
Preference Programming

September 16, 2004

Ahti Salo and Raimo P. Hämäläinen
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Abstract

Methods for dealing with incomplete preference information in hierar-

chical weighting models have continued to attract attention in the lit-

erature on multi-criteria decision analysis (MCDA). In this paper, we

give a structured overview of several such methods which (i) accommo-

date incomplete preference information, (ii) offer dominance concepts

and decision rules for the generation of decision recommendations and

(iii) support the iterative exploration of the decision maker’s prefer-

ences. By doing so, we synthesize much of the relevant literature and

provide an integrative perspective on these methods which are here

subsumed under the term ‘preference programming’. We then demon-

strate that these methods may outperform conventional decision anal-

yses when the costs of preference elicitation are high and, moreover,

provide guidelines for responsible uses of preference programming. We

conclude by outlining topics for future research.

Keywords: Multi-criteria decision analysis, hierarchical weighting

models, incomplete preference information, group decision and nego-

tiation, decision support systems.

1. INTRODUCTION

Hierarchical weighting methods - such as value trees (Keeney and Raiffa, 1976) and

the Analytic Hierarchy Process (Saaty, 1980)) - are widely employed in the analysis of

decision problems characterized by incommensurate objectives, competing alternatives

and conflicting stakeholder interests (see, e.g., Corner and Kirkwood, 1991; Keefer
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et. al, 2004; Hämäläinen, 2004). In these methods, the decision makers (DM) are

encouraged to structure their objectives as a hierarchy of attributes, whereby the very

process of developing such a representation can be helpful but challenging, too (Belton

and Stewart, 2001; Keeney, 1992). In effect, the hierarchical representation provides a

framework for synthesizing information about (1) how the alternatives perform on the

attributes (=scores) and (2) how important the attributes are (=weights) so that an

overall performance measure can be associated with each alternative.

Decision analyses are usually based on the assumption that complete information about

the model parameters (scores, attribute weights) can be elicited. Yet, this assumption

can be questioned on several grounds. For instance, it may be impossible to obtain

complete information about the alternatives; and even if such information can be ob-

tained, it may come at a high cost, suggesting that it is of interest to examine what

tentative conclusions might be supported by the available but possibly incomplete in-

formation (Weber, 1987; Kim and Han, 1999). Also, if the decision makers (DM) are

forced to provide more complete a preference specification than what they feel confi-

dent with, they may distrust the results when these are based on undependable inputs.

Moreover, from the viewpoint of sensitivity analysis, it is advisable to check if the rec-

ommendations would change when the model parameters are allowed to vary within

plausible limits (Rios Insua and French, 1991).

The above arguments have motivated the development of methods which accommodate

incomplete preference information in hierarchical weighting models (see, e.g., White et

al., 1984; Eum et al., 2001; Kim and Han, 1999, 2000; Park and Kim, 1997; Mármol et

al., 1998; Puerto et al., 2000; Salo and Hämäläinen, 1992, 1995, 2001; Weber, 1987).

Despite their differences, these methods exhibit similarities, most notably in (1) the

use of set inclusion as a means of modelling incomplete preference information, (2) the

application of dominance structures and decision rules in the generation of decision

recommendations and (3) the presentation of supplementary information for guiding

the DM in preference elicitation. In view of these similarities, we employ ‘preference

programming’ – a term that was introduced by Arbel (1989) to denote incomplete

preference information in the AHP – as a general term for methods which fulfil at least

the two first of the above features. This terminological convention seems pertinent

also because the DM is engaged in an interactive exploration of preferences while

mathematical programming techniques are used in the generation of results. A further

advantage of the term ‘preference programming’ is that it allows us to address issues

that apply to several methods.

The literature on preference programming has been largely dominated by incremental
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theoretical contributions, although promising real-life applications have also been re-

ported (see, e.g., Hämäläinen and Pöyhönen, 1996; Gustafsson et al., 2001). Yet, little

work has been done to synthesize ‘lessons learned’ from applied work towards a general

framework, or to examine when and how preference programming should be applied.

In what follows, we address these questions by developing decision models in which (1)

the costs of preference elicitation are explicitly incorporated and (2) the requirement of

treating all alternatives on equal terms is operationalized. These models suggest that

preference programming may outperform conventional approaches based on a complete

preference specification which is characterized by point estimates for all parameters.

The remainder of this paper is structured as follows. Section 2 presents an overall frame-

work for preference programming and discusses selected applications thereof. Section

3 examines decision models where the costs of preference elicitation and non-optimal

choices are explicitly accounted for. Building on these models, Section 4 identifies

fruitful contexts for preference programming and derives guidelines for preference elic-

itation. Section 5 concludes with topics for further theoretical and applied research.

2. ELEMENTS OF PREFERENCE PROGRAMMING

2.1. Additive Preference Representation

We assume there are n attributes at the lowest level of the hierarchical problem rep-

resentation. The importance of the i-th attribute is measured by its weight wi ∈ [0, 1];

these weights are normalized so that
∑n

i=1 wi = 1. There are m alternatives x1, . . . , xm,

and the achievement level of the j-th alternative on the i-th attribute is denoted

by xj
i . The single-attribute value associated with this achievement level is the score

vi(x
j
i ) = vj

i ∈ [0, 1]. If the model parameters (i.e., weights w = (w1, . . . , wn) ∈ W =

{w|wi ≥ 0,
∑n

i=1 wi = 1} and scores vj = (vj
1, . . . , v

j
n), j = 1, . . . , m) are known, the

(overall) value of alternative xj is given by the sum V (xj) =
∑n

i=1 wiv
j
i .

In what follows, ‘incomplete preference information’ refers to settings where the con-

straints implied by the DM’s preference statements are satisfied by several param-

eter values (i.e., attribute weights and score vectors). More formally, this means

that the sets of feasible weight and score vectors Sw, Svj (where w ∈ Sw ⊂ W and

vj = (vj
1, . . . , v

j
n) ∈ Sj ⊂ [0, 1]n, j = 1, . . . , m) are non-empty, and that at least one of

them contains more than a single element.

