
Chapter 1

Preference Programming –
Multicriteria Weighting Models under
Incomplete Information

Ahti Salo and Raimo P. Hämäläinen

Abstract Useful decision recommendations can often be provided even if the model
parameters are not exactly specified. The recognition of this fact has spurred the de-
velopment of multicriteria methods which are capable of admitting and synthesizing
incomplete preference information in hierarchical weighting models. These meth-
ods share similarities in that they (i) accommodate incomplete preference informa-
tion through set inclusion, (ii) offer decision recommendations based on dominance
concepts and decision rules, and (iii) support the iterative exploration of the deci-
sion maker’s preferences. In this Chapter, we review these methods which are jointly
referred to by the term ‘preference programming’. Specifically, we discuss the po-
tential benefits of using them, and provide tentative guidelines for their deployment.

1.1 Introduction

Hierarchical weighting methods–such as value trees [31] and the Analytic Hier-
archy Process [54]–are widely used in the analysis of decision problems that are
characterized by incommensurate objectives, competing alternatives and conflicting
stakeholder interests (see, e.g., [23, 29]). In these methods, the decision maker (DM)
is engaged in a process where the decision objectives are structured as a hierarchy
of attributes. This phase is often one of the most instructive phases of problem solv-
ing due to the insights that it may give [8, 30]. In effect, the resulting hierarchical
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problem representation provides a framework for synthesizing information about
(i) how the alternatives perform on the attributes (=scores) and (ii) how important
the attributes are (=weights). Based on these two forms of statements, an overall
performance measure can be attached to each alternative.

Yet, most multicriteria methods are based on the assumption that complete infor-
mation about the model parameters (scores, attribute weights) need to be elicited as
‘exact’ point estimates. This assumption can be questioned on many grounds. For
example, it may be impossible to obtain exact ex ante estimates what impacts the al-
ternatives will have on the attributes; and even if such information can be obtained,
it may come at a prohibitively high cost, which makes it of interest to examine what
tentative conclusions are supported by the information that can be acquired at an
affordable cost [34, 73]. This is the motivation for many of the rank-based methods
such as SMARTER [17] which converts the DMs ordinal statements into centroid-
weights; however, in doing so, an initial incomplete (ordinal) preference specifica-
tion is essentially transformed into ‘exact’ cardinal weights which no longer reflect
this incompleteness (see [6, 24]) . Furthermore, if the DMs are not confident with
providing a complete specification of their preferences, they may regard the results
with untrustworthy if they are not confident with the inputs. From the viewpoint
of sensitivity analysis, too, it is advisable to examine how recommendations will
change when the model parameters vary within plausible limits ([46, 53]).

The above concerns have motivated the development of methods which accommo-
date incomplete preference information in hierarchical weighting models (see, e.g.,
[2, 18, 20, 34, 35, 39, 42, 43, 50, 51, 52, 60, 61, 62, 66, 73, 75]). Even though
these methods differ in their details, they share many similarities: in particular, they
(i) model incomplete preference information through set inclusion, (ii) apply dom-
inance structures and decision rules to derive decision recommendations and, in
many cases, (iii) guide the DM during the iterative phases of preference elicitation.
In view of these similarities, we therefore employ ‘preference programming’–a term
that was coined by Arbel [5]–as a general term for all methods which fulfil at least
the two first of the above conditions. This term seems pertinent also because these
methods engage the DM in an interactive exploration of preferences and offer inter-
mediate results by solving mathematical programming problems.

Apart from numerous incremental methodological contributions, there is a growing
number of papers that describe promising real-life applications of preference pro-
gramming methods (see, e.g., [19, 26, 28, 48]. Yet, not much work has been done
to synthesize ‘lessons learned’ from this applied work. Nor has it been examined
in what decision contexts preference programming methods work best, or how they
should be best employed in such contexts. We therefore give a structured review of
these methods and identify conditions which suggest that the modeling of incom-
plete information can be particularly helpful. We also argue that, in some conditions,
preference programming methods may outperform ‘conventional’ approaches, par-
ticularly if the costs of preference elicitation are high, or if there is a need to focus
the analysis on the few most preferred alternatives.
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This review Chapter is structured as follows. Section 2 describes the essential
features of preference programming. Section 3 reviews selected applications and
presents relevant software tools. Section 4 considers what problem characteristics
may call for the deployment of preference programming methods. Section 5 pro-
vides some tentative guidelines for preference elicitation.

1.2 Key Characteristics of Preference Programming

Among the different hierarchical weighting methods, the multiattribute value the-
ory (MAVT) [31] has a strong axiomatic foundation in measurement theory. Specif-
ically, if the DM’s preference relation satisfies axioms that characterize rational de-
cision making, this relation has a value function representation with the help of
which the overall value of an alternative can be expressed as the attribute-weighted
sum of its attribute-specific values (i.e., scores).

