
state of an individual parent node. The pairwise comparisons enable the 
calculation of probability distributions of the child node conditioned to 
single parent nodes. Then, the final distributions of the CPT are formed 
by taking products of the probability distributions conditional to single 
parents. Contrary to this method, the elicitation guidelines for RNM ask 
the expert to assess the mode of the child node for specified state com-
binations of all the parent nodes. Thereby, the elicitation for RNM allows 
the expert to consider the joint effect of the parent nodes on the child 
node in a clear way. 
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To get an idea of the elicitation effort of the methods discussed 
above, Table 1 presents the numbers of quantitative expert assessments 
that each of them requires when a child node has n parent nodes and all 
the nodes have m states. The table presents formulas that apply for any 
values of n and m as well as the numerical values that apply for the case 
n = 3 and m = 5. In this specific case of n = 3 and m = 5, the CPT of the 
child node consists of mn+1 = 625 elements and its direct assessment 
would require mn(m − 1) = 500 probabilities to be specified by an 
expert. Compared to this number, all the methods significantly reduce 
the number of quantitative assessments required from the expert. It 
should be noted that the Cain calculator does not actually provide a 
computational routine for the construction of the CPT when the child 
has more than three states [41]. Furthermore, regarding RNM and the 
InterBeta method, the numbers in Table 1 correspond to the ways they 
are used by default. As discussed above, both methods provide the op-
tion of specifying more parameters, thereby enabling the construction of 
CPTs describing a greater range of probabilistic relationships. 

As a further consideration, the method of Hassall et al., the InterBeta 
method, the weighted sum algorithm, and the likelihood method all 
require the expert to set weights of importance for the parent nodes or 
their states without providing any exact instructions. This shortcoming 
may complicate the elicitation procedure with these methods. On the 
other hand, exact guidelines of weight elicitation have been established 
for RNM concerning ranked nodes formed through discretized contin-
uous scales [33] and labeled scales [34]. The approach presented in [33] 
enables the determination of the weight expression and the weights of n 
parents with the expert estimating the mode of the child node on its 
continuous scale in 2n scenarios. In turn, the elicitation framework 
presented in [34] allows determining a feasible weight expression and a 
set of feasible weights once the expert has assessed the two most prob-
able states of the child node for 2n parent state combinations. Based on 
these considerations and the results in Table 1, RNM requires the least 
amount of elicitation effort from the expert for constructing CPTs. 

Besides the small number of parameters to be elicited, an advantage 
of RNM is that the alternative weight expressions help experts to un-
derstand and describe the probabilistic relationship between a child 
node and its parent nodes [25]. Furthermore, the easy deployment of 
RNM is supported by an implementation of the method in AgenaRisk 
software [49]. Of the other methods discussed, only noisy-OR and 
noisy-MAX are implemented in existing well-known BN software, such 
as GeNIe [50], Netica [51], and Hugin [52]. The likelihood method and 
the method of Hassall et al. have implementations available online [53, 
54]. However, these implementations are not linked to a wide range of 
functionalities of BN analysis, unlike the aforementioned software. 

To summarize, the methodological principle of RNM is comple-
mentary to those of other parametric methods discussed. The use of 
weight expressions, which is unique to RNM, provides both flexibility 
and cognitive support for the expert in describing the probabilistic 
relationship of the nodes. Furthermore, the small number of parameters 
to be elicited, the related elicitation guidelines, and the existing software 
implementation are qualities that promote and support effective use of 
RNM in applications. 

3. Ranked nodes method (RNM) 

This section outlines the technical principle of RNM as well as two 
guidelines concerning its application to nodes with continuous scales. 
The topics are covered here at a level of detail that is necessary in order 
to understand the contributions of this paper. More thorough de-
scriptions are found in [25,33,30]. 

3.1. Functioning of RNM 

The example BN presented in Fig. 1 consists of ranked nodes formed 
by discretizing continuous scales. The BN describes how the price of a 
machine and its weekly amount of use determine the time it takes before 
the machine requires thorough maintenance. The quantities are repre-
sented by the nodes Price, Weekly Usage, and Service Time. Suppose that 
an increasing price increases the service time of the machine, while an 
increasing amount of weekly usage shortens it. This type of monotonic 
direction of influence of the parent nodes on the child node is an un-
derlying assumption in RNM. 

The basic idea in the generation of a CPT is that for any combination 
of states of the parent nodes, the most probable state of the child node is 
defined by a general rule. Within the framework of this rule, the parent 
nodes can have non-equal strengths of influence on the child node. The 
rule is called a weight expression and it is selected by the expert. The 
strengths of the parent nodes are expressed through weights that are also 
elicited from the expert. In addition, the expert also assigns a variance 
parameter, which describes how dispersed around the mode the prob-
ability distribution of the child node is for given states of the parent 
nodes. 

The generation of the CPT of the child node is based on associating 
the states of the nodes with consecutive subintervals of the unit scale [0, 
1]. The subintervals, called state intervals, are of equal width and 
indicate the direction of influence of the parent nodes on the child node. 
The state intervals in Fig. 1 indicate the monotonic influence directions 
of Price and Weekly Usage on Service Time. 

By utilizing the state intervals, CPTs are generated according to the 

Table 1 
Numbers of quantitative expert assessments required in different parametric 
methods when a child node has n parent nodes and all the nodes have m states.  

Method Number of 
assessments 

Number of assessments when 
n = 3 and m = 5 

Hassall et al. [45] n 3 
RNM [25]a n + 1 4 

InterBeta [43]a 2(m − 1) + n 11 
Røed et al. [44] (m − 1)n 12 

Weighted sum algorithm  
[40] 

m2 − m + n 23 

EBBN [39] m2 − m + 2n 26 
Likelihood [46] (n + 2)m + 1 26 

Functional interpolation 
method [42] 

2n(m − 1) 32 

Noisy-MAX [37,38] n(m − 1)2 48 
Cain calculator [41]b n(m − 1)2 48 

Chin et al. [48] n(m2 − m) 60  

a The numbers of assessments correspond to default forms of use of the 
methods. 

b The method does not provide a computational routine for the construction of 
the CPT when the child node has more than three states, i.e., m > 3. Fig. 1. Example BN.  
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following principle. Let there be discrete parent nodes X1, …, Xn and a 
child node XC that are ranked nodes. Furthermore, let there be contin-
uous random variables χ1, …, χn defined on the unit scale [0, 1] and a 
random variable χC that depends on them according to a regression 
model 

χC = f (χ1,…, χn,w) + e, e ∼ N(0, σ2). (1)  

The regression function f(⋅) and the regression coefficients w are the 
weight expression and the weights elicited from the expert. The variance 
σ2 of the normally distributed error term e is the variance parameter. 
With xi and [αi, βi] denoting a given state and the associated state in-
terval of Xi, a CPT element P(XC = xC|X1 = x1, …, XN = xn) is calculated 
in RNM on the basis of Eq. (1) by 

P(XC = xC | X1 = x1,…,XN = xn)

= P(χC ∈ [αC, βC] | χ1 ∈ [α1, β1],…, χn ∈ [αn, βn], χC ∈ [0, 1]). (2)  

That is, knowing Xi to be in the state xi on the ordinal scale is equivalent 
to knowing χi to lie within the state interval [αi, βi] on the unit scale. 
Based on this analogy, Xi and χi can both be seen to represent the same 
continuous quantity through the ordinal scale and the unit scale, 
respectively. The calculation of Eq. (2) is realized in practice by taking 
equidistant sample points from the state intervals [αi, βi], i = 1, …, n, of 
the parent nodes and integrating normal distributions truncated to [0, 1] 
over the state interval [αC, βC] of the child node. The alternative weight 
expressions are discussed in more detail in [25], while the computa-
tional process as a whole is explained thoroughly in [30]. 