Even other terms – such as ‘imprecise information’ (e.g., Salo and Hämäläinen, 1991;

Eum et al., 2001) or ‘partial information’ (e.g., Carrizosa et al., 1995) – have been
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employed in much the same sense. Nevertheless, ‘incompleteness’ seems more adequate

because it stresses that while the available preference information (as captured by the

sets Sw and Sj) may not lead to a full ranking of alternatives, such information can be

completed through the elicitation of additional preference statements. ‘Incompleteness’

can also be defended by noting that the constraints on feasible weights and scores

are not ‘imprecise’: for instance, the lower and upper bounds of interval-valued ratio

statements in weight elicitation are crisp numbers with no associated uncertainties.

Although we do not review approaches based on probabilistic modelling (e.g., Saaty and

Vargas, 1987), fuzzy sets (e.g., Salo, 1996a) or outranking relationships (e.g., Stewart

and Losa, 2003), there are computational and other parallels between these approaches

and preference programming: the consideration of incompletely specified probabilities

in Bayesian updating, for instance, leads to related problem formulations (Salo, 1996b).

Many of our remarks are consequently relevant to other approaches, too, particularly

as regards the use of decision rules in the development of decision recommendations.

2.1 Preference Elicitation

In general, preference programming methods extend the range of approaches that can

be used in the elicitation of DM’s preferences. Many of them incorporate ordinal pref-

erence information and relax the requirement for exact (crisp) numerical estimates

by allowing the DM to provide interval-valued estimates. For example, extensions

of popular ratio-based techniques – such as the AHP (Saaty, 1980) and SMART (Ed-

wards, 1977) – have inspired methods where the DM may provide interval-valued state-

ments about the relative importance of attributes (Arbel, 1989; Salo, 1995; Salo and

Hämäläinen, 1992, 2001; Mustajoki et al., 2001). In broad terms, Kim and Ahn (1999)

distinguish between the following approaches to the elicitation of attribute weights:

(1) weak ranking (i.e., wi ≥ wj), (2) strict ranking (wi − wj ≥ αij) (3) ranking with

multiples (wi ≥ αijwj), (4) interval form (αi ≤ wi ≤ αi + εi), (5) ranking of differ-

ences (wi − wj ≥ wk − wl for j 6= k 6= l,) where α·, ε· ≥ 0∀ i. All of these statements

correspond to linear constraints on attribute weights.

In a recent extension, Salo and Punkka (2003) present an approach entitled Rank

Inclusion in Criteria Hierarchies (RICH) which allows the DM to provide incomplete

ordinal information about the relative importance of attributes (e.g., ‘cost is among

the three most important attributes’ or ‘the most important attribute is either cost

or quality’). Such statements lead to possibly non-convex sets of feasible attribute

weights, but decision recommendations can still be derived through the application of

dominance concepts and decision rules.
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2.2 Determination of Dominance Structures

Once an incomplete preference specification has been elicited (as characterized by fea-

sible weights Sw and scores Sj), it is of interest to know which alternatives dominate

others in view of the resulting specification. Such dominance results can be based

on the concept (pairwise) dominance: i.e., alternative xk dominates xl if the (overall)

value of xk is higher than that of xk for all feasible model parameters or, equivalently,

if
n∑

i=1

wiv
k
i ≥

n∑

i=1

wiv
l
i, (1)

holds for all combinations of feasible weights w ∈ Sw and scores vj ∈ Sj. If (1) holds,

the value of xk remains at least as high as that of xl, even if additional preference

statements are added until the sets of feasible weights and scores become singletons.

2.3 Application of Decision Rules

If there are several non-dominated alternatives in (1), it is not possible to conclude

which alternative is ‘best’: this is because for any alternative xk, there exists a combi-

nation of feasible weights and scores such that the overall value of some other alternative

xl is higher than that of xk. As a result, other principles – called decision rules – are

needed to derive a decision recommendation if possibilities for continued preference

elicitation are limited. Several approaches have been proposed towards this end:

1. Choice of representative parameters: Based on ‘representative’ parameters

from feasible regions, the alternative for which the corresponding overall value is

highest can be recommended. For instance, one of the decision rules in PRIME

uses central weights which are near the center of the feasible weight set (Salo

and Hämäläinen, 2001). Likewise, alternative approaches to the computation of

rank based weights (e.g., rank sum, rank reciprocal, rank exponent, rank order

centroid; see, Barron and Barrett, 1996; Edwards and Barron, 1994; Stillwell et

al., 1981) are essentially ways of converting ordinal preference information into

representative weight vectors.

2. Properties of alternatives’ value ranges: Recommendations can be based

on an analysis of the ranges of values that alternatives may take, without making

assumptions about the probabilities of feasible parameters. Examples include

the maximax rule (i.e., choose the alternative with the highest possible value),

maximin (i.e., choose the alternative with the smallest possible value) and central
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values (i.e., choose the alternative with the highest mid-point of its value interval)

(see Salo and Hämäläinen, 2001). The advantage of these rules is that they can

be readily computed and communicated.

3. Pairwise value differences between alternatives: Decision rules can be

based on measures on how well alternatives perform relative to others. One such

measure is the maximum loss of value which indicates by how much the value of

some other alternative can at most exceed that of xi, if the DM were to choose

xi (Salo and Hämäläinen, 2001). This minimax regret rule is appealing in that

the implications of incomplete information are linked to ex post decision quality,

allowing the DM to take an informed decision on whether or not to continue with

preference elicitation.

4. Maximization of expected value: If sufficient assumptions about the prob-

abilities of feasible parameters can be made, the alternative with the highest

expected overall value can be recommended (see, e.g., Weber, 1985). Despite

its conceptual appeal, this decision rule may be problematic, because the elic-

itation of fully specified probability distributions would call for a major effort.