In terms of the aggregation of the overall performance measure, MAVT shares sim-
ilarities with the Analytic Hierarchy Process [54] where the overall priority weight
of an alternative is expressed as the weighted sum of its local priorities with regard
to the attributes at the lowest level of the hierarchy of objectives. In view of these
similarities, we therefore provide the following generic formulation of additive pref-
erence models, in the understanding that this formulation can be interpreted in the
context of MAVT and AHP models. A more detailed comparative analysis of the
two methodologies can be found in [63].

1.2.1 Additive Preference Representation

We assume there are n attributes at the lowest level of the hierarchical representation
of decision objectives. The importance of the i-th attribute is indicated by a non-
negative weight wi ∈ [0,1]. These attribute weights are normalized so that they add
up to one, i.e., ∑n

i=1 wi = 1.

There are m alternatives x1, . . . ,xm. The achievement level of the j-th alternative on
the i-th attribute is denoted by x j

i (for instance, this could be the fuel consumption
of a car). The single-attribute value associated with this achievement level is called
the score vi(x

j
i ) = v j

i ∈ [0,1]. These scores map the actual achievement levels onto
a possibly non-linear scale of subjective value. The overall value of alternative x j

is expressed by the sum V (x j) = ∑n
i=1 wiv

j
i which is based on the model param-

eters (i.e., weights w = (w1, . . . ,wn) ∈W = {w | wi ≥ 0,∑n
i=1 wi = 1} and scores
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v j = (v j
1, . . . ,v

j
n), j = 1, . . . ,m). In preference programming, incomplete preference

information is typically modeled through set inclusion. Specifically, the DM’s pref-
erence statements are transformed into constraints on the model parameters (i.e.,
attribute weights and score vectors). For instance, as shown in Figure 1, the DM
could state that the score of an alternative like Job B is between 50 % and 70 %
of the maximum score of 1; or that the weight of attribute B is at least half of the
weight of attribute A, but at most twice as high as the weight of attribute A.

These kinds of constraints define sets of feasible weights and score vectors Sw,Sv j

(where w∈ Sw ⊂W and v j = (v j
1, . . . ,v

j
n)∈ S j ⊂ [0,1]n, j = 1, . . . ,m). For any consis-

tent set of DM’s preference statements, the resulting feasible sets will be non-empty.
If the DM’s preference statements are not very informative, these feasible sets will
be large because the corresponding constraints will be satisfied by many parameters.

Figure 1. Elicitation screens for the specification of incomplete information about scores and
attribute weights in WinPRE.

Table 1 gives an overview of selected preference programming methods, with partic-
ular attention to preference elicitation and the specific characteristcs of the methods.
The evolution of methods has progressed from the mere incorporation of incomplete
information towards the delivery of supplementary information–such as consistency
bounds, measures of incompleteness, and decision rules–that help the DM to decide
whether or not the elicitation phase should be continued and, if so, how the continu-
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ation of the process should be organized. Another trend is the increasing availability
of decision support tools for interactive decision support processes.

It is worth noting that even other terms–such as ‘imprecise information’ (e.g., [18,
61] or ‘partial information’ (e.g., [9])–have been employed when referring to set
inclusion. Yet we feel that ‘incompleteness’ is more adequate as a term, because
it stresses that while the available preference information–as captured by the sets
Sw and S j–may not imply a full ranking of alternatives, such information could, in
principle, be completed by eliciting further preference statements. ‘Incompleteness’
also appears better on the grounds that the constraints on feasible weights and scores
are not ‘imprecise’: for instance, the lower and upper bounds of interval-valued ratio
statements in weight elicitation are crisp numbers with no associated uncertainties.

Although we do not consider approaches based on probabilistic modelling, fuzzy
sets (e.g., [9, 11, 58]) or outranking relationships (e.g., [68]), there are computa-
tional and other parallels to these other approaches. The consideration of incom-
pletely specified probabilities in Bayesian updating, for instance, leads to related
problem formulations [59]. Thus, many of our observations apply in other settings
as well.

1.2.2 Preference Elicitation

The elicitation techniques of preference programming methods often extend those
employed by the more conventional decision analytic methods. For example, many
preference programming methods allow the DM to provide interval-valued esti-
mates instead of exact crisp numerical estimates. The popular ratio-based techniques–
such as the AHP [54] and SMART [16]–have also been extended to methods where
the DM may provide interval-valued statements about the relative importance of
attributes [5, 44, 61, 62].

Park et al. [49] present the following taxonomy which illustrates different ap-
proaches to the elicitation of incomplete information. Specifically, in the con-
text of attribute weights, they consider both interval-valued and ordinal prefer-
ence statements defined by: (1) a weak ranking (i.e., wi ≥ w j), (2) a strict rank-
ing (wi−w j ≥ αi j) (3) a ranking with multiples (wi ≥ αi jw j), (4) an interval form
(αi ≤ wi ≤ αi + εi), (5) a ranking of differences (wi−w j ≥ wk−wl for j 6= k 6= l,);
here αi j,εi ∀ i,k. All of these statements correspond to linear constraints on attribute
weights.