3.2. Guidelines for application of RNM to continuous nodes 

The application of RNM to nodes with continuous scales is elaborated 
in [33] with two elicitation guidelines. The first concerns discretizing 
the continuous scales compatibly with the functioning of RNM. The 
second is about determining a feasible weight expression and feasible 
weight values based on the RNM-compatible discretizations. 

3.2.1. Guideline for RNM-compatible discretization of continuous scales 
The first guideline stems from the following property of RNM con-

cerning a setting in which parent nodes and a child node are ranked 
nodes with the same number of states. 

Property 1. Let the CPT of the child node be generated with RNM 
using any weight expression and any values of the weights and the 
variance parameter. Then, for every combination of states of equal rank 
of the parent nodes, the CPT implies the mode of the child node to be the 
state with the same rank. 

Property 1 follows from the functional forms of the weight expres-
sions and the way all the states of a node are identified with equisized 
sub-intervals of [0, 1] in RNM. When RNM is applied to nodes with 
continuous scales, Property 1 should be taken into account. Therefore, 
the guideline instructs that the interval scales are to be discretized into 
an equal number of ordinal states in a specific manner. The resulting 
discretizations are said to be RNM-compatible. 

The guideline begins with the expert dividing the continuous scale of 
each node freely into m discretization intervals, e.g., by considering 
descriptive labels like Low, Medium, etc. Next, the expert is asked to 
consider one by one m + 1 scenarios in each of which the values of the 
parent nodes on their continuous scales correspond to the same 
boundary point of a state interval on the unit scale [0, 1]. For example, 
with the BN in Fig. 1, there are in total m + 1 =4 scenarios and in one of 
them, Price and Weekly Usage have the values €1700 and 30h, as they 
both are identified with the boundary point 2/3 on the unit scale. With 
each of the scenarios, the expert is asked whether the most probable 
value of the child node on its continuous scale is the value that matches 
the given boundary point of the parent nodes. Thus, with the example 
scenario, the expert would be asked whether the most probable value of 

Service Time is 73 months, which is identified with 2/3 on the unit scale. 
If there is any scenario in which the suggested mode of the child node 
does not match the expert’s view, the discretization intervals of one or 
more nodes are to be adjusted freely until the matter becomes resolved. 

Once the discretizations are carried out in the above manner, any 
RNM-generated CPT correctly indicates the mode of the child node in 
the specific scenarios in which all parent nodes are in a state of equal 
rank. This property of the RNM-compatible discretizations helps one to 
find a suitable weight expression and weights for the parent nodes later 
in the elicitation. On the other hand, discretizations formed in ignorance 
of the functioning of RNM may render the weight expressions infeasible 
for portraying the probabilistic relationship of the nodes. 

3.2.2. Guideline for elicitation of weight expression and weights 
Following the RNM-compatible discretization of the continuous 

nodes, the weight expression, weights, and variance parameter are to be 
elicited from the expert. A direct but potentially laborious way to do it is 
through trial and error. Trial and error is laborious because the CPT of 
the child node must be generated repeatedly with different RNM pa-
rameters until it reflects the probabilistic views of the expert well 
enough. Alternatively, a feasible weight expression and feasible weight 
values can be elicited indirectly with the guideline presented in [33]. 
Here, the expert assesses the mode of the child node on the continuous 
scale in specific scenarios in which the values of the parent nodes on 
their continuous scales are given. The assessments are then evaluated 
with regard to various feasibility conditions to determine the feasible 
weight expression and the feasible weight values. 

One key concept on which the guideline is based are piecewise linear 
mappings defined between the continuous and unit scales of the nodes in 
accordance with the RNM-compatible discretizations and the func-
tioning of RNM. The graphs in Fig. 2 represent such mappings for the 
nodes of the example BN in accordance with the discretizations dis-
played in Fig. 1. These types of piecewise linear mappings are a crucial 
element of the discretization approaches presented in this paper. They 
are utilized in the approaches even if RNM parameters could be elicited 
without the guideline described above. Note that the mappings are 
directly determined by the RNM-compatible discretizations. 

4. Static discretization approach 

The guidelines discussed briefly in Section 3.2 extend the application 
of RNM to nodes with continuous scales. Still, there remain further 
challenges that can complicate or limit the utilization of RNM with such 
nodes. This section begins with a discussion of those challenges and then 
moves on to present the new static discretization approach for resolving 
them. 

4.1. Motivation 

When RNM is applied to nodes with continuous scales, those scales 
need to be discretized to form ranked nodes with discrete ordinal scales. 
As noted in Section 3.2.1, if the discretizations are formed without 
considering the functioning of RNM, none of the weight expressions of 
RNM may seem to be feasible options for representing the probabilistic 
views of a domain expert about the nodes. This problem can be miti-
gated by following the guideline for RNM-compatible discretizations. 
However, the guideline requires the expert to define for the child node 
and its parents an equal number of states. Moreover, in order to define m 
states for the nodes, the expert must evaluate the mode of the child node 
on its continuous scale in m + 1 scenarios. These properties of the 
guideline may give rise to the following challenges. First, if the expert 
naturally perceives the continuous scales of the nodes through varying 
numbers of ordinal states, defining suitable discretizations may be 
difficult. For example, if the expert is used to considering one parent 
node through three states and another through seven, it is not neces-
sarily straightforward to define an equal number of states for them. 
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Second, the expert is likely to lack either the time or the cognitive re-
sources to define several states for the nodes. For instance, defining 
m = 10 ordinal states requires the mode of the child node to be evalu-
ated in m + 1 =11 scenarios. Because of the elicitation effort, the expert 
may instead prefer to define only m = 5 states for the nodes. Yet, the 
fewer number of states limits the precision of analyses that can be car-
ried out with the BN. Together, the shortcomings of the discretization 
guideline limit its ease of use and scope of application. Thereby, the 
scope of efficient use of RNM with regard to continuous nodes also re-
mains restricted. 

