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Abstract

The performance of the Prognostics and Health Management (PHM) depends both on the func-

tioning of the measurement acquisition system and on the actual state of the system being monitored.

The dependencies between these systems must be considered when developing optimal inspection and

maintenance strategies. This paper develops a methodology to support maintenance decisions for in-

dustrial systems with PHM capabilities. The methodology employs influence diagrams when seeking

to maximize the expected utility of system operation. The optimization problem is solved by mixed-

integer linear programming, subject to budget and technical constraints. Chance constraints can

be also included, for instance to curtail risks based on measures such as the Value at Risk (VaR)

and the Conditional Value at Risk (CVaR) of system operation. The viability of the methodology is

demonstrated by optimizing the inspection and maintenance strategy for a gas turbine equipped with

PHM capabilities. The computation of the Value of Perfect Information (VoPI) provides additional

insights on maintenance management.
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1 Introduction

Digitalization is a fundamental driver of Industry 4.0, a novel paradigm which enhances production

efficiency through information and communication technologies [1, 2]. These technologies also provide a

foundation for Predictive Maintenance (PM) for industrial components and systems, whereby condition

monitoring data is employed to perform three tasks:

(i) detection of abnormal states, by identifying deviations from normal operating conditions in pro-

duction processes, manufacturing equipment and products;

(ii) diagnostics, by classifying abnormal states;

(iii) prognostics, by predicting the evolution of abnormal states up to failure.

Detection, diagnostics and prognostics constitute the Prognostics and Health Management (PHM, [3,

4, 5, 6]). These tasks help implement efficient, just-in-time and just-right maintenance strategies by

selecting the right action for the right component at the right time, thus maximizing production revenues

and minimizing costs and losses, including assets [7]. Furthermore, PHM performance metrics have been

introduced to characterize errors in detection, diagnostics and prognostics [8, 9]. Based on these metrics,

several models have been developed to optimize Operations and Maintenance (O&M) decisions [7] and

investments in PHM capabilities [10, 11, 12, 13].

A main limitation of earlier PM models is the assumption that sensors always work correctly, although

in practice sensors may malfunction: freezing (or constant), noise, spike (or short), drift and quantization

are the most common sensor malfunctions [14]. Faulty sensors may provide inaccurate measurements

of the monitored physical parameters, affecting the performance of the PHM algorithms by conveying

inaccurate or misleading information about the actual system state. This can cause missing alarms or

unnecessary system downtimes, resulting in large financial losses. For example, the spillover effect (cross-

sensitivity [15]) is known to propagate the anomalous monitoring data from a faulty sensor to other

healthy signals, causing difficulties in choosing the correct maintenance action (i.e., fix or replace the

sensor).

The detection of a sensor malfunction, which is often performed through sensor data validation,

has been addressed by different methods, including Auto Associative Neural Network (AANN, [16]),

Nonlinear Partial Least Squares Modeling (NLPLS, [17]), Principal Component Analysis (PCA, [18, 19]),

Auto Associative Kernel Regression [20, 21] and Multivariate State Estimation Technique (MSET, [22]).

However, algorithms for sensor validation too are affected by errors that depend on the health state of

the monitored system. Specifically, if the monitored system does not work correctly, sensor validation is

less effective in detecting incoherent deviations of the faulty sensor values with respect to data provided
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by other sensors. The main reason is that sensor validation algorithms are generally trained by signal

data which is generated by healthy system operation only. Based on this training data, the algorithm

learns to reconstruct the behaviors of the monitored signals when the system operates normally, which

differs from those acquired when the system operates in a degraded state. Although the change in the

signal behaviors is fundamental to the early detection of the system anomaly, it nonetheless lowers the

performance of the sensor validation algorithms, because they have not been trained in the degraded

setting.

When a system is equipped with PHM capabilities, maintenance decisions refer to two sequential

actions: first, the inspection of either the sensors or the industrial system; second, the necessary repairs

depending on the inspection outcomes. The costs of the sequential actions are very different, with different

effects on the health state of the system and uncertainties about the performance of the PHM algorithms.