Computational difficulties, too, may emerge.

5. Likelihood maximization of potentially optimal alternatives: If proba-

bility distributions on the feasible regions can be elicited, the alternative which

has the highest probability of receiving the largest overall value can be offered

as the decision recommendation. In effect, this approach is the SMAA method

(Lahdelma at al., 1998) which recommends only potentially optimal alternatives,

thus precluding non-dominated alternatives which perform reasonably well across

the entire feasible set, but which are not optimal for any combination of feasi-

ble parameters. In this sense, the SMAA method represents a rather optimistic

stance in the face of incomplete information.

Even though several decision rules have been proposed, the literature offers little guid-

ance as to which decision rules should be applied in particular decision contexts. Re-

cent simulation studies suggest that decision rules based on the use of central values

tend to outperform others in terms of minimizing the expected loss of value (Salo

and Hämäläinen, 2001). But because this conclusion depends on a number of context-

specific assumptions (e.g., absence of correlations among alternatives), further research

is needed to provide well-grounded advice for choices among alternative decision rules.

The fact that different decision rules may favor different alternatives is a source of

potential concern. In group decision making, for instance, the problem of choosing
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among alternatives may become interpreted as the problem of making choices among

competing decision rules, whereby opportunistic group members may insist on decision

rules that support their favorite alternatives. It therefore seems that principles for the

application of decision rules should be agreed upon in advance, to avoid situations

where these principles become a source of irremediable conflict.

2.4 Management of Inconsistencies

The derivation of decision recommendations from an incompletely specified preference

model presumes that the DM’s preference statements are consistent so that they define

a non-empty set of feasible weights and scores. Without adequate decision support,

however, the DM may provide inconsistent statements so that the feasible set becomes

empty. Two main approaches have been proposed to avoid this possibility:

• Consistency restoration: Taking the set of conflicting constraints as a point

of departure, the DM can be requested to modify or withdraw earlier statements

until the remaining, possibly revised constraints do not conflict with each other

any more (see, e.g., White et al. 1984, Kim and Han 1999).

• Consistency preservation: Before the elicitation of each new preference state-

ment, full information about the implications of earlier preference statements can

be computed and presented to the DM, to ensure that the new statement is not

in conflict with the earlier ones (see, e.g., by Salo and Hämäläinen 1992, 1995,

2001).

Consistency restoration may be problematic if the DM is not able or willing to revisit

earlier statements. The withdrawal of earlier statements may also undermine the cred-

ibility of the analysis, because it suggests that there are ‘errors’ in some inputs without

guaranteeing that the other inputs are less ‘erroneous’. Also, although automated pro-

cedures can be used to identify the least number of constraints that should be removed

to re-establish consistency, such procedures are computational interventions with little

interaction on the part of the DM (see, e.g., White et al., 1984): at worst, this approach

may lead to the removal of statements the DM feels most confident about. But from

a computational point of view, the advantage of consistency restoration is that it can

be applied in a batch mode so that possible problems with inconsistencies – if they do

arise – can be addressed after the preference elicitation phase.

Consistency preservation requires that the implications of earlier preference statements

are presented to the DM whenever new statements are elicited. This approach thus
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puts high demands on the ability to analyze the preference model in view of all those

statements that the DM may wish to state next. Even so, if the DM does wish to enter

a statement which violates these resulting consistency bounds (Salo and Hämäläinen,

1992), it may be difficult to determine what earlier statements should be removed

or adjusted to produce a revised specification that is consistent with the DM’s next

statement. This question has also broader implications for preference elicitation: for ex-

ample, should the DM be encouraged to provide relatively ‘narrow’ statements (which

tend to support more conclusive dominance results, but are more prone to inconsisten-

cies) or ‘broad’ statements (which entail a lower risk of inconsistencies, but are likely

to produce less conclusive dominance results)?

Table 1 gives an overview of selected methods of preference programming, with par-

ticular attention to preference elicitation as well as conceptual, mathematical and

computational advances. Overall, the general trend is from the mere incorporation

of incomplete information towards the generation of supplementary information (e.g.,

consistency bounds, measures of incompleteness, decision rules) which helps the DM

to decide whether or not the elicitation phase should be continued and, if so, how such

a continuation should be organized. Another important development is the increasing

availability of corresponding decision support tools which have enabled several case

studies.

Insert Table 1 about here

2.5. Case Studies and Decision Support Tools

While most papers on preference programming are concerned with theoretical advances,

the literature contains insightful reports on applied work, too. Anandaligam (1989),

for instance, describes an application of incomplete preference information in mitigat-

ing the harmful consequences of acid raid. Hämäläinen et al. (1992) consider the use

of preference programming in assisting groups of decision makers in the comparison

of energy policy options. Hämäläinen and Pöyhönen (1996) report experiences from

the development of policies for traffic management, highlighting the impacts of prefer-

ence programming on the decision outcome and the decision support process. The use

of multi-attribute decision analysis in nuclear emergency management is discussed by
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Hämäläinen et al. (2000) who focus on the consideration of uncertainties. Cristiano et

al. (2001) accommodate incomplete preference information in quality function deploy-

ment and demonstrate how such information help in the design of a surgical product.

Gustafsson et al. (2001) apply the PRIME method to the valuation of a high technol-

ogy company and illustrate how preference programming can be used in scenario-based

forecasting problems.

Several software tools have been developed to support the application of preference

programming. WINPRE (Workbench for INteractive PREference Programming; He-

lenius and Hämäläinen, 1998) provides computerized support for both PAIRS (Salo

and Hämäläinen, 1992) and the use of interval valued-statements in the AHP (Salo

and Hämäläinen, 1995). The RINGS system (Kim and Choi, 2001) allows the DMs

to analyze range-based information in multi-attribute group decision making. PRIME

Decisions (Gustafsson et al., 2001) features elicitation tours which assist the DM in

the specification of interval-valued ratio statements. RICH Decisions (Salo et al., 2003)

is an internet-based decision support tool which admits incomplete ordinal preference

information and offers several decision rules (Salo and Punkka, 2003).