Another challenge concerns a specific property of RNM: the states of 
a ranked node are always associated with state intervals of equal width 
on the unit scale [0, 1]. By this property, when the nodes of the example 
BN are discretized as in Fig. 3 (a), the states [1200, 1400] and [30, 50] of 
Price and Weekly Usage are associated with the state intervals [0, 1/3] 
and [1/3, 2/3]. On the other hand, if the discretizations displayed in 
Fig. 3 (b) are used, the associated state intervals become [0, 1/4] and [1/ 
2, 3/4]. Because of this difference in the state intervals, a CPT generated 
for Service Time with fixed RNM parameters has different probabilistic 
implications depending on the discretizations used. As an illustration, 
Fig. 3 (a) and (b) display probability distributions obtained for Service 
Time when Price and Weekly Usage are in states [1200, 1400] and [30, 
50], respectively. In both cases, the CPT of Service Time is generated with 
a weight expression called WMAX in which the child node tends to 
follow any parent node that is in a state associated with large values on 
the unit scale [0, 1]. However, the strength of this tendency depends on 
the parent node in question. Now, the weights of Price and Weekly Usage 
are w1 = 1.0 and w2 = 5.0, respectively. Furthermore, the value of the 
variance parameter used is σ2 = 0.001. Despite the RNM parameters and 
the states of the parent nodes being the same, the probability 

distributions of Service Time are completely different from one another. 
The above example demonstrates that suitable values of RNM pa-

rameters are specific to selected discretizations. If the need arises to 
change the discretizations after the parameter elicitation, the elicitation 
has to be carried out again. This feature of RNM limits the flexibility by 
which the probabilistic relationship of the nodes can be represented and 
explored after the initial expert elicitation. It may also confuse or be 
ignored by the users of RNM if they do not understand the functioning of 
the method thoroughly. For instance, in a given BN application, one 
might like to carry out analyses using denser discretizations than those 
specified by a domain expert during the elicitation for RNM. In that case, 
it is straightforward to rediscretize the nodes and regenerate the CPTs 
using the original RNM parameters. However, it is likely that phenom-
ena of the kind demonstrated in Fig. 3 will then occur. If this is not 
understood, the results of the analyses carried out with the BN may turn 
out to be misleading. 

4.2. Underlying principle 

The static discretization approach is based on the novel idea that 
RNM-compatible discretizations and parameters of RNM completely 
encode the probabilistic relationship between a child node and its par-
ents. Through this idea, the approach provides a means to apply RNM to 
continuous nodes so that the challenges of the existing practices dis-
cussed in Section 4.1 are resolved. 

The underlying principle of the static discretization approach is as 
follows. Consider a child node XC and its parent nodes X1, …, Xn for 
which RNM-compatible discretizations have been elicited. Recall from 
Section 3.2.2 that the discretization of Xi implies a piecewise linear 
mapping hi between its continuous scale and the unit scale [0, 1]. 

Fig. 2. Piecewise linear mappings h1(x), h2(x), and hC(x) defined for Price, Weekly Usage, and Service Time according to the discretizations in Fig. 1. In each graph, x 
denotes the quantity on the x-axis. 

Fig. 3. Different versions of the conditional probability distribution P(ServiceTime | Price = [1200, 1400], WeeklyUsage = [30, 50]) obtained when using fixed RNM 
parameter values but alternative discretizations of parent nodes. 
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Suppose that the exact point value of node Xi on its continuous scale is 
known to be ai. In the elicitation guideline presented in Section 3.2.2, 
this knowledge is associated with knowing that the exact point value of 
variable χi of the regression model in Eq. (1) is hi(ai). By the same logic, 
knowing that the value of Xi on its continuous scale lies within interval 
[ai, bi] corresponds to knowing that χi lies within interval [hi(ai), hi(bi)] 
on the unit scale. Thus, it can be written  

Now, Eq. (3) establishes a way to construct a CPT for XC with arbitrary 
discretizations of the nodes Xi, i = 1, …, n, C. By letting [ai, bi] represent 
a discretization interval of node Xi, the CPT of XC can be calculated 
according to Eq. (3) by using the regression model of RNM in Eq. (1). The 
calculation of the right-hand side of Eq. (3) is carried out in practice with 
the same computational routine that is applied in RNM when calculating 
the right-hand side of Eq. (2) based on Eq. (1). 

In order to calculate the CPT of XC by Eq. (3), it is sufficient that one 
knows the piecewise linear mappings hi as well as the RNM parameters, 
i.e., the weight expression f, the weights w, and the variance parameter 
σ2 included in the regression model of Eq. (1). The piecewise linear 
mappings hi are defined by the initial RNM-compatible discretizations. 
Therefore, these discretizations and the RNM parameters completely 
encode the probabilistic relationship that any CPT consistent with Eq. 
(3) represents. The roles of these encoding factors in defining the 
probabilistic relationship are discussed in more detail in the appendix. 

The way RNM-compatible discretizations are used in the static dis-
cretization approach distinguishes it from the earlier elaboration [33] 
on applying RNM to continuous nodes. The differences between these 
two approaches are next clarified. Recall from Section 3.2 that the 
concept of RNM-compatible discretization is presented in [33] as a way 
to coordinate the discretization of nodes on the basis of Property 1. The 
idea is that by following the guideline in Section 3.2.1, one can form 
RNM-compatible discretizations that support the discovery of suitable 
RNM parameters and the construction of sensible CPTs. Yet, once the 
RNM-compatible discretizations are formed, the corresponding ordinal 
scales of the nodes are meant to be kept intact for the elicitation of the 
RNM parameters and the use of the BN [33]. The example in Fig. 3 

demonstrates how changing the discretizations can cause probabilistic 
inconsistencies with the BN. Thus, the nodes are bound to have the same 
number of states identified with equisized subintervals of the unit scale 
[0, 1]. Any desire to change the discretization of a single node prompts 
one to define new RNM-compatible discretizations for all the nodes, 
along with new RNM parameters. In the new static discretization 
approach, RNM-compatible discretizations are also initially formed for 

the nodes. However, from then on, these initial RNM-compatible dis-
cretizations serve as a basis for rediscretization of the nodes. The ability 
for this rediscretization follows directly from the novel principle that the 
initial RNM-compatible discretizations encode the nodes’ probabilistic 
relationship together with the RNM parameters. Through this principle, 
the nodes can be rediscretized independently of each other to non-equal 
numbers of states. The rediscretization ability can be utilized in the 
elicitation of RNM parameters and in any analyses that are to be carried 
out with the BN. Unlike previously in RNM, the states of a rediscretized 
single node do not necessarily correspond to equisized sub-intervals on 
[0, 1]. 

4.3. Application 

The construction of a BN with the static discretization approach is 
explained next. In what follows, it is assumed that the BN is constructed 
with a standard BN software and that an implementation of the CPT 
generation routine of RNM is available. 

