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Abstract. Sensitivity analyses have for long been used to assess the impacts of 

uncertainties on outcomes of decision models. Several approaches have been suggested, 

but it has been problematic to get a quick overview of the total impact of all the 

uncertainties. Here we show how interval modeling can be used for global sensitivity 

analyses in multiattribute value trees, and a nuclear emergency case is used to illustrate 

the method. The approach is conceptually simple and computationally feasible. With 

intervals the decision maker can include all the possible uncertainties and quickly 

estimate their combined impact. This is especially useful in high-risk decisions where a 

worst case type of sensitivity analysis is essential. By varying the intervals one can also 

examine which uncertainties have the greatest impact and thus need the most 

consideration. Global sensitivity analysis reveals how the outcome is affected by many 

simultaneous variations in the model. 

Keywords. Multiple criteria analysis, Sensitivity analysis, Preference Programming, 

Interval modeling, Worst case analysis, Nuclear emergency management 



Manuscript (October 1, 2004) 

2 
 

1. Introduction 

Dealing with uncertainties related to data and preferential judgments is an essential part of 

a practical decision analysis project. How this is done is likely to strongly affect the 

confidence that the decision makers (DM) have in the results. If the uncertainties are not well 

accounted for, the credibility of the decision analysis method used can suffer. Thus an easy-to-

use and transparent method for examining the effects of the uncertainties is needed to ensure 

the DMs’  commitment to the decision. 

Sensitivity analyses are commonly used to analytically assess the impacts of uncertainties 

on outcomes of decision models. In this paper, our focus is on multiattribute value tree 

analysis (MAVT) as described in Keeney and Raiffa (1976). MAVT is based on structuring 

the decision problem into a value hierarchy, or value tree as it is also called. The topmost 

objective is the overall goal that the decision maker wishes to achieve. This objective is 

divided into sub-objectives and on the lowest level are the measurable attributes that are 

important for the decision problem at hand. The overall performance of each alternative is 

measured by a value function, which aggregates the performance measures of the alternatives 

on each attribute into a single overall value measure. 

Previous research has suggested that intervals and incomplete judgments can be used to 

incorporate uncertainties directly in the modeling phase (see e.g. Arbel 1989, Salo and 

Hämäläinen 1992, 1995, 2001, Weber 1985, White et al. 1984). In an interval approach, 

preference judgments and the outcomes of the alternatives are presented as ranges including 

all the possible values. The approach is also called Preference Programming (Arbel 1989, Salo 

and Hämäläinen 1995, 2004) which reflects the fact that one can see how the preferences over 

the alternatives evolve as the information increases and the preference statements become less 

incomplete. Interval methods have been successfully used in applications including 
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environmental decision making and policy analysis (see e.g. Hämäläinen and Leikola 1996). 

Intervals can also be used in group decision making to incorporate the preferences of all 

participants in a single model (see e.g. Hämäläinen et al. 1992, Hämäläinen and Pöyhönen 

1996, Kim et al. 1999). 

In this paper, we present a way to carry out global sensitivity analysis in MAVT by 

Preference Programming. That is, we allow the model parameters to vary within given 

intervals representing the uncertainty ranges, and study the consequent changes in the results. 

The aim is to quickly assess the total impact of all uncertainties. The main benefit of our 

approach is that it is conceptually straightforward and computationally efficient. The method 

suggested here captures all the uncertainties in a single analysis, and intervals used in the 

model are easy to understand also for non-mathematicians who might not be familiar with 

probability distributions. In this type of analysis, it is the extreme possibilities, i.e. the worst 

case results, that are important and not the probability distributions associated with the 

preferences and the values of the alternatives. 