In an extension of these elicitation techniques, Salo and Punkka [66] develop the
Rank Inclusion in Criteria Hierarchies (RICH) approach which allows the DM to
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Table 1.1 Selected examples of preference programming methods

Method Score elicitation Weight elicitation Remarks

ARIADNE,
White et al. [75]

Upper and lower
bounds on scores

Linear constraints on
attribute weights

Eliminates inconsistencies
through linear programming

Hazen [21] Completely
specified score
information

Linear constraints on
attribute weights

Gives an extensive
mathematical treatment of
optimality conditions

HOPIE, Weber
[72]

Derived indirectly
from holistic
comparisons among
alternatives

Derived indirectly from
holistic comparisons
among alternatives

Offers recommendations from
the consideration of probability
distributions over the
alternatives’ values

PAIRS [28] Lower and upper
bounds on score
information

Interval-valued
statements about ratios
of attribute weights

Computes dominance structures
through hierarhically structured
linear optimization problems

Preference
Programming
[62]

Interval-valued
ratio statements
using AHP-style
pairwise
comparisons

Interval-valued ratio
statements using
AHP-style pairwise
comparisons

Offers an ambiguity index for
measuring the amoung of
incompleteness in the
preference specification

Ahn et al. [1] Linear constraints
on alternatives’
scores

Linear constraints on
attribute weights

Suggests the use of aggregated
net preference as a decision rule

PRIME [60] Upper or lower
bounds on scores

Interval-valued
statements about ratios
of value differences

Introduces several decision rules
and examines their
computational properties

Eum et al. [18] Both complete and
incomplete score
information
considered

Several kinds of
preference statements
that correspond to linear
constraints on weights

Offers a taxonomy of several
forms of incomplete information

RICH, Salo and
Punkka [66]

Lower and upper
bounds on
attribute-specific
scores

Incomplete ordinal
preference information
about the relative
importance of attributes

Introduces an incompleteness
measure for ordinal preference
information

Interval
SMART/SWING
[44]

Score intervals
about the
alternatives

Interval-valued ratio
statements in
SMART/SWING

Extends the SMART/SWING
method by allowing the choice
of reference attributes

Smart Swaps
[45]

Complete score
information

Dominance statements
among alternatives

Supports the Even Swaps
process by using preference
programming to identify
practically dominated
alternatives and candidate
attributes for the next swap

RPM, Liesiö et
al. [40]

Lower and upper
bounds on
attribute-specific
scores

Incomplete ordinal
preference information
and also other forms
based on set inclusion

Extends dominance concepts to
multicriteria portfolio selection
problems
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provide incomplete ordinal information about the relative importance of attributes
(e.g., ‘cost is among the three most important attributes’ or ‘the most important
attribute is either cost or quality’). Such statements correspond to constraints that
define possibly non-convex sets of feasible attribute weights. The resulting sets can
be readily examined to obtain decision recommendations based on the application
of dominance concepts and decision rules.

1.2.3 Dominance Structures

Once the incomplete preference specification has been elicited (as characterized by
feasible weights Sw and scores S j), it is of interest to examine what, if any, inferences
can be made about what alternatives are ‘better’ than the others.

These inferences can be based on the concept of (pairwise) dominance. In particular,
alternative xk dominates xl if the overall value of xk is higher than that of xk for
all feasible model parameters and strictly higher for some parameters. The case of
dominance can be checked by considering whether or not the inequality

V (xk) =
n

∑
i=1

wivk
i ≥

n

∑
i=1

wivl
i = V (xl), (1.1)

holds for all combinations of feasible weights w∈ Sw and scores v j ∈ S j. This defini-
tion establishes a transitive and asymmetric binary relation among the alternatives.
Moreover, if (1.1) holds, the value of alternative xk will be at least as high as that
of xl , even if additional preference statements were to be acquired until the sets of
feasible weights and scores become singletons.

1.2.4 Decision Rules

If there are several non-dominated alternatives, it is not possible to derive conclu-
sive statements about which alternative is the ‘best’ one. This is because for any
alternative xk, there exists a combination of feasible weights and scores such that
the overall value of some other alternative xl will be higher than that of xk. In con-
sequence, other principles–called decision rules–can be applied to derive a decision
recommendation. Several such decision rules have been proposed:

1. Choice of representative parameters: Based on ‘representative’ parameters
from feasible regions, the recommendation can be based on the comparison of



8 Ahti Salo and Raimo P. Hämäläinen

alternatives’ overall values for some representative parameters. For instance, the
PRIME method uses, as one of several possibilities, central weights that are near
the center of the feasible weight set [64]. Even the approaches to the computation
of rank based weights (e.g., rank sum, rank reciprocal, rank exponent, rank order
centroid; see, [6, 17, 69]) can be viewed as ways of converting ordinal preference
information into representative weight vectors.

2. Alternatives’ value ranges: Recommendations can be based on an analysis of
the ranges of values that alternatives may take. Examples of such rules include
the maximax rule (i.e., choose the alternative which has the highest possible over-
all value), maximin (i.e., choose the alternative for which the smallest possible
overall value is the highest among alternatives) and central values (i.e., choose
the alternative for which the mid-point of the value interval is highest) (see [64]).
The advantage of these rules is that they can be readily computed and communi-
cated.