The static discretization approach consists of six steps, illustrated in 
Fig. 4. Given a child node XC and parent nodes X1, …, Xn all measured on 
continuous scales (see Fig. 5 (a)), Step 1 of the approach is to insert an 
auxiliary node Y into the BN as depicted in Fig. 5 (b). The node is needed 
to conduct computation of the conditional probabilities of XC according 
to Eq. (3) through the basic CPT generation routine of RNM. The 
auxiliary node is used only during the construction of the BN and can be 
removed before the actual use of the BN. 

In Step 2, the expert defines initial RNM-compatible discretizations 
for the nodes Xi, i = 1, …, n, C, according to the guideline presented in 
Section 3.2.1. The resulting discretization intervals are then set to be the 

Fig. 4. Steps of the static discretization approach and the dynamic discretization approach. The optional steps are highlighted in grey.  

P(XC = [aC, bC] | X1 = [a1, b1],…,Xn = [an, bn])

= P(χC ∈ [hC(aC), hC(bC)] | χ1 ∈ [h1(a1), h1(b1)],…, χn ∈ [hn(an), hn(bn)], χC ∈ [0, 1]). (3)   
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states of Xi. In turn, the states of Y are defined as the state intervals of 
equal width on the unit scale [0, 1] that are associated with the states of 
XC in RNM. Referring to Section 3.2.2, the initial RNM-compatible dis-
cretizations establish piecewise linear mappings between the continuous 
and unit scales of the nodes Xi. These mappings are utilized later in the 
approach. 

Step 3 is optional rediscretization of the nodes for the elicitation of 
RNM parameters. At least the elicitation of the variance parameter re-
quires a trial and error procedure, in which the expert has to evaluate 
CPTs generated with alternative parameter values. Therefore, it is 
beneficial if the states of the nodes correspond to the discretizations 
through which the expert naturally perceives the nodes’ probabilistic 
relationship. To this end, Step 3 provides the expert the option to freely 
rediscretize nodes Xi into node-specific numbers of consecutive dis-
cretization intervals, which can be of varying widths. If the discretiza-
tion of XC is changed, the discretization of Y is to be updated 
accordingly. For any discretization interval [aC, bC] of XC, Y should have 
a corresponding discretization interval of the form [hC(aC), hC(bC)]. 

Step 4 is the elicitation of RNM parameters from the expert and the 
construction of CPTs for the nodes Y and XC. It starts with the con-
struction of the CPT of XC according to 

P(XC = [aC, bC] | Y = [hC(aC), hC(bC)]) = 1, (4)  

which reflects a deterministic relationship Y = hC(XC) concerning the 
continuous scales of the nodes. The elicitation of the RNM parameters is 
linked to the construction of the CPT of Y. One way to elicit the RNM 
parameters is through trial and error. This involves the expert reviewing 
probability distributions P(XC | X1 = [a1, b1], …, Xn = [an, bn]) of in-
terest generated with different RNM parameters until the expert is 
satisfied. With the auxiliary node Y included in the BN, the expert’s 
evaluation of a distribution P(XC | X1 = [a1, b1], …, Xn = [an, bn]) is 
performed as follows. First, the desired evidence is entered into the 
nodes X1, …, Xn. Next, the CPT of Y is generated with selected RNM 
parameters in accordance with  

where [ai, bi] is a discretization interval of node Xi. The right-hand side 
of the equation is computed in practice with the CPT generation routine 
of RNM. The expert then reviews the marginal probability distribution of 

XC updated in the BN based on the new CPT of Y. If necessary, the RNM 
parameters are adjusted, the CPT of Y is regenerated, and the marginal 
distribution of XC is reviewed again. 

Instead of eliciting RNM parameters by trial and error alone, the 
guideline in Section 3.2.2 can also be utilized to determine a suitable 
weight expression and weights. However, the use of the guideline is not 
mandatory in the application of the static discretization approach. 

Step 5 is optional rediscretization of the nodes for the use of the BN. 
After Step 4, the probabilistic relationship between XC and X1, …, Xn has 
become fully established. In this regard, the BN can already be used to 
conduct probabilistic analyses with the nodes by using their present 
discretizations. However, if these discretizations are not considered 
ideal for the desired analyses, they can be updated to any others in Step 
5. If the discretizations of X1, …, Xn, XC are altered at this point, the rest 
of the BN is upgraded as follows. First, the discretization of Y is updated 
to correspond to that of XC in the same manner as in Step 3. Next, the 
CPT of Y is regenerated as per Eq. (5). 

Step 6 concerns returning the BN to its original structure, as pre-
sented in Fig. 5 (a), without auxiliary node Y. Before the removal of Y, its 
CPT is put aside. This CPT is then set to be the CPT of XC. The resulting 
CPT portrays the probabilistic relationship that the initial RNM- 
compatible discretizations and the RNM parameters define between XC 
and X1, …, Xn. 

4.4. Illustrative example 

The use of the static discretization approach is demonstrated with the 
example BN in Fig. 1. The demonstration is carried out using AgenaRisk 
5.0, which includes an implementation of RNM. 

Fig. 6 (a) displays the auxiliary node Y attached to the original nodes 
Price (X1), Weekly Usage (X2), and Service Time (XC) according to Step 1 of 
the approach. Furthermore, the states of Xi shown in the figure are the 
RNM-compatible discretizations elicited from the expert in Step 2. The 
associated state intervals are those in Fig. 1, whereas the piecewise 
linear mappings hi, defined by the discretizations, are presented in 

Fig. 2. The states of Y correspond to the state intervals of XC. No specific 
information about the probability distributions of Xi has yet been stated. 
This is reflected by all the nodes having uniform distributions. 

Instead of the discretizations in Fig. 6 (a), the expert finds it easier to 

Fig. 5. (a) BN consisting of parent nodes X1, …, Xn and a child node XC with continuous scales. (b) A modified BN with an auxiliary node Y used in the static 
discretization approach. 

P(Y = [hC(aC), hC(bC)] | X1 = [a1, b1],…,Xn = [an, bn])

= P(χC ∈ [hC(aC), hC(bC)] | χ1 ∈ [h1(a1), h1(b1)],…, χn ∈ [hn(an), hn(bn)], χC ∈ [0, 1]), (5)   
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Fig. 6. AgenaRisk implementation for applying the static discretization approach to the example BN. In (a), the nodes have initial RNM-compatible discretizations 
and uniform probability distributions. In (b), updated discretizations used in the elicitation of RNM parameters, and the evidence X1 = [1200, 1400] and X2 = [40, 
50] inserted after the construction of CPTs of Y and XC. In (c), final discretizations for the use of the BN, and the evidence X1 = [1300, 1400] and X2 = [40, 45] 
inserted after updating the CPTs. In (d), the BN after the removal of the auxiliary node Y with its CPT copied to XC. 
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consider the probabilistic relationship of the nodes so that discretization 
intervals of widths 10 hours and 24 months are applied with Weekly 
Usage and Service Time, respectively. Therefore, the optional Step 3 
(rediscretizing the nodes for the elicitation of RNM parameters) is uti-
lized (see Fig. 6 (b)). The discretization of Y is also updated by using the 
function hC depicted in Fig. 2 (c). Its new discretization corresponds to 
mapping the discretization intervals of XC into [0, 1] by hC. 