This work fits into the framework of sensitivity analysis proposed by Rios Insua and 

French (1991) and Proll et al. (2001), in which one employs constraints on the model 

parameters to describe uncertain information. The Preference Programming approach applied 

here gives a convenient and efficient way to include the constraints in the weight ratios of the 

attributes and in the outcomes of the alternatives also in hierarchical value trees. However, 

some related concepts such as potential optimality (see Hazen 1985, Rios Insua and French 

1991) may not be applicable when considering the analysis from the worst case perspective, as 

it may eliminate alternatives that are never optimal but perform reasonably well in all 

situations and are thus less risky. 
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The interval model leads to a set of linear extremum problems. In hierarchical MAVT 

models, the overall problem is computationally quick to solve, as the extremum problems on 

each branch of the value tree can be separately solved (Salo and Hämäläinen 1992, 1995), and 

in a typical model there are seldom more than ten sub-objectives under any objective in the 

hierarchy. For example, with our WINPRE software (Workbench for INteractive PREference 

Programming; Hämäläinen and Helenius 1997), the DM can immediately see the changes in 

the results when adjusting the intervals. This requires that the calculations can be done very 

fast, preferably within a few tenths of a second, which is not always possible with other 

approaches. 

Our focus is on MAVT, and thus other models such as decision trees (see Clemen 1996) 

are beyond the scope of this work. However, the suggested approach may also be well suited 

for these, but then, for example the number of parameters may set limitations for its use (e.g. 

the model presented in Francos et al. (2003) involves 82 input parameters). For an overview 

of suitable global sensitivity analysis approaches for these cases such as variance based 

importance measures, Bayesian networks, etc., the reader is referred to the special issue of 

Reliability Engineering and System Safety on sensitivity analysis (Tarantola and Saltelli 

2003). 

Global worst case analysis is especially relevant in high-consequence decisions with a high 

level of uncertainty, such as in the case of nuclear emergencies. We have successfully applied 

multiattribute decision analysis and decision conferences to support nuclear emergency 

management (Hämäläinen et al. 2000), and the example used in this paper is taken from one 

of these case studies (Ammann et al. 2001). 

This paper is organized as follows. Section 2 describes different approaches to carry out 

sensitivity analysis. Section 3 describes the interval sensitivity analysis method, and how to 
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use it in practice. An example of using interval sensitivity analysis in a nuclear accident case 

is given in Section 4, and Section 5 concludes the paper. 

2. Sensitivity analyses – Why and how? 

Uncertainties can be grouped in several different ways. French (1995) suggested a 

classification into three groups depending on the step of the analysis to which they belong; 

modeling, interpreting the results or exploring the model (Table 1). 

Table 1. Classifying uncertainties following French (1995) 

When modeling the 

decision problem: 

When interpreting the 

results: 

When exploring the model: 

- uncertainty about what 

might happen or what 

can be done 

- uncertainty about 

meaning or ambiguity 

in terminology 

- uncertainty about 

related decisions 

 

- uncertainty about the 

appropriateness of a 

descriptive/normative 

model 

- uncertainty about the 

depth to which to 

conduct the analysis 

 

- uncertainty from 

physical randomness or 

lack of knowledge 

- uncertainty about the 

evolution of future 

beliefs and preferences 

- uncertainty about 

judgments 

- uncertainty about 

accuracy of calculations 

 

Another perspective is to focus on the origins of uncertainties. For example, in the field of 

risk analysis Salo (2001) suggests three dimensions of technological risks; physical causation 

(e.g. uncertainties in causal relationships), value concerns (e.g. changes in the stakeholders’  

preferences), and policy response (e.g. the effectiveness of the actions taken). 

In the different cases, methods are needed to support the DM in dealing with the 

uncertainties in a constructive way. Sensitivity analyses are commonly used, and the reader is 
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referred to Saltelli et al. (2000a, 2000b) or Tarantola and Saltelli (2003) for a perspective on 

different approaches in general, or to Belton and Stewart (2001), French and Rios Insua 

(1999) or Rios Insua and French (1991) on different approaches specifically in MAVT. 