The above considerations suggest that optimal maintenance decision problems in a PM setting must

be framed as a multi-stage decision problem, encoding the mutual dependence of the PHM algorithms

tracking the system health state on those for sensor validation [23, 24]. On this topic, Driessen et al. [25]

present a cost evaluation of maintenance policies for a single-component system, which is periodically

subject to imperfect inspections. Do et al. [26] evaluate different maintenance policies for a deteriorating

system in which the inspection policy is based on the residual useful life. Papakonstantinou and Shinozuka

[27] employ Partially Observable Markov Decision Processes (POMDP) to optimize inspection and main-

tenance policies based on stochastic models and uncertain structural data in real time. Literature reviews

(e.g., [28, 29]) call for increased attention to optimization models on condition-based maintenance, but

they do not account for the imperfect performance of condition monitoring and inspections [30, 31, 32].

Influence diagrams [33] are one of the well-established techniques for structuring and solving multi-

stage decision problems. They are commonly solved, for instance, through local transformations such

as arc reversals and node removals in the diagram [34]. Tatman et al. [35] develop the equivalent

decision tree representation, which is solved by dynamic programming [36]. Nonetheless, these standard

techniques have limitations. First, they rely on the “no-forgetting” assumption, meaning that earlier

decisions are known when making later ones. Although this may be not too limiting in practice, the

information flow in industrial practice can at times be disrupted due to communication failures. Second,

the use of dynamic programming is restrictive in that the objective function cannot include risk measures

such as Value-at-Risk or semi-absolute deviation, which reflect the variability of consequences across all

possible outcomes.

To overcome these limitations, we employ the Decision Programming approach proposed by Salo

et al. [37], which employs Mixed Integer Linear Programming (MILP, [38, 39]) to solve multi-stage

decision problems under uncertainty. Specifically, we employ Decision Programming to identify the
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optimal inspection and maintenance strategy for an industrial system with realistic PHM capabilities

and sensor validation algorithms: each combination of states of the nodes of the influence diagram is

mapped onto the two-stage decision maximizing the system utility. To the authors’ best knowledge,

this is the first time that a maintenance decision support model is developed in this practical setting,

considering realistic PHM and sensor validation systems. In current industrial practice, the choice of

maintenance strategies for industrial systems with PHM capabilities has been driven mainly by expert

judgment [40].

The remainder of the paper is as follows. Section 2 introduces the influence diagrams and the problem

formulation. Section 3 presents the optimization model and additional constraints. Section 4 proposes a

case study from industry, concerning the optimization of inspection and maintenance strategies of a gas

turbine. Section 5 discusses the potential and limitations of the proposed methodology. Finally, Section

6 concludes the paper and outlines extensions for future research.

2 Formulation of the influence diagram

An influence diagram is a directed acyclic graph that represents probabilistic causal dependencies between

events and decisions [33]. Figure 1 shows an example of influence diagram which consists of three types

of nodes:

(i) chance nodes C (indicated by circles) represent the random events of the scenarios;

(ii) decision nodes D (indicated by squares) represent possible choices of actions;

(iii) value nodes U (indicated by hexagons) represent the utility of system operation.

Causal dependencies in the set of nodes N = C ∪D∪U are represented by directed arcs A ⊆ {(i, j)|i, j ∈

N, i 6= j}. Specifically, arc (i, j) ∈ A connects node i to node j to show that the state at node j is

conditionally dependent on that at node i. The direct predecessors of node j belong to the information

set I(j) = {i ∈ N |(i, j) ∈ A}. The arcs directed to chance nodes indicate probabilistic dependencies,

whereas those directed to decision nodes denote the availability of information [34]. Because the network

is acyclic, the nodes can be indexed with consecutive integers so that the indexes of nodes i ∈ I(j) are

lower than the index of node j.

Node j ∈ C ∪D corresponds to the variable Xj , whose realization sj assumes values in the discrete

set of states Sj . The meaning of these variables is different for chance and decision nodes. Specifically,

the states of decision nodes denote the choice of the risk mitigation actions that can be taken to reduce

the probability of system failure. The decision Xj at node j ∈ D depends on the information state sI(j)
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which belongs to the Cartesian product

SI(j) = ×
i∈I(j)

Si, (1)

defined by the combinations of states for all nodes in the information set. The information state deter-

mines what information is available when making the decision.

On the other hand, the states of chance nodes denote the health state of the system components [41].

These states represent mutually exclusive events, for which the uncertainty in the realization is described

by the probability distribution on the states Sj . If the chance node does not depend on other nodes (no

incoming arcs), there is an unconditional probability distribution P[Xj ]on the set Sj . For each chance

node j ∈ C which has a non-empty information set I(j), the conditional probability of the state sj ∈ Sj

is P[Xj = sj |XI(j) = sI(j)], where XI(j) = sI(j) denotes that the realizations of the variables Xi for nodes

i ∈ I(j) are the same as those in the information state sI(j).