In Step 4, a suitable weight expression and weights of the parent 
nodes are elicited by utilizing the guideline discussed in Section 3.2. This 
helps to reduce the search of RNM parameters by trial and error. The 
guideline requires the expert to evaluate the mode of Service Time in the 
two scenarios E1 and E2 that are defined by the point values of Price and 
Weekly Usage presented in Table 2. The example mode assessments that 
are shown in the table imply that WMAX is a feasible weight expression, 
with w1 = 1.0 and w2 = 5.0 being the weights of Price and Weekly Usage, 
respectively. 

The variance parameter is determined by having the expert try 
different values and review the corresponding CPTs. Here, the state 
combination (Price = [1200, 1400], Weekly Usage = [40, 50]) is among 
those that the expert wants to consider. Fig. 6 (b) illustrates the prob-
ability distribution of Service Time obtained for this state combination 
when the CPT of XC is defined in line with Eq. (4), and the CPT of Y is 
generated according to Eq. (5) with the variance parameter σ2 = 0.001. 
This value is selected by the expert. 

Suppose that for analyses to be carried out with the BN, the dis-
cretizations in Fig. 6 (b) are deemed insufficiently dense. In that case, 
the optional Step 5 (rediscretizing the nodes for the use of the BN) is 
applied. Fig. 6 (c) displays the nodes Price, Weekly Usage, and Service 
Time rediscretized to uniform precisions of 100 euros, 5 hours, and 12 
months, respectively. The states of Y are again the intervals that are 
obtained when the discretization intervals of XC are mapped onto [0, 1] 
with hC. The figure presents the probability distribution of Service Time 
when Price and Weekly Usage are fixed to the states [1300, 1400] and 
[40, 45]. 

Comparison of Fig. 6 (b) and (c) indicates how the denser dis-
cretizations allow portraying the probabilistic relationship of the nodes 
in greater detail. First, with the denser discretization of Service Time in 
Fig. 6 (c), one obtains more detailed information of the dispersion of the 
probability mass over the continuous scale than what is obtained in 
Fig. 6 (b). Second, the denser discretization enables the entering of more 
detailed evidence into the BN. For example, suppose one knows that the 
price and weekly usage of a machine are €1350 and 42 hours, respec-
tively. In Fig. 6 (b), this knowledge is expressed with the evidence 
Price = [1200, 1400] and Weekly Usage = [40, 50] entered into the BN. 
On the other hand, in Fig. 6 (c), the corresponding evidence is Price =
[1300, 1400] and Weekly Usage = [40, 45]. The more precise evidence 
in Fig. 6 (c) leads to a new insight about the probability distribution of 
Service Time. For instance, while the probability that the service time 
stays below 25 months is about 30% in Fig. 6 (b), it is less than 2% in 
Fig. 6 (c). 

Fig. 6 (d) displays the example BN after Step 6, i.e., back in the 
original structure without the auxiliary node Y. Here, the CPT of Service 
Time has been defined to be the same as the CPT of Y in Fig. 6 (c). 
Therefore, the probability distribution of Service Time in Fig. 6 (d) cor-
responds to the probability distributions of both Y and Service Time in 
Fig. 6 (c). 

To finish the demonstration, Fig. 7 displays the BN in Fig. 6 (d) next 
to a version where the nodes have alternative final discretizations, but 
where the CPT of Service Time is constructed with the same RNM pa-
rameters as before. Comparison of Fig. 7 (a) and (b) indicates that 
though the discretizations have changed, the probability distribution of 
Service Time for the given states of Price and Weekly Usage remains the 
same. The corresponding phenomenon does not occur when using RNM 
in its basic form (see Fig. 3). The consistency in the nodes’ probabilistic 
behavior between Fig. 7 (a) and (b) is an effect of using the piecewise 
linear mappings hi in the CPT generation. For example, in the CPT 
generation equation (3), the discretization interval [1300, 1400] of Price 
is identified with the interval [h1(1300), h1(1400)] = [1/6, 1/3] of the 
unit scale. This connection holds regardless of the other discretization 
intervals of Price. 

5. Dynamic discretization approach 

The dynamic discretization approach enables representing probabi-
listic relationships established with RNM with discretizations that up-
date automatically during the use of the BN. Like the static discretization 

Table 2 
Elicitation scenarios and mode assessments for determining feasible weight 
expression and weights.  

Elicitation scenario Price (€) Weekly usage (h) Mode of service time (mo) 

E1 2100 80 49 
E2 1200 20 97  

Fig. 7. Conditional probability distribution P(ServiceTime | Price = [1300, 1400], WeeklyUsage = [40, 45]) generated with fixed RNM parameters stays intact 
despite changes in discretizations of the parent nodes. 
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approach, also this creative way of using RNM is based on the principle 
that the nodes’ probabilistic relationship is encoded together by the 
initial RNM-compatible discretizations and the RNM parameters. The 
two approaches are complementary to each other. The static approach 
enables the application of RNM to continuous nodes through freely 
selected discretizations. Furthermore, the approach takes into account 
the concept of RNM-compatibility in the generation of CPTs. However, 
increasing the granularity of the discretizations increases the sizes of the 
CPTs. This may cause problems concerning the computer memory re-
quirements for storing the CPTs or conducting probabilistic inference in 
the BN [19,35]. In the dynamic approach, the continuous scales of the 
nodes are discretized non-uniformly based on the evidence entered into 
the BN. The granularity is always higher at areas of high probability on 
the nodes’ continuous scales. This helps to portray their probability 
distributions accurately without the need for dense, uniform static dis-
cretizations. For example, suppose that the mean of a child on its 
continuous scale varies a lot depending on the states of the parent nodes. 
Then, a need for accurate statistics concerning the tails of its distribution 
may require impractically dense static discretizations. In such cases, the 
dynamic approach provides a means to get the statistics. The matter is 
demonstrated in Section 5.3. 

5.1. Underlying principle 

The dynamic discretization approach combines the uses of RNM and 
a dynamic discretization algorithm of Neil et al. [35]. In the algorithm, 
continuous nodes of a BN are discretized based on their probability 
distributions. A brief outline of the algorithm is provided below. The 
principle concerning its utilization with RNM is explained thereafter. 

5.1.1. Dynamic discretization algorithm 
The dynamic discretization algorithm is designed for discretizing 

continuous nodes in hybrid BNs that contain both discrete and contin-
uous nodes. Its methodology has not been linked to RNM in the existing 
literature. The idea is that whenever new evidence is entered into the 
BN, the algorithm rediscretizes the continuous nodes. The rediscretiza-
tion is carried out iteratively based on the probability distributions that 
the evidence imposes on the nodes. 