Experiences from case studies such as these lend support to the following observations:

• Even though the DMs are able and willing to provide incomplete preference infor-

mation, the sheer number of possibilities in preference elicitation can be a major

challenge. It is not necessarily apparent what kinds of elicitation questions should

be posed to the DM, in order to obtain information that effectively contributes

to the identification of preferred alternatives. This concern with effectiveness is

warranted because the DM needs to specify two crisp numbers in order to define

a single interval, for example.

• If the preference model remains relatively incomplete (so that the feasible param-

eter sets are large), dominance structures are unlikely to help in the determination

of most preferred alternatives. In such situations, it is necessary to apply decision

rules or to seek other ways of terminating the analysis (e.g., informal negotia-

tions among the group members; see Hämäläinen and Pöyhönen, 1996). Thus,

principles for choosing among decision rules and for carrying out MCDA-assisted

negotiations are essential.

In effect, alternative approaches to preference elicitation, choices among decision rules

and principles for terminating the decision support process are all intertwined. For

example, because the recommendations of decision rules depend on the DM’s earlier
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preference statements, these recommendations depend on just how early or late in the

preference elicitation process these rules are applied. Close attention must consequently

be given to what kinds of elicitation questions should be posed to the DM, and when

and how intermediate results should be presented.

3. MODELS OF DECISION QUALITY

3.1. Possible Loss of Value in Preference Programming

The costs of preference elicitation have not been addressed in most applications of

hierarchical weighting models, partly because the DM is usually requested to provide

a complete specification and partly because in some contexts (e.g., siting of large facil-

ities) these costs are negligible in comparison with the costs of the alternatives. Even

in the preference programming literature – where elicitation costs are cited among the

motivating reasons – it has not been formally explored what these costs imply for

choices among different elicitation approaches and decision rules.

We now turn to the above question by developing illustrative models, with the aim of

developing implications for the structuring of preference elicitation processes and the

application of decision rules. The preference statements are expressed as ratio com-

parisons, because several preference programming methods employ such comparisons

and because the resulting models are more tractable than those based on arbitrary

preference statements. By construction, these models are simple representations of hy-

pothetical decision problems; however, from the viewpoint of our purposes this is not

a major restriction because similar implications would apply to more complex models

as well. Nor is our focus on the maximax decision rule restrictive as related models in

support of these implications can be established for other decision rules, too.

To begin with, let there be two attributes and an infinite number of alternatives such

that there is an alternative for all pairs of scores (v1, v2) such that v1, v2 ≥ 0 and

v2
1 + v2

2 = 1. Now, if the DM states that the first attribute is more important than the

second, the set of feasible attribute weights is S0 = {(w1, w2)|w1 ≥ w2, w1 + w2 = 1}).
If the maximax decision rule is adopted – meaning that the best alternative is the one

for which the maximum overall value over the set S0 is highest – the corresponding

decision recommendation is the alternative v1 = (v1
1, v

1
2) = (1, 0) which gives the highest

value to the sum maxw∈S0 [w1v1 + w2v2].

We assume that the true (unknown) weight vector w∗ = (w∗
1, w

∗
2) is a random variable,

determined by the ratio r = w∗
1/w

∗
2 which follows the probability density function fr(·)
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over the interval [1,∞[. The optimal alternative (v∗1, v
∗
2) (which corresponds to the

true weight vector w∗) is characterized by the condition v∗1/v
∗
2 = w∗

1/w
∗
2w = r, i.e.,

(v∗1, v
∗
2) = 1√

1+r2 (r, 1). The loss of value which results from choosing v1 (as opposed to

v∗) is therefore

LV(v1) = (w∗
1, w

∗
2)(v

∗
1, v

∗
2)

T + (w∗
1, w

∗
2)(1, 0)T

=
r

1 + r

r√
1 + r2

+
1

1 + r

1√
1 + r2

− r

1 + r

=
1

1 + r
(
√

1 + r2 − r).

Next, assume that incomplete information about the true ratio r between the weights

w∗
1 and w∗

2 is obtained so that the DM specifies an upper bound r = rε on the ratio r

(where ε follows the probability density function fε(·) over the interval [1,∞[). When

this information is added to the other constraints on S0, the application of the maximax

decision rule leads to the alternative v = (v1, v2) = 1√
1+(rε)2

(rε, 1). For this alternative,

the loss of value (relative to the optimal alternative v∗) is

LV(r, ε) = (w∗
1, w

∗
2)(v

∗
1, v

∗
2)

T − (w∗
1, w

∗
2)(v1, v2)

T

=
r

r + 1

r√
1 + r2

+
1

r + 1

1√
1 + r2

− r

r + 1

xε√
1 + (rε)2

− 1

r + 1

1√
1 + (rε)2

=
1

r + 1
[
√

1 + r2 − 1 + r2ε√
1 + (rε)2

]. (2)

Because r and ε are random variables, the expected loss of value (based on the acqui-

sition of upper bound r and the application of the maximax rule) is given by

ELV(fr, fε) =
∫ ∞

1
[
∫ ∞

1
LV(ρ, χ)fε(χ)dχ]fr(ρ)dρ. (3)

The derivative of (2) with respect to ε is [r2/(
√

1 + (rε)2)3](ε − 1) > 0, and thus the

loss of value LV(r, ε) is minimized when ε attains its lower bound: in fact, it is zero

if and only if ε = 1. If ε follows a log-normal distribution (i.e., ε = eε where ε ≥ 0

and ε ∝ N(0, σ2
ε)), it follows that the expected loss of value (3) approaches zero as the

term σε tends to zero.