A policy for decision node j ∈ D is a function Zj that maps information state to corresponding

decisions Zj : SI(j) 7→ Sj . The binary variables z[sj |sI(j)] model the policy Zj such that

Zj [sI(j)] = sj ⇐⇒ z[sj |sI(j)] = 1. (2)

Specifically, the policy of decision node j ∈ D depends on the information state sI(j), meaning that the

choices of actions depend on the information provided by sensors and inspections. The set of combinations

of policies for all decision nodes D is a strategy Z.

A scenario s is a specific combination of states si of all chance and decision nodes. Thus, the set of

all possible scenarios is S =×i∈C∪D Si, each scenario defining a specific combination of random events

and a respective strategy of actions. For a specific strategy Z, the probability of scenario s is

p(s) =
∏
j∈C

P[Xj = sj |XI(j) = sI(j)], (3)

if Z is such that it consists of policies Zj such that Zj [sI(j)] = sj , and 0 otherwise. In summary, the

probability π(s) of scenario s is

π(s) =

 p(s), if z[sj |sI(j)] = 1∀j ∈ D

0, otherwise
. (4)

Finally, each scenario s is associated with a consequence whose value V (s) represents the utility of system

operation discounted by the costs of deploying of the selected actions. The value nodes U encode the
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values V (s) for all scenarios s. While it is possible to consider multiple value nodes, this paper focuses on

a single objective optimization in which the aim is to maximize the utility of system operation, subject

to possible resource and risk constraints.

3 Optimization model

The optimal strategy can be found through a mixed-integer linear programming model formulation,

proposed by Salo et al. [37]. In this model, the probability π(s) of scenario s is defined through the

equations: ∑
sj∈Sj

z[sj |sI(j)] = 1, ∀j ∈ D,∀sI(j) ∈ SI(j) (5)

0 ≤ π(s) ≤ p(s), ∀s ∈ S (6)

π(s) ≥ p(s) +
∑
j∈D

z[sj |sI(j)]− |D|, ∀s ∈ S (7)

π(s) ≤ z[sj |sI(j)], ∀s ∈ S (8)

z[sj |sI(j)] ∈ {0, 1}, ∀j ∈ D,∀sj ∈ Sj ,∀sI(j) ∈ SI(j). (9)

If z[sj |sI(j)] = 1 for all sj in scenario s, then probability π(s) is the upper bound p(s) because constraints

(6) and (7) imply 
0 ≤ π(s) ≤ p(s)

π(s) ≥ p(s).
(10)

On the other hand, if any binary variable z[sj |sI(j)] = 0 for any sj in scenario s, then probability π(s) = 0

because constraint (8) implies π(s) ≤ 0.

The optimal strategy Z∗ is the strategy that maximizes the expected utility of system operation so

that

E[V (Z)] =
∑
s∈S

π(s)V (s) (11)

subject to constraints (5)-(9). Specifically, constraints (5) ensure that only one decision sj ∈ Sj is taken at

each decision node j ∈ D for every information state sI(j) ∈ SI(j). Constraints (6) bound the probabilities

π(s) of scenarios s ∈ S. Constraints (7) ensure that the scenario probabilities π(s) cannot be smaller than
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their upper bounds p(s) for scenario s such that z[sj |sI(j)] = 1, j ∈ D. Constraints (8) ensure that only

those scenarios for which z[sj |sI(j)] = 1 for all j ∈ D can have positive probabilities. Finally, constraints

(9) specify the domain of all binary variables z[sj |sI(j)].

In addition, the optimization model can include technical constraints that affect the deployment of

risk mitigation actions. For instance, the constraint

z[sj |sI(j)] ≤ z[s`|sI(`)] ∀(sI(j), sI(`)) ∈ SI(j) × SI(`) (12)

means that the action sj cannot be deployed unless action s` is employed, regardless of the information

states sI(j) and sI(`) of nodes j and `.