Starting with some initial discretizations, the iteration rounds in the 
algorithm proceed as follows. First, CPTs of child nodes are determined 
based on the current discretizations and on the functional relationships 
defined between them and their parent nodes. After that, discrete mar-
ginal probability distributions of all nodes are computed in accordance 
with the evidence entered into the BN. On the basis of these distribu-
tions, entropy error values over the discretization intervals are calcu-
lated for all the nodes. With each node, the discretization interval with 
the largest entropy error is then split in two while consecutive dis-
cretization intervals with zero entropy errors are merged together. After 
this, the algorithm continues to the next iteration round. The redis-
cretization of a given node stops when a convergence threshold or the 
maximum number of iteration rounds is reached. 

The algorithm enables entering point-valued evidence about the 
continuous nodes into the BN. If a point value x is assigned to a 
continuous node X, the algorithm divides the continuous scale [a, b] of X 
into intervals [a, x − δx], [x − δx, x + δx], and [x + δx, b], where δx 
represents a selected tolerance bound on x. During the course of the 
algorithm, this discretization of X is kept fixed and the interval [x − δx, 
x + δx] is given 100% probability whenever marginal probability dis-
tributions of other nodes are computed. 

While the discretizations provided by the algorithm are not uniform, 
they are, for any evidence entered into the BN, always denser in the high 
probability areas of the continuous scales. Therefore, compared to uni-
form static discretizations, the algorithm can produce good discrete 
approximations of continuous distributions with a smaller number of 
discretization intervals. In turn, the smaller number of discretization 
intervals used leads to smaller CPTs, which require less computer 

memory for their storage or for the conducting of probabilistic inference 
in the BN. Naturally, the need to rerun the algorithm whenever new 
evidence is entered into the BN is a source of computational burden that 
is absent when using static discretizations. In the algorithm, adjusting 
the convergence threshold is a means to control the trade-off between 
the accuracy reached with the discretizations and the computational 
burden. For a more thorough presentation of the algorithm, see [19,35, 
55,56]. The algorithm is implemented in AgenaRisk software [49]. 

5.1.2. Use of RNM with dynamic discretization algorithm 
The basis for combining RNM with the dynamic discretization al-

gorithm is that a probabilistic relationship between parent nodes X1, …, 
Xn and a child node XC has been established according to Steps 1–4 of the 
static discretization approach (see Fig. 4). In other words, the relation-
ship has been encoded by the initial RNM-compatible discretizations 
and the RNM parameters selected by the expert. Recall that in the static 
approach, this property enables one to generate CPTs representing the 
relationship with any assigned discretizations of the nodes. In the dy-
namic approach, the same property is utilized to discretize the nodes 
with the dynamic discretization algorithm. 

Provided that continuous probability distributions are defined for 
the parent nodes, the nodes can be discretized with the algorithm as 
follows. Let [ai, bi] denote a discretization interval of Xi on a specific 
iteration round of the algorithm. Then, the conditional probability P 
(XC = [aC, bC] | X1 = [a1, b1], …, Xn = [an, bn]) for the CPT of XC on that 
round is generated with RNM according to Eq. (3). This way, once the 
execution of the algorithm terminates, the CPT of XC over its new dis-
cretization intervals depicts the probabilistic relationship encoded by 
the initial RNM-compatible discretizations and the RNM parameters. 

5.2. Application 

The application of the dynamic discretization approach is explained 
next. The description concerns a setting in which a BN is constructed 
with a software that includes implementations of the dynamic dis-
cretization algorithm and the RNM routine. 

The dynamic discretization approach consists of the six steps illus-
trated in Fig. 4. As mentioned above, Steps 1–4 are the same as in the 
static discretization approach. In Step 5, continuous probability distri-
butions are assigned to the nodes X1, …, Xn. These can be normal dis-
tributions or (possibly piecewise) uniform distributions decided by an 
expert or estimated from the data. In Step 6, the dependencies of XC and 
Y on their parent nodes are defined with functional relationships. The 
relationship of XC and Y is 

XC = h− 1
C (Y), (6)  

where h− 1
C is the inverse piecewise linear mapping of hC. For Y and X1, 

…, Xn, the relationship is 

Y ∼ TNormal(μ, σ2, 0, 1), μ = f (h1(X1),…, hn(Xn),w), (7)  

where TNormal(μ, σ2, a, b) denotes a normal distribution with mean μ 
and variance σ2 truncated to the interval [a, b]. 

After Step 6, the BN can be used by applying the dynamic dis-
cretization algorithm. Through the functional relationships defined in 
Step 6, the CPTs of XC and Y are generated in accordance with Eqs. (4) 
and (5) during the execution of the algorithm. Any point-valued evi-
dence entered into the nodes Xi is handled as described in Section 5.1.1. 
Unlike in the static discretization approach, the auxiliary node Y now 
remains in the BN. However, its role is purely computational. 

5.3. Illustrative example 

The dynamic discretization approach is demonstrated with the 
example BN in Fig. 1 and AgenaRisk 5.0. The demonstration begins from 
the point that the probabilistic relationship between Price, Weekly Usage, 
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and Service Time has been established with the static discretization 
approach as described in Section 4.4. This relationship is encoded by the 
initial RNM-compatible discretizations shown in Fig. 6 (a) and the RNM 
parameters f = WMAX, w1 = 1.0, w2 = 5.0, and σ2 = 0.001. 

The earlier application of the static approach means that Steps 1–4 of 
the dynamic approach have already been carried out. In order to pro-
ceed with the dynamic approach, the auxiliary node Y displayed in Fig. 6 
(a)–(c) is first returned to the BN. This is followed by Step 5 in which 
Price (X1) and Weekly Usage (X2) are estimated to follow doubly trun-
cated normal distributions TNormal(μ = 1600, σ2 = 90,000, 1200, 2100) 
and TNormal(μ = 40, σ2 = 100, 20, 80), respectively. Next, in Step 6, 

functional relationships are established between the nodes. Referring to 
Eq. (6) and the mapping hC depicted in Fig. 2 (c), Service Time (XC) and Y 
get the functional relationship 

XC = h− 1
C (Y) =

{
72 ∗ Y + 1, Y ∈ [0, 1/3]

144 ∗ Y − 23, Y ∈ (1/3, 1] . (8)  

In turn, by Eq. (7), the functional relationship established between Y and 
its parent nodes Price (X1) and Weekly Usage (X2) is 

Y ∼ TNormal(μ, σ2 = 0.001, 0, 1),
μ = WMAX(h1(X1), h2(X2),w1 = 1.0,w2 = 5.0), (9) 

Fig. 8. In (a) and (b), AgenaRisk implementation for applying the dynamic discretization approach to the example BN. In (a), the BN is without evidence and in (b), 
with the point-valued evidence X1 = 1350 and X2 = 70. In (c) and (d), corresponding BNs with all the nodes having 10 and 50 equisized static discretization intervals, 
respectively. In (c), the BN is with the evidence X1 = [1290, 1380] and X2 = [68, 74]. In (d), the evidence is X1 = [1344, 1362] and X2 = [69.2, 70.4]. 
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where 