3. Pairwise value differences between alternatives: Decision rules can be based
on measures on how well alternatives perform relative to each other. One such
measure is the maximum loss of value which indicates how much more value the
DM could at most acquire in comparison with xi, if she would choose some other
alternative [64]). The corresponding minimax regret decision rule recommends
the alternative which has the smallest maximum loss value. This rule is appealing
because it allows the DM to take an informed decision on whether or not the
possible loss of value is small enough so that elicitation efforts can be stopped.
Even measures of preference strength (see, e.g., [1])–which are computed by
aggregating value differences across several alternatives–belong to this class of
decision rules.

4. Maximization of expected value: If there are grounds for making plausible as-
sumptions about how probable the feasible parameters are, it is possible to rec-
ommend the alternative with the highest expected overall value (see, e.g., [72]).
Although this decision rule is conceptually appealing, it is not necessarily easy
to apply because the elicitation of required probability distributions is likely to
be a major effort. Also computational difficulties may be encountered.

5. Likelihood maximization of potentially optimal alternatives: If probability
distributions on the feasible regions can be elicited, the alternative which has
the highest probability of receiving the largest overall value can be offered as
the decision recommendation. This approach is, in effect, the SMAA method
[36] which in its basic formulation recommends potentially optimal alterna-
tives. Subsequently, this method has been extended so that it considers not only
non-dominated alternatives, but considers the alternatives’ relative rankings and,
based, on an analysis of these, may recommend alternatives that are not neces-
sarily potentially optimal for any combination of feasible parameters (see, e.g.,
[37, 38].
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Although several decision rules have been proposed, the literature does not offer
conclusive guidance as to what decision rules should be applied in specific decision
contexts. Simulation studies suggest that decision rules based on the use of central
values tend to outperform others in terms of minimizing the expected loss of value
[60]. But even this tentative conclusion depends on context-specific assumptions
(e.g., absence of correlations among alternatives). It therefore appears that further
computational and empirical studies are needed.

It is also possible, particularly in group decision making, that an examination of
different recommendations based on different decision rules may provoke discus-
sions about which decision rules are ‘better’. Such discussions may be driven by
strategically motivated arguments if the DMs defend certain decision rules on the
grounds that these favor their own favorite alternatives. But rather than focusing on
the comparative merits of decision rules, it may be instructive to examine several
decision rules in parallel, or to agree what decision rules will be applied before the
phases of preference elicitation and synthesis are started.

1.2.5 Management of Inconsistencies

The derivation of decision recommendations from an incomplete preference specifi-
cation presumes that the DM’s preference statements are consistent and thus define
non-empty sets of feasible weights and scores. Yet, without adequate decision sup-
port, the DM may be inclined to provide preference statements that are not consis-
tent with the previous statement, in which case the set of feasible parameters would
become empty. Two main approaches (which are also supported by software tools,
see Section 1.3) have been proposed to avoid this possibility:

• Consistency restoration: Taking the set of conflicting constraints as a point of
departure, the DM can be requested to modify or withdraw earlier statements
until the remaining, possibly revised constraints are not in conflict with each
other any more (see, e.g., [34, 75]).

• Consistency preservation: Before the elicitation of each new preference state-
ment, full information about the implications of earlier preference statements can
be computed and presented to the DM, to ensure that the new statement is not in
conflict with the earlier ones (see, e.g., by [57, 61, 64]).

Consistency restoration may be problematic if the DM is not able or willing to
revisit earlier statements. Furthermore, the withdrawal of earlier statements may
undermine the credibility of the analysis, because it insinuates that there are ‘er-
rors’ in some inputs without guaranteeing that the other inputs are less ‘erroneous’.
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Also, although automated procedures can be used to identify the least number of
constraints that should be removed to re-establish consistency, such procedures are
computational interventions with little interaction on the part of the DM (see, e.g.,
[56, 75]). At worst, this approach may thus lead to the removal of statements that the
DM feels most confident about. Computationally, however, consistency restoration
can be applied in a batch mode so that possible problems with inconsistencies–if
they do arise–can be addressed after the preference elicitation phase.

Consistency preservation requires that the implications of earlier preference state-
ments are presented to the DM whenever new preference statements are elicited.
These implications can be presented through the consistency bounds which convey
the smallest and upper bounds that previously entered ratio-statements imply for the
ratio statement that is to be elicited next [61]. For instance, in Figure 2, the two
statements ‘neither attribute A nor attribute B is more than two times more impor-
tant than the other’ and ‘attribute C is twice as important as attribute B’ logically
imply that ‘attribute C is more important than attribute A, but no more than twice
as important’. If the decision maker is willing to provide a new statement that is
within these consistency bounds, the new augmented constraint set will be consis-
tent, too; however, if she wishes to enter a statement that is not within these bounds,
some of the earlier statements would have be to revisited and revised. As a result,
the management of inconsistencies has broader implications for preference elicita-
tion: should the DM be encouraged to provide relatively ‘narrow’ statements (which
tend to support more conclusive dominance results, but are more prone to inconsis-
tencies) or ‘broad’ statements (which entail a lower risk of inconsistencies, but are
likely to produce less conclusive dominance results)? (see also [44]). Related issues
of consistency preservation arise also in group decision contexts: for example, when
synthesizing individual statements, the correct interpretation of criterion weights
may have to be ensured through the explicit consideration of trade-offs [28, 26].