In the above model, the upper bound r is likely to be near the true ratio r only if the

variance σ2
ε is small. The elicitation of such a ‘good’ upper bound is likely to entail

higher costs than that of an upper bound with a larger variance. When the costs of

preference elicitation costs are accounted for by a decreasing cost function C(σε), the

DM is essentially faced with the problem of minimizing

minσε [ELV (fr, fε) + C(σε)] (4)
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where the first term stands for the expected loss of value and the second term denotes

the costs of reaching a given level of accuracy.

If these costs are sufficiently high for small values of σε, the optimum solution to (4)

is obtained at some σε > 0, indicating that the use of incomplete information leads

to lower total costs than attempts to elicit complete information. Another important

result suggested by (4) is that – at any stage of analysis – the costs of further elicitation

efforts should be balanced by equal or greater improvements in decision quality, as

measured by the reduction in the expected loss of value value.

The above probability model is essentially a conceptual framework, because the specifi-

cation of requisite probability distributions would entail an inordinate elicitation effort.

It is simplistic in that the DM is assumed to be risk-neutral with respect possible loss

of value. Nor is the elicitation of probability distributions in keeping with the ‘spirit’ of

preference programming methods which use set inclusion in the modelling of incomplete

information.

Yet, if probabilistic modelling were to be pursued despite the above remarks, the DM

should exploit her beliefs about the distribution of the error term ε when revising her

assumptions about the distribution of the model parameters (such as the weight vector

w∗). For instance, if the ratio r = w∗
1/w

∗
2 and the error term ε follow the distribution

fr(τ) = fε(τ) = 1/τ 2, (τ ≥ 1), the DM’s revised probability for the statement w∗
1 <

%w∗
2, conditioned on the upper bound r, becomes

Fr(r < %|εr = r) = K
∫ %

1
[
∫ r/x

1
(
1

y
)2dy](

1

x
)2dx

= K[1− 1

%
− 1

r
ln %], (5)

where K = 1/[1− (1/r)(1 + ln %)] is the normalization constant. Here, the conditional

distribution (5) has a different functional form than Fr(%) = [1 − (1/%)]. These and

other computational complexities suggest that the DM cannot be expected to master

Bayesian inferences without extensive support for probability judgments.

The above Baysian model has implications for the performance evaluation of preference

programming methods. Often, a sample of representative weights is generated from

a uniform distribution over the weight set S0 = {(w1, . . . , wn)|∑n
i=1 wi = 1, wi ≥ 0}.

Using these weights, an incomplete preference specification is derived by applying a

constant term ∆ > 1 to the ‘true’ ratios between the components of weight vectors:

for instance, if the true ratio between the two first components of the weight vector is

r12 = w1/w2, the lower and upper bounds in an interval statement might be defined as

w1/w2 ∈ [(1/∆)r12, ∆r12] (Salo and Hämäläinen, 2001).
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Even though it does support the comparison of different decision rules, the above

evaluation approach can be criticized on the grounds that the ‘true’ ratio (and hence

the underlying weight vector) can, in principle, be inferred from the interval because

the same error term ∆ is used in the computation of both lower and upper bounds. In

fact, this symmetric distribution of lower and upper bounds may explain why decision

rules based on estimates nearer the middle of these intervals (e.g., central weights)

tend to outperform decision rules which choose alternatives that are optimal at some

extreme point of the feasible weight set (e.g., maximax rule).

3.2 Equitable Treatment of Alternatives

Decision rules can be used at any stage of the analysis to obtain a decision recom-

mendation based on the statements that the DM has provided up to that point of

analysis. Yet, as a matter of principle, it is plausible to require that all alternatives

should be treated in the same way, in the sense that no alternative is disadvantaged

due to the particular sequencing of preference elicitation steps or the timing of decision

rules. We next develop a decision model which helps formalize what this requirement

for equitable treatment of alternatives implies for preference elicitation.

Let v1
1 = v1(x

1
1) and v2

1 = v1(x
2
1) be the scores of alternatives x1, x2 on attribute

a1. Without losing generality, we assume that these scores belong to the range [0, 1[.

These scores are characterized by the ratios r1 = 1/(1− v1
1) and r2 = 1/(1− v2

1) which,

by construction, are greater than one. Conclusions about which alternative performs

better on attribute a1 can be inferred from these ratios: for instance, x1 is better than

x2 with regard to a1 if and only if r1 > r2.

If there are no a priori reasons for concluding that either alternative is better than the

other, the ratios r1, r2 can be regarded as random variables with the same probability

density function fr over the interval [1,∞[. In this case, incomplete score information

can be modelled through upper bounds r′1, r
′
2 on the ratios r1, r2, defined by r′1 = r1ε1

and r′2 = r2ε2 where ε1, ε2 are random variables over the interval [1,∞[ with probability

density functions f1, f2. Now, if a decision recommendation is derived on the basis of

this information and the application of the maximax decision rule (with regard to the

first attribute only), the recommended alternative would be x1 if r′1 > r′2 and x2 if

r′2 > r′1.

One way of interpreting the requirement for an ‘equitable treatment of alternatives’ is

that, in the absence of any distinguishing information, the probability of erroneously

choosing x1 when x2 is the better alternative should be the same as the probability
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that of choosing x2 when x1 is the better alternative. These two probabilities are given

by the integrals

P (v′11 > v′21 |v2
1 > v1

1) =
∫ ∞

1
{
∫ ∞

r1

[
∫ ∞

1
(
∫ ∞

r2ε2
r1

f1(ε1)dε1)f2(ε2)dε2]fr(r2)dr2}fr(r1)dr1(6)

P (v′21 > v′11 |v1
1 > v2

1) =
∫ ∞

1
{
∫ ∞

r2

[
∫ ∞

1
(
∫ ∞

r1ε1
r2

f2(ε2)dε2)f1(ε1)dε1]fr(r1)dr1}fr(r2)dr2.(7)

The ratios r1, r2 appear symmetrically in the above integrals. Thus, by interchanging

the roles r2 and r1 in one of the integrals, it follows that the probabilities (6) and (7) are

equal if the probability density functions f1(·), f2(·) and their cumulative probability

functions F1(·), F2(·)) satisfy the following (sufficient) condition
∫ ∞

1
[f1(ε)F2(αε)− F1(αε)f2(ε)]dε = 0, (8)

where α = max{r1/r2, r2/r1} is a constant.