WMAX(x1, x2,w1,w2) = max
{

w1 ∗ x1 + x2

w1 + 1
,
w2 ∗ x2 + x1

w2 + 1

}

(10)  

is the functional form of the weight expression WMAX. The piecewise 
linear mappings h1 and h2 depicted in Fig. 2 (a) and (b) are 

h1(x) =

⎧
⎨

⎩

(1/600)x − 2, x ∈ [1200, 1400]
(1/900)x − 11/9, x ∈ (1400, 1700]
(1/1200)x − 3/4, x ∈ (1700, 2100]

, (11)  

h2(x) =

⎧
⎨

⎩

− (1/30)x + 5/3, x ∈ [20, 30]
− (1/60)x + 7/6, x ∈ (30, 50]
− (1/90)x + 8/9, x ∈ (50, 80]

. (12) 

Fig. 8 (a) displays the modified example BN with the auxiliary node Y 
when the dynamic discretization algorithm has been run with no evi-
dence in the BN. The initially undivided continuous scales of the nodes 
have been discretized with 10 iteration rounds of the algorithm. The use 
of the algorithm is reflected by non-uniform widths of the discretization 
intervals. In Fig. 8 (b), point-valued evidence X1 = 1350 and X2 = 70 has 
been incorporated, and the discretizations and the probability distri-
butions have been updated by another run of the algorithm. The per-
centage tolerance bound used for the evidence is 0.1% whereby the 
discretization intervals of Price and Weekly Usage that get a probability 
of 100% are [1348.65, 1351.35] and [69.93, 70.07], respectively. This 
evidence is pointed out by single probability peaks on their continuous 
scales in Fig. 8 (b). For the nodes Y and XC, the part of the probability 
distribution displayed is the segment between the 1st and 99th per-
centiles. Thus, the majority of the discretization intervals of these nodes 
is concentrated to a much narrower region than in Fig. 8 (a). 

To get a concrete sense of the benefit obtained with the dynamic 
discretization approach, Fig. 8 (c) and (d) display BNs corresponding to 
that in Fig. 8 (b) but constructed with the static discretization approach. 
In Fig. 8 (c), the nodes X1, X2, and XC each have 10 discretization in-
tervals of equal width. In turn, they all have 50 equisized discretization 
intervals in Fig. 8 (d). In both figures, the parent nodes are fixed to the 
states that best correspond to the point-valued evidence X1 = 1350 and 
X2 = 70 in Fig. 8 (b). The evidence in Fig. 8 (c) is X1 = [1290, 1380] and 
X2 = [68, 74] whereas X1 = [1344, 1362] and X2 = [69.2, 70.4] are 
used as evidence in Fig. 8 (d). The probability distributions of XC are 
again displayed so that the x-axes cover the portion between the 1st and 
99th percentiles of the distributions. There is evident variation in the 
accuracy by which the probability distribution of Service Time is por-
trayed in Fig. 8 (b)–(d). Whereas the displayed range of the continuous 
scale consists of 2 discretization intervals in Fig. 8 (c), the numbers of 
intervals in Fig. 8 (b) and (d) are 7 and 5, respectively. Thus, the BN in 
Fig. 8 (c) provides less insight about the probability distribution of XC 
than the other two. On the other hand, the accuracy of the probability 
distributions in Fig. 8 (b) and (d) seems comparable. However, it should 
be noted that the result in Fig. 8 (d) is obtained with a total number of 50 
discretization intervals, whereas the corresponding number in Fig. 8 (b) 
is only 13. In this regard, the dynamic approach reaches the same ac-
curacy as the static approach with a considerably smaller overall dis-
cretization density. 

The accuracy of the results is also reflected by the statistics of the 
probability distributions of XC presented in Table 3. Especially the 
variance and the percentile values concerning Fig. 8 (c) are different 
from those of Fig. 8 (b) and (d). The static approach with 10 dis-
cretization intervals (Fig. 8 (c)) results in the variance, the 1st, and the 
5th percentile values being 35.8, 1.2, and 2.1, respectively. The corre-
sponding values with the dynamic approach (Fig. 8 (b)) are 6.1, 8.1, and 
10.1, whereas the static approach with 50 intervals (Fig. 8 (d)) produces 
the values 5.9, 8.4, and 10.2. Thus, if one needs accurate statistics on the 
probabilistic relationship of the nodes, the dynamic approach provides 
them with a lot smaller discretization density than the static approach. 

The example demonstrates that with a small number of dynamically 
generated intervals, the dynamic discretization approach allows por-
traying probabilistic relationships of ranked nodes as accurately as the 
static approach with a larger number of intervals. This property is useful 
if the sizes of CPTs resulting from static discretizations start to hamper 
the efficient use of the BN [35,19]. For instance, the 1st and 5th 
percentile values reported in Table 3 are common value at risk (VaR) 
measures calculated in risk analysis [19,57]. In a more complicated BN, 
the static discretizations required to calculate VaR values accurately 
enough might result in impractically large CPTs. In such a case, the 
dynamic discretization approach would provide the only way to solve 
their values. It is also worth noting that with more complicated BNs, 
reaching accurate estimates of, e.g., mean and median values of node 
probability distributions may require impractically dense static dis-
cretizations. For example, consider that the machine described with the 
example BN had different modes of use corresponding to very different 
lengths of service time. Depending on the mode of use, variances in the 
service time could then be very small compared to the overall width of 
its measurement scale. This type of situation would require dense static 
discretizations to accurately portray the statistics of the conditional 
probability distributions of the service time. Yet, the dynamic dis-
cretization approach could always provide accurate statistics with a 
small number of dynamically generated discretization intervals. 

6. Conclusion 

This paper discussed the following challenges related to the dis-
cretization of continuous nodes when their probabilistic relationships 
are portrayed with CPTs constructed through expert elicitation using 
RNM. First, ignorance of the functioning of RNM can lead to dis-
cretizations for which it is impossible to generate sensible CPTs. Second, 
an existing guideline for forming RNM-compatible discretizations re-
quires defining an equal number of ordinal states for all the nodes. 
Moreover, the guideline is laborious for constructing dense discretiza-
tions. Third, changing the discretizations after the CPT construction 
demands re-elicitation of the RNM parameters in order to regenerate the 
CPT. Otherwise, the probabilistic implications of the new CPT become 
inconsistent with the original one. 