Figure 2. Consistency bounds implied by two ratio-based comparisons of attributes (A and B, B
and C) for the third pairwise comparison (A and C).
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1.2.6 Dominance Structures, Decision Rules and Rank Reversals

A much contested topic in the literature on hierarchical weighting models is the
phenomenon of rank reversals which, in brief terms, means that the introduction
or removal of an alternative changes the relative ranks of other alternatives. Such
changes would suggest that the DM’s preferences for the alternatives that are being
compared depend not only on these alternatives, but also on what other alternatives
may be included in or excluded from the analysis. Rank reversals have been a source
of considerable controversy, and many researchers have regarded them as a major
flaw in decision support methodologies such as the Analytic Hierarchy Process (see,
e.g., [7, 10, 15, 63]).

It is therefore pertinent to ask which decision rules may exhibit rank reversals. To
begin with, we may conclude that rank reversal cannot occur in decision rules which
attach a single performance measure to an alternative, based on the weighted aggre-
gation of numerical parameters that are not affected by the other alternatives, for in-
stance through the use of normalization rules (this is not the case in the AHP where
the introduction of an additional alternative typically affects the local priorities of
all alternatives due to normalization [7, 15, 63]). Clearly, no decision rules based
on such unitary performance measures will exhibit rank reversals, even if additional
alternatives are introduced or existing alternatives are removed. This observation
implies that several of the decision rules discussed above (e.g., maximax, maximin,
central values, central weights) are immune to rank reversals.

However, if the scores can be impacted by other alternatives, or if the decision rule
is based on the comparison of several alternatives, rank reversals may be possible.
This is the case, for instance when using the minimization of maximum loss of
value decision rule. To demonstrate this, assume that there are two attributes and
two alternatives with scores v1 = (v1

1,v
1
2) = (0.4,0.6) and v2 = (v2

1,v
2
2) = (0.6,0.3),

and that no weight information is available (i.e., the set of feasible weights is
W = {(w1,w2) | w1 +w2 = 1,wi ≥ 0, i = 1,2}). Then, the first of these alternatives
x1 has the smaller maximum loss value, because maxw∈W [(6− 4)w1 + 0w2] = 2
while the corresponding maximum for x2 is 3. Now, if a third alternative with scores
v3 = (v3

1,v
3
2) = (0.8,0.1) is added, the maximum value losses for the alternatives

become 4,3 and 5, respectively, indicating that x2 now becomes the recommended
alternative, although x1 was the recommended alternative before the introduction
of x3. Proceeding in much the same way, one can show that even other measures
based on the comparison of value differences among two or more alternatives (e.g,
aggregated net intensity; [33, 1]) may exhibit rank reversals.

Another example is the Stochastic Multiobjective Acceptability Analysis (SMAA;
Lahdelma et al. [36]) where the decision recommendation is based on the com-
parison of the relative sizes over which a given alternative is optimal. Techni-
cally, this means that the set W (x j) = {w ∈W | ∑n

i=1 wiv
j
i ≥ ∑n

i=1 wivk
i ∀ xk 6= x j}
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(where W = {(w1, . . . ,wn) | ∑n
i=1 wi = 1,wi ≥ 0, i = 1, . . . ,n}) contains those at-

tribute weights for which alternative x j will have the highest aggregate overall value.
This weight set is used to establish a performance measure–called the acceptability
index AI(x j)–which is defined as the ratio between the volumes of W (x j) and W .
The larger the acceptability index, the more support it will receive relative to the
other alternatives.

To demonstrate that SMAA, too, exhibits rank reversals, assume that there are two
attributes and two alternatives x1,x2 characterized by the score information v1 =
(v1

1,v
1
2) = (0.7,0) and (v2

1,v
2
2) = (0,0.6). Because the corresponding weight sets are

W (x1) = {w ∈W | w1 ≥ 6
13} and W (x2) = {w ∈W | w1 ≤ 6

13}, alternative x1 has
the larger acceptability index in SMAA and is therefore the recommended alterna-
tive. Next, assume that a third alternative x3 with scores v3 = (v3

1,v
3
2) = (0.6,0.225)

is introduced. The weight sets then become W (x1) = {w ∈W | w1 ≥ 9
13},W (x3) =

{w∈W | 5
13 ≤w1 ≤ 9

13} and W (x2) = {w∈W | w1 ≤ 5
13}. Thus, the second alterna-

tive x2 now obtains the highest acceptability index and becomes the recommended
alternative, although its acceptability index was smaller than that of alternative x1

before the third alternative was introduced: a rank reversal has occurred.