The condition (8) is satisfied if the error terms follow the same distribution (i.e., f1(·) =

f2(·)). If not, the condition (8) hardly ever holds: for instance, if ε1 and ε2 follow the

log-normal distribution and ε1 has the higher variance, then alternative x1 has the

higher probability of being (erroneously) regarded as the better alternative (on the

basis of the maximax decision rule) when the alternatives perform equally well. There

are, however, some highly exceptional cases with non-identical probability distributions

where (8) may hold: this is the case for distributions f1(·) and f2(·) defined by f1(2) =

0.4, f1(4) = 0.2, f1(8) = 0.4 and f2(2) = 0, f2(4) = 1, f2(8) = 0, for example.

If both ratios are equally ‘difficult’ to estimate (meaning that ε1 and ε2 follow the

same distribution), the above result implies that the DM should provide the upper

bounds r′1, r
′
2 using the same confidence level (e.g., fractile of the cumulative probability

function), for else one alternative will be disadvantaged relative to the other. From

the viewpoint of preference elicitation, the key implication of this is that the same

level of thoroughness should be pursued when addressing with all alternatives (e.g., by

asking the DM to establish intervals which contain the scores at some fixed confidence

level). Furthermore, decision rules should not be applied before score information on all

alternatives has been elicited. Otherwise, there is a possibility that those alternatives

that have not been considered at all (or at the same level of thoroughness) are unduly

disadvantaged.

The above analysis can be readily adapted to the elicitation of attribute weights, too.

Assume there are three attributes and two alternatives x1, x2 such that the scores

of the first alternative are v1 = (v1(x
1
1), v2(x

1
2), v3(x

1
3)) = (1, 0, 0) while those of the

second one are v2 = (0, 1, 0). Also, assume that the least important of the three
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attributes is the third one, and that this attribute is used as the reference attribute

in two ratio-based weight elicitation questions. In this case, the overall values of the

two alternatives can be determined on the basis of estimates about the weight ratios

r1 = w1/w3 and r2 = w2/w3. But if it is possible to obtain only upper bounds for these

ratios such that r′1 = r1ε1 and r′2 = r2ε2, the maximum value for the first alternative,

computed on the basis of this estimate, is w′
1 = r1ε1w

′
3 while that of the second is

w′
2 = r2ε2w

′
3. Thus, the probability of choosing the second (but inferior) alternative x2

is P (r1x1 > r2ε2|r1 > r2), which is essentially the same expression as in (6) and (7). It

therefore follows that just as in score elicitation, the same level of thoroughness should

be pursued in assessing attribute weights.

4. IMPLICATIONS FOR THE PRACTICE OF DECISION ANALYSIS

4.1 Preference Elicitation

The fundamental philosophy in preference programming is that (1) an effort is made

to elicit as much preference information as reasonably possible and (2) if the resulting

preference specification does not lead to the identification of the most important al-

ternative, a decision recommendation is produced with the help of a suitable decision

rule. In this context, the decision models in Section 3 suggest several guidelines for the

practice of decision analysis:

• An attempt should be made to obtain equally ‘complete’ score information for all

alternatives, in the sense that the DM is equally confident in that the preference

specification of each alternative contains the ‘true’ scores. This can be encouraged

by attaching a progression of confidence intervals to the preference statements,

for example. One may also apply fuzzy mathematics in the aggregation of such

confidence intervals (see, e.g., Salo, 1996a).

• The same level of ‘thoroughness’ should also be pursued when assessing the rela-

tive importance of attributes. If this requirement is violated, there is a possibil-

ity that some alternative becomes disadvantaged, only because it has its highest

score (relative to the other alternatives) on an attribute about which little weight

information is available (meaning that this attribute would count less in the ap-

plication of the maximin rule, for instance).
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• In the elicitation of attribute weights, it is advisable not to mix different types

of preference elicitation questions, because this may result in a feasible region

that is less symmetric than what is obtained by relying on a single question type

(e.g., interval-valued ratio statements). Limiting the number of different types of

elicitation questions may also put a smaller cognitive load on the DM.

If an a priori decision is taken to continue the analysis until the most preferred al-

ternative is determined by dominance structures (rather than by decision rules), the

above recommendations do not apply with full force. This is because the recommended

alternative would surely remain the one with the highest value, even if additional pref-

erence statements were to be acquired. But because it is difficult to know in advance

if such dominance structures can be established, it is advisable to observe the above

recommendations in all situations.

The structure of the elicitation process should be driven by an assessment to what

extent the expected costs of preference elicitation are outweighed by the expected ben-

efits (in terms of reductions in expected loss of value (4)). For example, if the number

of alternatives is large, the problem can be first analyzed at high confidence levels (e.g.,

wide intervals which contain the ‘true’ parameters almost surely), followed by further

analyses using lower confidence levels (e.g., intervals which contain the parameters at a

50 % confidence level; see Salo and Hämäläinen, 2001). This is because the statements

at high confidence levels may eliminate several dominated alternatives so that further

elicitation efforts can be focused on the remaining non-dominated alternatives. Con-

versely, if there are few alternatives which resemble each other, statements at a high

confidence level are unlikely to eliminate any alternatives on the basis of dominance

structures, wherefore it may be advisable to start with narrower intervals at a lower

confidence level. The choice of confidence levels is thus an important decision in its

own right.

One can also argue that the choice of decision rules should be contingent on the par-

ticular confidence level that is being applied. At high confidence levels (e.g., large

intervals), it seems that alternatives should be excluded only on the basis of robust

principles (i.e., dominance structures): otherwise, there is a possibility that further

elicitation steps at a lower confidence level would give precedence to alternatives that

might have been eliminated, if less restrictive decision rules had been applied earlier

on.