To deal with the challenges, the paper presented two new dis-
cretization approaches, referred to as “static” and “dynamic”, for the 
application of RNM. In the static one, the desired discretizations of the 
nodes are selected during the construction of the BN, and the dis-
cretizations are not changed during the use of the BN. In the dynamic 
one, discretizations are determined by a dynamic discretization algo-
rithm. The algorithm updates the discretizations during the use of the 
BN based on the entered evidence and the probabilistic relationship of 
the nodes established while constructing the BN. In both approaches, the 
functioning of RNM is taken into account while still allowing the nodes 
to have unequal numbers of ordinal states. The novel underlying prin-
ciple is that the nodes’ probabilistic relationship is defined by both the 
initial RNM-compatible discretizations and the RNM parameters elicited 
from a domain expert. This relationship is portrayed consistently by 
CPTs generated with RNM, independent of the discretizations used. 
Besides presenting the technical idea behind the approaches, the paper 
explained and demonstrated how they are applied and implemented 

Table 3 
Statistics of probability distributions of XC in Fig. 8 (b)–(d).  

Statistic 
Dynamic disc. Static disc. Static disc. 

10 rounds 10 intervals 50 intervals 
Fig. 8 (b) Fig. 8 (c) Fig. 8 (d) 

Mean 14.0 12.6 14.3 
Median 14.0 12.2 14.3 

Variance 6.1 35.8 5.9 
1st percentile 8.1 1.2 8.4 
5th percentile 10.1 2.1 10.2  
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with a suitable standard BN software. 
The new approaches have several beneficial features for easy and 

diverse application of RNM to continuous nodes. The initial RNM- 
compatible discretizations form the basis for the construction of sensi-
ble CPTs and require that all the nodes get the same number of ordinal 
states. However, after assessing the initial discretizations, the expert can 
assign for the nodes any discretizations which, in the expert’s view, most 
naturally reflect the nodes’ probabilistic relationship. This feature fa-
cilitates the determination of suitable RNM parameters. In the static 
discretization approach, another point for optional rediscretization is 
provided after the parameter elicitation. Here, the discretizations used 
in the elicitation can be replaced with any others that might be 
considered more adequate for the analyses to be carried out with the BN. 
The use of the BN is therefore not restricted to the discretizations 
preferred by the expert in the elicitation. Another beneficial feature 
concerns nodes with more than one child or that themselves are both a 
parent and a child. With these nodes, the initial RNM-compatible dis-
cretizations and the discretizations used in the parameter elicitation can 
be selected separately for each of their roles. This provides additional 
flexibility to the defining of the probabilistic relationships. It is also 
helpful if, e.g., different experts are used to construct different CPTs or 
many experts are involved in the construction of one. If the discretiza-
tions desired in the static approach cause computational memory 
problems, the dynamic approach enables the probabilistic relationship 
of the nodes to be explored with the desired level of detail. The dynamic 
approach is useful especially when one would like to enter point-valued 
evidence into the BN or explore the precise statistics of the probability 

distributions. However, if there is no need for such analyses, the use of 
the static approach is recommendable as it spares one the computational 
effort of recurring rediscretization of the nodes. All of these beneficial 
features of the new approaches stem from the principle that the nodes’ 
probabilistic relationship is defined by both the initial RNM-compatible 
discretizations and the RNM parameters. Because of the novelty of this 
principle, these features are lacking from the existing practices of 
applying RNM to continuous nodes. 

The following themes have been identified as avenues for further 
research. First, it could be experimentally explored how the common 
number of states defined for nodes with initial RNM-compatible dis-
cretizations affects CPTs constructed with the new discretization ap-
proaches. Based on the results, recommendations could be established 
about the suitable number of initial states. Another future theme con-
cerns determining initial RNM-compatible discretizations and RNM 
parameters by data fitting. One aspect of this theme would be to 
compare how CPTs constructed by using the new approaches and data 
fitting compare to CPTs estimated from the same data through other 
means. A third future topic is a detailed comparison of computational 
properties of the static and dynamic discretization approaches. This 
could reveal circumstances additional to simple computer memory 
shortage under which it would be better to use the dynamic approach 
instead of the static one. However, in an application, it is straightfor-
ward to check this by trying which one of the approaches is more 
befitting. In that regard, the presentation of the approaches given in this 
paper already serves well for their deployment in decision support sys-
tems utilizing BNs.  

Appendix 

The appendix discusses the roles of initial RNM-compatible discretizations and RNM parameters in defining the probabilistic relationship of nodes 
in the discretization approaches presented in the paper. 

To explain the role of the initial RNM-compatible discretizations, consider parent nodes X1, …, Xn and a child node XC for which those dis-
cretizations corresponding to m ordinal states have been determined. The discretization intervals of the nodes are associated with state intervals of the 
form [k− 1

m , k
m], k = 1, …, m on unit scales. Furthermore, the discretization of node Xi defines a piecewise linear mapping hi between its continuous and 

unit scales. Consider then the point values a1, …, an of the parent nodes such that hi(ai) = α for all i = 1, …, n. Then, independent of the RNM pa-
rameters used, the associated mode of the child node on its continuous scale is the value aC given by aC = h− 1

C (α) [33]. 
By referring to the above result, the role of the initial RNM-compatible discretizations in defining the probabilistic relationship of the nodes can be 

characterized as follows. The boundary points of the discretization intervals are benchmarks regarding which the expert has verified that when the 
parent nodes Xi, i = 1, …, n, have values ai = h− 1

i (k
m) on their continuous scales, the mode of the child node XC on its continuous scale is aC = h− 1

C (k
m), 

with any k = 0, …, m. Between these benchmarks, simultaneous and equally large percentage changes in the point values of the parent nodes imply an 
equally large percentage change in the mode of the child node. To elaborate this idea, think about discretization intervals [ai, bi] of the nodes Xi, i = 1, 
…, n, C that are all associated with a state interval [k− 1

m , k
m]. Suppose the point values of the parent nodes Xi, i = 1, …, n, on their continuous scales are zi 

such that zi ∈ [ai, bi] and zi − ai
bi − ai

= u. Then, the mode implied for the child node XC is zC, fulfilling zC − aC
bC − aC

= u. Thus, the initial RNM-compatible dis-
cretizations alone imply the mode of the child node on its continuous scale for specific combinations of point values of the parent nodes. 

The role of the RNM parameters is to complement the probabilistic information that the initial RNM-compatible discretizations imply about the 
nodes. When the weight expression f and the weights of the parent nodes w are known, one can determine the mode âC of the child node XC on its 
continuous scale for any combination of point values a1, …, an of the parent nodes X1, …, Xn on their continuous scales. Referring to Eq. (1), the related 
equation is âC = h− 1

C (f(h1(a1),…,hn(an),w)). Thereby, the role of the weight expression and the weights is to define the mode of the child node for all 
those point values of the parent nodes for which it is not directly implied by the initial RNM-compatible discretizations. Exact interpretations of the 
weights in different weight expressions are presented in [33]. The role of the variance parameter σ2 is to define the level of dispersion of probability 
mass around the determined mode âC on the continuous scale of XC. To summarize, the RNM parameters together with the RNM-compatible dis-
cretizations establish the probabilistic relationship of the nodes X1, …, Xn, XC so that a CPT for XC can be generated in accordance with Eq. (3). 
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