Positive reports from applications (see, e.g., [37]) suggest that DMs may feel com-
fortable with the SMAA method. Yet the possibility of rank reversals casts some
doubt on its validity as a decision support methodology. Another source of poten-
tial concern is that the early variants of SMAA do not encourage the DM to learn
about her preferences by making explicit preference statements. Thus, although the
weight set W (x j) that yields support for alternative x j may be larger than the other
weight sets for the alternatives W (xk),k 6= j, this set may consist of weights that are
not aligned with the DM’s (unstated) preferences. Thus, further validity checks may
be needed to ensure that the weights on which is the acceptability index is based are
compatible with the DM’s preferences (cf. [71]).

If rank reversals are deemed unacceptable, the above discussion suggests that uni-
tary performance measures should be given precedence over other decision rules in
the derivation of decision recommendations. The other decision rules may still be
useful for other purposes: for example, the computation of the maximum loss of
value for alternatives highlights just how much aggregate value the decision maker
may forego by choosing an alternative when dominance results do not hold. This
measure also gives an upper bound on how much more additional value could be, at
best, attained by continuing preference elicitation efforts.
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1.3 Case Studies and Decision Support Tools

The literature on preference programming has gradually matured from purely method-
ological contributions towards the deployment of these methods in high-impact ap-
plications. In an early case study, Anandaligam [4] describes how incomplete pref-
erence information can be harnessed in the comparison of strategies for mitigating
the harmful consequences of acid raid. Hämäläinen et al. [28] consider the use of
preference programming in assisting groups of decision makers in the comparison of
energy policy options. Hämäläinen and Pöyhönen [26] report experiences from the
development of policies for traffic management, highlighting the impacts of pref-
erence programming on the decision outcome and the decision support process.
Hämäläinen et al. [27] describe a multi-stakeholder participatory process where in-
complete preference information was employed to support the comparison of alter-
native countermeasures in nuclear emergency planning.

Cristiano et al. [12] provide support for the optimal design of a surgical product by
accommodating incomplete preference information in quality function deployment.
Gustafsson et al. [19] apply the PRIME method to the valuation of a high technology
company and illustrate how preference programming can be used in scenario-based
forecasting problems. Salo and Liesiö [65] describe a series of workshops where the
RICH method [66] was employed to help Scandinavian research managers establish
priorities for research and technology development activities in an international re-
search program. Ojanen et al. [48] prioritize alternative risk management measures
by developing a hierarchical representation of relevant criteria and by soliciting or-
dinal preference statements from two groups of decision makers (i.e., client per-
spective, utility perspective). Alanne et al. [3] assess building technologies by using
the PAIRS method [61] to account for economic and technological uncertainties.

Figure 3. A screenshot from WinPRE with overall value intervals and dominance structures.
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Because preference programming methods involve more computations than con-
ventional approaches based on the elicitation of point estimates, the availability of
adequate software tools is an essential precondition for their deployment. At present,
there are several software tools for preference programming. WINPRE (Workbench
for INteractive PREference Programming)1 provides computerized support for both
PAIRS [61] and the use of interval valued-statements in the AHP [62] (see Figure
3 for examples of the user interface). The RINGS system [32] allows the DMs to
analyze range-based information in multi-attribute group decision making. PRIME
Decisions [19] features elicitation tours which assist the DM in the specification of
interval-valued ratio statements. VIP Analysis and its extensions [13, 14] support
groups of decision makers who seek to reach a consensus.

RICH Decisions 2 is a web-based decision support tool which admits and processes
incomplete ordinal preference information in accordance with the RICH method
[67, 66]. A web-front end is also offered by RPM Decisions3 which provides support
for the Robust Portfolio Modeling methodology [40, 41], designed for the project
portfolio selection in the presence multiple attributes and possibly incomplete in-
formation about attribute weights and project scores. Interactive web-functionalities
are also provided by the Even Swaps-software which applies preference program-
ming to develop suggestions for what swaps the DM should consider next when
using the Even Swaps-method [45, 47].

1.4 Experiences from Applications

Preference programming methods have already been applied across very different
domains. Indeed, experiences from these studies warrant some remarks about the
benefits of these methods and preconditions for their successful deployment:

• Preference programming methods make it possible to check the implications of
incomplete information even at the earliest phases of the analysis. Thus, the pre-
ferred alternative(s) can be possibly identified more easily and quickly while
the resulting recommendations are still robust and methodological sound. An-
other important benefit is that these methods enable iterative decision support
processes where tentative results can be provided early on, which is useful be-
cause such results help engage the DMs into the decision support process. More-
over, the subsequent phases of information elicitation can be focused on those
attributes and alternatives about which the additional information is likely to con-
tribute most to the development of more conclusive results.

1 See http://www.sal.tkk.fi/English/Downloadables/winpre.html
2 See http://www.rich.hut.fi/
3 See http://http.rpm.tkk.fi/
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• The numerous ways in which incomplete information can be elicited from the
DM makes it necessary to plan and implement elicitation processes through
which this information is acquired. Without such planning, the elicitation pro-
cess may appear unstructured, or it may fail to ensure that all alternatives are
treated with the same degree of thoroughness. Sufficient prior planning is also
motivated by effectiveness, because the number of numerical estimates elicited
from the DM may be larger than in conventional approaches: for instance, when
stating interval-valued score information, the DM needs to state two crisp num-
bers as opposed to a single point estimate.