4.2. Applicability of Preference Programming
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The recognition of preference elicitation costs makes it possible to characterize con-

texts where preference programming methods are likely to be helpful. To begin with,

it is plausible to assume that the costs of score elicitation are roughly proportional to

the number of alternatives. Then, if the specification of the DM’s preferences is rela-

tively precise and the number of alternatives is large, even relatively incomplete score

information may exclude several dominated alternatives from further consideration.

This suggests that – rather than being seen as a tool for supporting final compar-

isons among competing alternatives – preference programming can serve as a front-end

for conventional decision analyses. Here, the ‘added-value’ of preference programming

comes from the ability to prune the number of relevant alternatives to a manageable

few, thus ensuring that further analytical efforts are focused on the most relevant

alternatives.

Preference programming also holds considerable potential in settings where reliable

information on the DMs’ preferences or the alternatives cannot be obtained, for one

reason or another (i.e., the cost term in (4) is large). Examples of such settings in-

clude (i) the multi-criteria evaluation of preventive measures in the context of nuclear

emergency management (Hämäläinen et al., 2000) and (ii) the evaluation of risk mitiga-

tion strategies with highly uncertain consequences, whereby the precautionary principle

should be invoked (see, e.g., Stirling, 1999; Salo, 2001). Instead of recommending seem-

ingly ‘optimal’ alternatives, the inherent limitations of available information in such

settings must be recognized and reflected in a strategic posture which gives precedence

to robust alternatives that perform reasonably well across a large range of permissible

parameter values.

4.3. Dominance Structures, Decision Rules and Rank Reversals

Rank reversal is a phenomenon where the introduction or removal of a third alternative

changes the relative ranks of two other alternatives. In effect, rank reversals imply

that the DM’s preferences for a given alternative depend not only on the properties of

the alternative itself, but also on what other alternatives are included in or excluded

from the analysis. Rank reversals have been a source of considerable controversy, and

are regarded by many as a major flaw in decision support methodologies such as the

Analytic Hierarchy Process (see, e.g., Belton and Gear, 1984; Salo and Hämäläinen,

1997).

It is therefore pertinent to ask which decision rules exhibit rank reversals. One may

readily conclude that rank reversal cannot occur with decision rules in which the alter-

native’s performance measure depends only on the properties of this alternative alone
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(in terms of its scores and fixed attribute weights). Clearly, no such unitary perfor-

mance measure will change, even if additional alternatives are introduced or existing

alternatives are removed. Several decision rules in Section 2 (e.g., maximax, maximin,

central values, central weights) are therefore immune to rank reversals.

However, if a decision rule is based on the comparison of performance measures that

depend on two or more alternatives, rank reversals may occur. Thus, for instance, the

normalization of attribute-specific scores may cause rank reversals in the AHP (Belton

and Gear, 1984; Salo and Hämäläinen, 1997). Another example is the Stochastic Multi-

objective Acceptability Analysis (SMAA; Lahdelma et al., 1998) where the decision

recommendation is based on the weight sets for which a given alternative is optimal.

That is, the set W (xj) = {w ∈ W |∑n
i=1 wiv

j
i ≥

∑n
i=1 wiv

k
i ∀ xk 6= xj} (where W =

{(w1, . . . , wn)|∑n
i=1 wi = 1, wi ≥ 0, i = 1, . . . , n}) consists of weights for which the

overall value of alternative xj is higher than or equal to that of all other alternative.

This set is used to derive a performance measure – called the acceptability index AI(xj)

– which is defined as the ratio between the volumes of W (xj) and W .

Now, assume that two alternatives x1, x2 are evaluated with SMAA with regard to two

attributes using the score information v1 = (v1
1, v

1
2) = (0.7, 0) and (v2

1, v
2
2) = (0, 0.6).

Because the corresponding weight sets are W (x1) = {w ∈ W | w1 ≥ 6
13
} and W (x2) =

{w ∈ W |w1 ≤ 6
13
}, alternative x1 has the larger acceptability index and is therefore

the recommended alternative.

Next, assume that a third alternative x3 with scores v3 = (v3
1, v

3
2) = (0.6, 0.225) is

introduced. After this addition, the weight sets become W (x1) = {w ∈ W |w1 ≥
9
13
},W (x3) = {w ∈ W | 5

13
≤ w1 ≤ 9

13
} and W (x2) = {w ∈ W |w1 ≤ 5

13
}. Alternative

x2 now has the acceptability index so that it becomes the recommended alternative,

even though it was inferior to x1 before the introduction of x3: a rank reversal thus

has occurred.

Although reports from applied work (see, e.g., Lahdelma et al., 2002) suggest that the

DMs do feel comfortable with the SMAA method, one can raise also other concerns

about its validity as a decision support methodology. In its original version, SMAA

does not encourage the DM to explicate her preferences: thus, while the weight set

W (xj) may be larger than W (xk) for all xk 6= xj, this set may consist of weights that

are not aligned with the DMs (unstated) preferences. Hence, additional checks are

needed to ensure that the weights underlying the acceptability index and the DM’s

preferences are compatible (see also Tavares, 1999).

Rank reversals may also occur when the decision recommendation is based on the

minimization of maximum loss of value (MLV). To demonstrate this, assume there are
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two alternatives with scores v1 = (v1
1, v

1
2) = (0.4, 0.6) and v2 = (v2

1, v
2
2) = (0.6, 0.3),

and that no weight information is available (i.e., the set of feasible weights is W =

{(w1, w2)|w1 + w2 = 1, wi ≥ 0, i = 1, 2}). In this situation, the MLV of alternative

x1 is maxw∈W [(6 − 4)w1 + 0w2] = 2 and that of x2 is 3, i.e, x1 is the recommended

alternative. Now, if a third alternative with scores v3 = (v3
1, v

3
2) = (0.8, 0.1) is added,

the MLVs of the three alternatives become 4,3 and 5, respectively, indicating that x2

becomes the preferred alternative, even though previously x1 was the alternative. In

much the same way, one can show that many other measures based on the comparison

of value differences between alternatives (e.g, aggregated net intensity; see Kim and

Ahn, 1999; Ahn et al., 2000) may exhibit rank reversals.