3.1 Additional constraints

Let Q(sj |sI(j)) be the cost of risk mitigation action sj at decision node j ∈ D for the information state

sI(j), then the total cost Q(s) of implementing the actions for scenario s ∈ S is

Q(s) =
∑
j∈D

Q(sj |sI(j)) z[sj |sI(j)]. (13)

For each scenario s ∈ S, it is possible to require that the total cost of risk mitigation actions is lower than

the budget B, so that Q(s) ≤ B. If this constraint is too strict, chance constraints can be introduced,

for instance to limit the probability of exceeding the budget to β ∈ [0, 1) as

∑
{s∈S|Q(s)>B}

π(s) ≤ β. (14)

One can also consider constraints on risk measures, for instance to bound the Value at Risk (VaR) and

the Conditional Value at Risk (CVaR) of system operation [42]. At probability level α > 0, the Value at

Risk of strategy Z is

VaRα(Z) = sup {t ∈ R |
∑

{s∈S|V (s)≤t}

π(s) < α}, (15)

where the sum of probabilities considers only the scenarios for which the value V (s) meets or exceeds the

target level t ∈ R.

In addition to the VaR, constraints on the Conditional Value at Risk (CVaR) limit the expected

shortfall in the worst performing scenarios [43]. Thus, the Conditional Value at Risk of strategy Z is the
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expected value of the α-tail distribution of the utility function so that

CVaRα(Z) = VaRα(Z) [α−
∑

{s∈S|V (s)<VaRα(Z)}

π(s)] +
∑

{s∈S|V (s)<VaRα(Z)}

π(s)V (s). (16)

Conditional Value at Risk is a coherent risk measure: unlike VaR, it also reflects the shape of the

distribution tail. For this reason, it is commonly considered a more informative risk measure than VaR

[44].

3.2 Value of Perfect Information

The Value of Perfect Information (VoPI) refers to the additional value that can be gained by obtaining

perfect information about the system state, based on which the operations are optimized. Thus, VoPI

quantifies the willingness to pay for the transition from the current PHM system to the perfect one [45].

As mentioned in Section 1, PHM monitoring and system inspections provide imperfect information about

the state of the industrial system. In this framework, it is possible to compute VoPI as the difference

between the optimal expected value for two situations: (i) when the system state is correctly observed

and (ii) when the system state is observed with possible errors. The first situation corresponds to perfect

information on the system state, whereas the second situation to imperfect information. Consequently,

the VoPI can be computed as

VoPI = E[V (Z∗∗|Perfect Information)]− E[V (Z∗)]. (17)

In the case of inspection and maintenance decisions, perfect information refers to a situation in which

sensors and inspections correctly indicate the state of the industrial system [46]. Specifically, the system

state is reported correctly by the monitoring system with probability one if and only if the monitored

state equals the actual system state, and 0 otherwise. Perfect information makes it possible to select the

optimal strategy Z∗∗, which may differ from the optimal strategy Z∗ with imperfect information.

The VoPI represents the increase in expected value when the maintenance strategy can be decided

based on perfect information about the system state [47]. This provides insights into the value of investing

in improving the PHM capabilities. Note that this analysis can be performed before any additional

information, by assuming that perfect measurement information is obtained.
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4 Case study

The case study presents a maintenance decision framework for a Gas Turbine (GT) equipped with PHM

and sensor validation capabilities, which provide imperfect information on the current state of the GT

and its sensors. In industrial practice, the PHM of a GT relies on hundreds of sensors tracking the health

states of a large number of components with different impacts on GT operation. For illustrative purposes,

we assume that global indicators on the states of the GT and PHM system are available.

The GT undergoes periodic inspection and maintenance actions on which decisions are taken every

4000 working hours. Figure 1 represents the influence diagram for planning the GT inspections and

maintenance, composed of the set of chance nodes (circles), the set of decision nodes (squares) and the

value node (hexagon). In particular, node H refers to the working hours of the GT, which are technically

referred to as fired hours. The realizations are discrete states with time interval of 4000 hours so that

sH ∈ {0, 4000, 8000, 12000, 16000, 20000, ...}. (18)

Node H is deterministic, which can be considered as a degenerate chance node with probability one for

the current state only. This representation is useful for modelling the causal dependence between (i) the

GT states and (ii) sensor states from the working hours of the GT, allowing the optimization problem

can be solved for each of the states of working hours.

The fired hours affect the sensor state sSS and the turbine state sTS , which implies I(SS) = I(TS) =

{H}. The sensor and the GT health states are qualitative evaluations included in the sets

sSS , sTS ∈ {Excellent,Good, Fair, Poor, Failing}, (19)

Figures 2 and 3 illustrate the probability distributions of turbine and sensor states, respectively. Specif-

ically, the probability of these states depend on the fired hours H (horizontal line), in keeping with the

conditional probabilities P[XSS = sSS |XH = sH ] and P[XTS = sTS |XH = sH ]. These values can be

inferred from the inspection outcomes, when the multi-state degradation setting is adopted in the GT

maintenance practice [31, 48].
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Figure 1: Influence diagram for programming inspections and maintenance of a turbine.