• If the preference model remains incomplete after the initial preference elicita-
tion efforts (in the sense that the sets of feasible parameter remain large; see
[57] for measures of incompleteness), dominance structures are unlikely to iden-
tify a single dominating alternative, particularly if there are many alternatives
whose scores are correlated. In such situations, it is pertinent to examine differ-
ent decision rules in order to gain complementary insights in facilitated decision
workshops, for instance (e.g., [26]).

Overall, preference programming holds considerable potential in decision problems
where reliable information about the DMs’ preferences or the alternatives’ impacts
cannot be readily obtained. Such settings include, for instance, the evaluation of
risk mitigation strategies in highly uncertain domains where the application of the
precautionary principle is warranted (see, e.g., [27, 60, 70]). Here, instead of rec-
ommending seemingly ‘optimal’ alternatives, the limitations of information in such
settings need to be recognized, for instance by giving precedence to robust alterna-
tives that perform satisfactorily across the full range of plausible parameter values.

The recognition that the costs of information elicitation can be significant makes it
possible to characterize novel uses of preference programming. For instance, these
methods can be employed for the purpose of screening a large number of alterna-
tives to a smaller set of non-dominated alternatives. Such a screening process can
start with an initial phase where some information about all alternatives is first ana-
lyzed before proceeding to a more detailed analysis of the remaining non-dominated
alternatives. Specifically, if the number of initial alternatives is large and the costs of
information elicitation are relatively high, a phased analysis if this kind is likely to
be more cost-effective than a process which seeks to acquire complete information
about all alternatives at the outset.

1.5 Guidelines for Applications

The fundamental philosophy in the preference programming methods is quite sim-
ple. First, make an effort to elicit as much information as is reasonably possible.
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Second, check if the elicited information makes it possible to identify a dominating
alternative, or an alternative that can be selected with a reasonable degree of con-
fidence (as measured, say, by the maximum possible loss of value). If this is the
case, present this alternative as the recommended decision. Otherwise, seek possi-
bilities for eliciting additional score and weight information by adopting elicitation
strategies that are likely to reduce the set of non-dominated alternatives.

The phases in the above process highlight that there are close links between the
steps of (i) eliciting preference information, (ii) computing dominance structures
and decision rules and (iii) terminating the decision support process. For instance,
recommendations based on decision rules will be contingent on how many or few
statements have been elicited from the DM up until the point where these rules are
applied. As an example, assume that the set of available information is not balanced
(meaning that some parameters are almost exactly specified while there is hardly
any information about others). Then, there is a possibility that one alternative may
be (dis)favorably evaluated in comparison with others, only because the information
elicitation process has not yet progressed to the point where statements about its
parameters are elicited. In consequence, attention must be paid to questions of how
elicitation questions are posed to the DM, and when and how intermediate results
are presented.

• An attempt should be made to obtain equally ‘complete’ score information about
all decision alternatives, in the sense that the DM is equally confident in that their
preference specifications contain the ‘true’ scores. Such an interpretation can be
encouraged by interpreting the lower and upper bounds in terms of symmetric
confidence intervals to the preference statements, for example. One may also
apply fuzzy mathematics in the aggregation of such confidence intervals (see,
e.g., [58]).

• The same level of ‘thoroughness’ should be pursued also when assessing the
relative importance of attributes. Otherwise, for instance, there is a possibility
that an alternative will appear weak if it has its highest scores (relative to those
of other alternatives) on attributes about which less weight information has been
provided. In this case, the computations in applying the maximin decision rule
would assign little weight to these attributes so that the alternative would have a
small maximin value–even if its standing might improve when more information
is elicited about these attributes.

• From the viewpoint of transparency, it may be advisable not to mix different
types of preference elicitation questions in weight elicitation, because this may
define a feasible region whose geometric structure is less symmetric than what
would be obtained by using questions of the same type (e.g., interval-valued ratio
statements). Another benefit of restricting the number of question types is that
this may results in an elicitation process that can be more readily understood by
the DMs (see, e.g.,
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1.6 Outstanding Research Questions

While the methodological contributions and reported case studies offer important
insights into the uses of preference programming, there are nevertheless several ar-
eas that call for further research:

• Development of elicitation approaches: Further work is needed on how in-
complete preference information can be best elicited from the DMs. Some ad-
vances have been made by organizing the elicitation process into structured sub-
sequences (see, e.g., [44]). The PRIME Decisions tool encourages the DM to
complete several elicitation tours which consist of sequences of elicitation tasks
[19]. In effect, effective and defensible elicitation strategies can be built from
such these kinds of ‘building blocks’ with the help of which the decision support
process can be aligned with the above guidelines. Related research should also
address to what extent preference programming approaches may mitigate behav-
ioral biases in the elicitation of attribute weights or possibly even create new ones
(see, e.g., [24, 74]).