If rank reversals are deemed unacceptable, the above results suggest that the MLV con-

cept should not be employed as decision rule. This concept can still be useful because

it supports informed decisions as to when the elicitation phase might be terminated.

That is, while unitary decision rules can be used to obtain recommendations which

do not exhibit rank reversals, the computation of MLVs still helps the DM consider if

additional elicitation efforts are warranted in view of possible improvements in decision

quality.

5. TOWARDS A RESEARCH AGENDA

The discussion in the two preceding sections points to several research topics:

• Matching methods to problems: The explicit consideration of preference

elicitation costs helps assess the likely advantages and disadvantages of prefer-

ence programming in different contexts. From the viewpoint of applications, it is

therefore important to develop guidelines for (i) identifying the qualitative prop-

erties of such contexts and for (ii) mapping these properties into implications for

decision support process. For instance, recurring decision problems with mod-

est stakes may be best supported by a relatively precise preference specification

(e.g., narrow intervals) and decision rules that are based on estimates nearer the

middle of these intervals (e.g., central values). But when the stakes are high

and the development a complete preference specification is hampered by major

uncertainties, wider confidence intervals and more ‘precautionary’ decision rules

(e.g., maximin) may be called for. Moreover, preference programming methods

can also be seen as a means of conducting ex post sensitivity analysis with regard

to all model parameters (Mustajoki et al., 2003).
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• Computational efficiency analysis: The development of above guidelines calls

for simulation studies on which elicitation approaches and decision rules perform

best, subject to different assumptions about problem size and costs of preference

elicitation. Apart from the work of Salo and Hämäläinen (2001), the analyses by

Barron and Barrett (1996) as well as Salo and Punkka (2003) fall into this stream

of research, even though these analyses are concerned with ordinal preference in-

formation and few decision rules only. Nor have these earlier studies modelled

elicitation costs in explicit terms, or sought to capture the staged nature of pref-

erence elicitation.

• Development of elicitation strategies: Further work should be devoted to the

question of how preference information should be elicited from the DMs. Some

advances have been made by structuring the elicitation process into structured

sub-sequences (see, e.g., Mustajoki et al., 2003). Also, the PRIME Decisions

software encourages the DM to complete several elicitation tours, each of which

consist of a sequence of elicitation tasks (Gustafsson et al. 2001). Such ‘build-

ing blocks’ help in the development of elicitation strategies and the legitimate

application of decision rules. Related research should also address to what ex-

tent preference programming approaches may mitigate behavioral biases in the

elicitation attribute weights – or even create new ones (see, e.g., Weber and

Borcherding, 1993).

• Concepts and tools for group decision support: Although many authors

have noted that preference programming is suitable for group decision support

(see, e.g., Hämäläinen and Pöyhönen, 1996; Kim and Ahn, 1999), there is a

need for suitable preference elicitation concepts. Here, a priori agreements on

principles of democratic decision making – analogous to the requirement for the

equitable treatment of alternatives in Section 3 – can be used to derive constraints

on the preference model: for example, the group may agree that no member shall

have to yield more than a fourth of the value that she would get, if the group

were to choose her preferred choice. After such cross-cutting constraints have

been introduced, the group’s aggregate utility may then be maximized, in the

assurance that the resulting recommendation complies with the decision making

principles that the group has set for itself. Similar principles can also be used to

establish new decision rules: for instance, the recommendation may be selected

by minimizing the relative loss of value that any group member has to endure

(e.g., minkmaxw∈Sw [Vk(x
∗,k)−Vk(x

i)]/[Vk(x
∗,k)−Vk(x

◦,k)] where x∗,k and x◦,k are

the most and least preferred alternatives of the k-th group member).
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• Development of dedicated software tools and reflective case studies:

While conventional decision analyses can be carried out without dedicated soft-

ware tools, such tools are indispensable for preference programming where the

determination of dominance structures and decision rules often lead to exten-

sive optimization problems. Even though there already exist several user-friendly

tools (e.g., WINPRE, PRIME Decisions, RICH Decisions; see Hämäläinen, 2003),

high priority much be attached to further tool development. Also, because the

advantages and disadvantages of preference programming techniques are realized

in the context of applications, the research agenda should be geared towards re-

flective case studies. Apart from the decision outcome, such studies should also

analyze the impacts that preference programming has on the decision support

process.

6. CONCLUSION

In this paper, we have discussed the salient features of preference programming methods

for the incorporation of incomplete preference information in hierarchical weighting

models. By building on illustrative models and experiences from reported applications,

we have outlined guidelines for ensuring that the consecutive phases of preference

elicitation and synthesis are carried out so that all alternatives are treated fairly and

cost-effectively.

We have also discussed the advantages and disadvantages of preference programming

in different decision contexts. Preference programming seems particularly useful in

problems where (i) the elicitation complete information is either impossible or involves

a very high cost; or where (ii) the elicitation of incomplete information during the

early phases can be motivated by an attempt to prune dominated alternatives from

a large set of alternatives. Our results also suggest that if the costs of information

elicitation are explicitly accounted for, preference programming methods may outper-

form conventional approaches in terms of the overall cost-benefit characteristics of the

decision support process. We conjecture that this result – together with the increasing

availability of decision support tools – may contribute to the wider use of preference

programming in the practice of decision analysis.
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43. Salo, A. and Hämäläinen, R.P. (1992). Preference Assessment by Imprecise Ratio

Statements (PAIRS). Operations Research, vol. 40, pp. 1053–1061.
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