10



Turbine state

0 4000 8000 12000 16000 20000

Fired hours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty

Failing

Poor

Fair

Good

Excellent
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Figure 3: Probability distribution for Sensor state.
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Based on machine-learning models [49], the PHM algorithms provide following estimates of the sensor

state and the turbine state

sSE , sTE ∈ {Excellent,Good, Fair, Poor, Failing}, (20)

The estimate sSE of the sensor state depends on both the actual state of the sensor and the actual state

of the GT. The estimate sTE of the GT state depends on both its actual state and the estimate of the

sensor state, because the sensor validation affects the PHM performance.

The PHM estimates on sensors and turbine provide information for the Inspection Decision, in the

set

sID ∈ {None, Sensor Check, ConditionMonitoring}, (21)

where Sensor Check indicates an analysis of the signal data and ConditionMonitoring refers to a

maintenance action on the sensor acquisition chain. Neither action requires the GT to stop, and the

result sSR on the sensor state is in the set

sSR ∈ {Excellent,Good, Fair, Poor, Failing}. (22)

Without inspection, the results sSR on the sensor state correspond to the sensor estimate sSE provided

by the PHM. If any inspection is performed, the results sSR on the sensor state report the actual sensor

state sSS correctly with 95% probability. The observation is erroneous with 5% probability, which has

been equally distributed across the two incorrect states close to the actual state.

The sensor inspection provides relevant information on the accuracy of the estimate sTE . Specifically,

it supports the definition of an updated estimate sTR of the turbine state such that

sTR ∈ {Excellent,Good, Fair, Poor, Failing}. (23)

The results sTR on the turbine state depend also on the results sSR on sensor state and on the actual

and estimated turbine states (i.e, sTS and sTE , respectively). Without inspection, the results sTR on the

turbine state correspond to the estimate sTE of the turbine state, provided by the PHM. If the inspection

is Sensor Check, the results sTR on the turbine state correspond to the actual turbine state sTS with a

probability which depends on the sensor results sSR. Finally, if the inspection is ConditionMonitoring,

the results sTR on the turbine state report the actual turbine state sTS correctly with 98% probability.

The observation is erroneous with 2% probability, which has been equally distributed across the two

incorrect states close to the actual state.
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The results sSR and sTR on the sensor state and the turbine state provide information for the Main-

tenance Decision, in the set

sMD ∈ {None, Level1, Level2}, (24)

where Level1 restores the turbine state to 4000 hours earlier and Level2 restores the turbine state

effectively to 0 hours of operation, i.e. as good as new. In this respect, Figure 4 represents the model of

degradation and restoration processes of the GT and the PHM. Arrows indicate probabilistic transitions

between states during the next 4000 hours, based on the maintenance decision. For illustration, Table

1 reports the transition probabilities for the degradation and renovation of the GT. For example, if the

turbine is currently in state sTS = Good and the maintenance decision sMD = Level2 is deployed, the

turbine is in state sTS = Excellent with probability 99% and in state sTS = Good with probability 1%

during the next 4000 hours.

Excellent Good Fair Poor Failing

degradation

restoration

Figure 4: Probabilistic model of the degradation and restoration process of the turbine.
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Table 1: Probabilistic transitions between turbine states.

sTF

sTS sMD Excellent Good Fair Poor Failing

Excellent

None 0.80 0.10 0.05 0.03 0.02

Level 1 0.90 0.05 0.03 0.02 0

Level 2 0.99 0.01 0 0 0

Good

None 0 0.80 0.10 0.07 0.03

Level 1 0.03 0.90 0.05 0.02 0

Level 2 0.99 0.01 0 0 0

Fair

None 0 0 0.75 0.15 0.1

Level 1 0 0.03 0.90 0.05 0.02

Level 2 0.99 0.01 0 0 0

Poor

None 0 0 0 0.75 0.25

Level 1 0 0.05 0.85 0.07 0.03

Level 2 0.99 0.01 0 0 0

Failing

None 0 0 0 0 1

Level 1 0 0 0.75 0.15 0.1

Level 2 0.99 0.01 0 0 0

The turbine state sTS and maintenance decision sMD affect the Turbine Flow, which has the following

discrete values

sTF ∈ {Excellent,Good, Fair, Poor, Failing}. (25)

The GT flow rate impacts the utility of the system operation, reduced by the costs of inspections sID and

maintenance sMD. Figure 5 shows illustrative utilities based on the state of the turbine flow, whereas

Table 2 shows the costs for inspection and maintenance actions. The utilities and costs are illustrative

units but have not been derived from an actual industrial system.
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Figure 5: Illustrative utilities of the system operation.