• Impacts in different contexts and uses: An explicit ante consideration of how
much better decisions (say, as measured by the expected aggregate value or pro-
portion of optimal choices) can be reached through preference programming.
Advances in this area can be supported, among others, through simulation stud-
ies that analyze which elicitation approaches and decision rules perform best,
subject to varying assumptions about the number of attributes and alternatives,
distribution of attribute weights, correlations among alternatives, and costs of
preference elicitation, among others. The results in [6, 60, 66] exemplify results
from this kind of research, even though they focus mostly on ratio statements
and ordinal preference information. Quite importantly, preference programming
methods also enable various ex post sensitivity analyses with regard to all model
parameters [44]).

• Approaches for group decision support: Many authors have argued that prefer-
ence programming methods are particularly suitable for group decision making
(see, e.g., [26, 28, 33]). There is, however, call for empirical evidence on how
these methods can be best deployed in group settings. Interestingly enough, the
group context also makes possible to introduce entirely new decision making
principles. For instance, the group members may agree that each member shall
acquire at least one third of the total value of his or her personally preferred alter-
native. After the introduction of such cross-cutting requirements, the aggregate
group value can then be maximized, in the assurance that the resulting recom-
mendation will comply with the principles that the group has set for itself.

• Development of software tools and reflective case studies: The computations
and visualizations in preference programming methods typically require dedi-
cated software tools. Although several such tools exist (e.g., WinPRE, PRIME
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Decisions, RICH Decisions; [22]), further attention must be given to tool devel-
opment. The integration of such tools with other IT systems may lead to new
applications: for instance, one could envisage computerized search agents that
would use preference programming methods to identify items that would be of
most interest to potential buyers. Furthermore, because the benefits of preference
programming techniques are ultimately realized in the context of applications,
there is a need for reflective case studies. Among other things, such studies need
to address the qualitative impacts that the application of preference program-
ming methods may have on the decision support process (e.g., satisfaction with
the process; commitment to the decision).

1.7 Conclusion

We have reviewed preference programming methods which accommodate incom-
plete preference information in hierarchical weighting models and synthesize such
information into well-founded decision recommendations. By building on experi-
ences from reported case studies, we have also developed guidelines for the deploy-
ment of these methods. These guidelines help ensure, among other things, that the
consecutive phases of preference elicitation and preference synthesis are properly
interlinked, and that all alternatives are treated equally during the development of
decision recommendations.

More specifically, preference programming methods seem particularly suitable in
decision problems where the elicitation of complete information is either impossible
or involves prohibitively high costs, or where the DMs are simply more prepared to
characterize their preferences through interval statements rather than through exact
point estimates. These methods also offer possibilities for carrying global sensitivity
analyses [46], and in group decision making they help incorporate the preferences
of all group members who can thus be engaged in an interactive decision support
process [28]. Moreover, the use of preference programming during the early phases
of the analysis can be motivated by an attempt to reduce the set of relevant decision
alternatives so that subsequent elicitation efforts can be focused on the remaining
non-dominated alternatives. At best, such screening processes may offer much bet-
ter overall cost-benefit characteristics than conventional approaches. We expect that
these advantages, together with the improved availability of decision support tools,
will contribute to the wider use of preference programming methods.
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52. Puerto, J., Mármol, A. M., Monroy, L. and Fernández, F.R. (2000). Decision Criteria with
Partial Information. International Transactions in Operational Research 7, 51–65.

53. Rios Insua, D. and French, S. (1991). A framework for sensitivity analysis in discrete multi-
objective decision making. European Journal of Operational Research 54, 176-190.

54. Saaty, T.L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York.
55. Saaty, T.L. and Vargas, L.G. (1987). Uncertainty and Rank Order in the Analytic Hierarchy

Process. European Journal of Operational Research 32, 107–117.
56. Sage, A.P. and White, C.C. III (1984). ARIADNE: A knowledge-based interactive system for

planning and decision support. IEEE Transactions on Systems, Man, and Cybernetics 14(1),
35-47.

57. Salo, A. (1995). Interactive Decision Aiding for Group Decision Support. European Journal
of Operational Research 84, 134–149.

58. Salo, A. (1996a). On Fuzzy Ratio Comparisons in Hierarchical Weighting Models. Fuzzy Sets
and Systems 84, 21–32.

59. Salo, A. (1996b). Tighter Estimates for the Posteriors of Imprecise Prior and Conditional
Probabilities. IEEE Transactions in Systems, Man, and Cybernetics, 26(6), 820–825.

60. Salo. A. (2001). On the Role of Decision Analytic Modelling. In: A. Stirling (ed.),
On Science and Precaution in the Management of Technological Risk, Vol. II. In-
stitute of Prospective Technological Studies, Joint Research Centre of the European
Commission, Report EUR 19056/EN/2, November 2001, 123–141. (Downloadable at
ftp://ftp.jrc.es/pub/EURdoc/eur19056IIen.pdf)
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