Table 2: Costs for inspection and maintenance actions.

sMD

None Level 1 Level 2

sID

None 0 25 50

Sensor check 2 27 52

Condition monitoring 8 33 58

The solution of the optimization model provides the optimal inspection and maintenance strategies for

every level of fired hours and for each information state which is available when making these decisions.

For illustration, Tables 3 and 4 present the optimal inspection and maintenance strategies of the GT at

H = 16000 fired hours, respectively. Specifically, the inspection strategy depends on the estimates sSE

and sTE of the sensor and turbine states, whereas the maintenance strategy depends on the results of

the inspections sSR and sTR.
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Table 3: Optimal inspection strategy at H = 16000 hours.

sTE

Excellent Good Fair Poor Failing

sSE

Excellent None None None None None

Good None None None None None

Fair None None None None None

Poor None None Monitoring None None

Failing Monitoring Monitoring Monitoring None None

Table 4: Optimal maintenance strategy at H = 16000 hours.

sTR

Excellent Good Fair Poor Failing

sSR

Excellent None None None Level 1 Level 2

Good None None None Level 1 Level 2

Fair None None None Level 1 Level 1

Poor None None None Level 1 Level 1

Failing None None None Level 1 Level 1

The optimal inspection strategy is such that no inspection is performed if the sensor state estimate

is Excellent, Good or Fair and if the turbine state estimate is Poor or Failing. On the other hand,

Condition Monitoring needs to be performed if the sensor state estimate is Poor or Failing for specific

circumstances of the turbine state estimate. Furthermore, the optimal maintenance strategy shows not to

perform any maintenance if the turbine state estimate is Excellent, Good or Fair, but Level 1 maintenance

should be performed if the turbine state is Poor. If the turbine state estimate is Failing, the optimal

maintenance strategy depends on the sensor state estimate: Level 2 maintenance is necessary if the sensor

state estimate is Excellent or Good and Level 1 maintenance otherwise.

The solutions in Tables 3 and 4 need to be examined together. Specifically, when the turbine is

estimated to be in a degraded state (Poor or Failing), the optimal strategy is to proceed with maintenance

actions, without improving the accuracy of the estimate of the turbine state through inspections. This

choice depends on the high reliability of the monitoring sensors. On the other hand, when the estimate

of the turbine is in a healthy state (Excellent, Good or Fair), the choice on the inspections depends on

the estimated state of the monitoring sensors. Thus, the optimal strategy is to inspect the turbine when

the sensors are expected to be degraded. Note that the optimization results are not generic in that they

depend on the parameters of this case study.
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Figure 6 illustrates the optimal expected utility of the system and the respective Value of Perfect

Information, for each discrete state of the turbine fired hours. To model perfect information on the

system state, the probabilities of the estimates sSE and sTE of the sensor and turbine states are defined

as

P[XSE = sSE |XSS = sSS , XTS = sTS ] =

 1, if sSE = sSS

0, otherwise,
(26)

P[XTE = sTE |XSE = sSE , XTS = sTS ] =

 1, if sTE = sTS

0, otherwise.
(27)

By increasing the fired hours, the expected utility decreases due to increasing chances of degradation of

the GT. For the same reason, the VoPI increases as information on the actual state of the GT yields

more value for system operation [50]. Thus, investments in improving the PHM and sensor validation

can be expected to yield higher returns when the GT has degraded more. The computation of the VoPI

is obtained by assuming that the PHM provides perfect information on the system state.

4000 8000 12000 16000 20000
0

20

40

60

80

1.69
2.67

3.98
5.02

5.25
85.14

78.53

69.08
62.16

56.8

Fired hours

Expected Value Value of Perfect Information

Figure 6: Expected Value and Value of Perfect Information of the turbine operation.

Besides employing risk measures as constraints of the optimization model, it is possible to analyse

the VaR and CVaR of the optimization solutions to better understand the results. This analysis provides

additional insights on these solutions without the need to specify the threshold probability α and target

level t before the optimization. For some choices of the parameters α and t, these parameters could be

so stringent that the optimization model has no feasible solutions. For this reason, an ex-post analysis

of the results bypasses this issue, avoiding optimization runs with long computational times.

Figure 7 shows the cumulative probability of the utility for the optimal strategy Z∗ at H = 16000
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hours. From this probability distribution, it is possible to compute VaRα(Z∗) and CVaRα(Z∗) at prob-

ability level α, as defined in Eqs. (15) and (16). Table 5 lists the VaR and CVaR of system operation at

different probability levels α: by increasing the α value, both the VaR and the CVaR also increase.

For the analysed probability levels α, the CVaR is higher than zero only for α > 0.1. In view of these

results, the optimal strategy for H = 16000 hours involves limited risks in that the expected utilities will

be negative with probability of less than 10%.
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Figure 7: Cumulative probability distribution of system utility.

Table 5: VaR and CVaR for different α values.

α VaR CVaR

0.01 -25 -26.466

0.05 0 -10.3156

0.1 0 -5.1578

0.15 32 1.6781
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5 Discussion

The computation of the VoPI makes it possible to assess investments which seek to improve the PHM

capabilities. In this case, it is necessary to compare the VoPI with the costs for improving the PHM

capabilities. Specifically, if the costs for improvement are lower than the VoPI, it is recommended to

renovate the monitoring sensors, because the renovation leads to savings on system inspections.

The value of the PHM capabilities would increase if the company owns a fleet of industrial systems.

In this case, the influence diagram represents the states of all the systems and the state of the monitoring

sensors with a unique value node. The optimization model would then suggest the optimal combination

of inspections for the fleet of systems, leading to additional savings for the company due to sharing fixed

costs among several systems. In addition, the cost of the PHM capabilities would be shared among the

fleet of systems with benefits on the failure detection, diagnostics and prognostics, due to the collection

of a larger amount of data to build statistical analyses. However, the optimization may require more

computational time for a large number of node states due to the curse of dimensionality. For this purpose,

it is possible to decompose the large problem into a hierarchy of sub-problems to optimize the resource

allocation across the fleet of industrial systems.

This framework can be extended to account for decisions in multiple time stages through Dynamic

Bayesian Networks [51]. In this case, the chance nodes represent the random events of the state of the

system components over the time stages and the decision nodes represent the decisions on inspections and

maintenance at each time stage [52]. This gives rise to a model for long-term decisions on the industrial

system in order to anticipate or postpone inspections and maintenance actions according to the predicted

development of system failure. However, the number of decision variables will grow with the number of

time stages, meaning that the computational time for the optimization solutions would increase.

Finally, the optimization results rely on the discretization of the probability distribution on the states

of industrial systems and sensors [53]. Increasing the number of component states improves the accuracy

of the model in the definition of the probability distribution, but it also increases the number of scenarios

to be evaluated to define the optimal strategy. If the optimal strategy is the same for different information

sets, it can be helpful to aggregate the information sets in order to limit the probability elicitation of the

states and the computational time of the following runs of the optimization problem.

6 Conclusion

In this paper, we have developed a methodology for the optimal selection of inspection and maintenance

strategies for industrial systems equipped with PHM. These strategies maximize the value for the company
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deriving from system operation, computed as the system utility discounted by the costs for inspection

and maintenance actions.

The framework employs influence diagrams to model causal dependencies between system states and

decisions on risk mitigation actions. Based on Decision Programming, the optimization model defines

the optimal strategies for the system, accounting for budget and technical constraints. The solution is

obtained through a mixed-integer linear problem, which considers all possible scenarios on the system

states and decisions. The viability of the methodology has been illustrated with an example concerning

a gas turbine equipped with PHM.

Overall, we have demonstrated that in the choice for inspection and maintenance strategies, there is

a need to consider the unreliability of the PHM as well, given that the optimal strategies depend on both

the healthy or degraded state of the industrial system and the state of the monitoring sensors.

This framework requires that the conditional probability tables can be specified, depending on the

amount of health states of the system and the sensors. Possible extensions include the introduction of

imprecise and uncertain information about the model parameters. For instance, an expert may provide

imprecise values about state probabilities and impacts of risk mitigation actions. Such imprecision and

uncertainty must be properly represented and propagated throughout the optimization model to obtain

robust solutions.
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