Sensitivity analyses can be used for a wide range of purposes. Pannell (1997) grouped these 

into four categories: 

1. Decision making (identifying critical values/parameters, testing robustness, overall 

riskiness of decision) 

2. Communication (increasing commitment/confidence/credibility, explicitly showing 

critical assumptions) 

3. Increased understanding (understanding relationship between input/output variables) 

4. Model development (identifying needs for more accurate measurements/more 

information) 

The single parameter test is a common sensitivity analysis method to examine how 

sensitive a model is to small changes in one parameter. That is, all other parameters are held 

fixed except for a single one that is allowed to vary. The analysis is usually visualized by 

graphs showing the consequential variations in the overall results. The tornado diagram is 

another common method providing useful diagrams. It is usually drawn for single parameter 

tests and employed to compare the base alternative to another option (Felli and Hazen 1999). 

For a detailed discussion of tornado diagrams, the reader is referred to Clemen (1996). These 

methods do not, however, account for parameter interactions and nor do they cover the worst 

case settings. 

Often there is more than one parameter that the DM might be uncertain about and with the 

traditional approaches it can be difficult to estimate the combined overall impact. For 
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example, Felli and Hazen (1999) showed that single parameter tests tend to overestimate the 

overall sensitivity. This leads to the need for a multiparameter test. 

Global sensitivity analysis incorporates the influences of the whole ranges of variation in 

model parameters and these variations are allowed in multiple parameters simultaneously (see 

e.g. Saltelli et al. 2000a). Especially in complex simulation models, for example when 

modeling environmental phenomena, the model can have numerous input parameters. 

Different types of global sensitivity analysis approaches have been developed for dealing with 

uncertainties in these models, and these approaches often rely on statistical or probabilistic 

calculations. Examples of such approaches include Monte Carlo analysis, ANOVA, FAST and 

Bayesian models (see e.g. Saltelli et al. 2000a, 2000b). Rank based methods can also be used 

to study the sensitivity of the model with respect to imprecision in the rankings of parameters 

(see e.g. Barron 1992 or Salo and Punkka 2004). 

In MAVT, the Monte Carlo simulation technique can be used to analyze model 

uncertainties and to statistically rank the alternatives (see e.g. Arbel and Vargas 1993, Butler 

et al. 1997, Stam and Silva 1997). The main advantage of this method is that one gets a lot of 

information, such as mean values, variances and fractiles, about the characteristics of the 

decision model subject to uncertainties. However, the normalization of the weights and the 

reciprocity of the weight ratios make the application of distributions on the weights very 

difficult. In addition, the effort needed for the calculations can become substantial and one 

cannot always carry out what-if analyses without computational delays. To avoid this, 

Kirkwood (1992) has suggested a method to estimate the impact of uncertainty on the results 

of a multiattribute model prior to a complete probabilistic analysis. However, this would still 

demand the approximation of expected values, variances and covariances. 
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Kirkwood (1997) provides a summary of scenario analysis literature in decision making. In 

scenario analysis parameters are given, sometimes extreme, values so as to make the analysis 

favor a certain view of the actual situation. Often the set of scenarios contains the expected as 

well as an optimistic and a pessimistic alternative. The process of scenario generation is not, 

however, a straightforward one. For example, there is not a clear rule how pessimistic the 

pessimistic scenario should be. 

The precautionary principle (see e.g. Goldstein and Carruth 2004 or Graham 2000) has 

recently received growing attention, and there is a similar need for global worst case analysis. 

The precautionary approach addresses the problems of multidimensionality, humility about 

knowledge, and openness to alternatives. It places the burden of proof on the advocates to 

prove the soundness of the suggested decision. Thus also in that approach a global sensitivity 

analysis or a worst case analysis would be useful. 

3. Intervals in worst case sensitivity analysis 

3.1 Interval methods 

In MAVT the overall values of the alternatives are composed of the ratings of the 

alternatives in respect to each attribute, and of the weights of the attributes. If the attributes are 

mutually preferentially independent (see e.g. Keeney and Raiffa 1976), an additive value 

function can be used to derive the overall values. The overall value for the alternative x is 
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where n is the number of attributes, wi is the weight of attribute i, xi is the consequence of 

alternative x with respect to attribute i and vi(xi) is its rating. The sum of the weights is 

normalized to one, and the ratings vi(xi) are scaled onto the range [0, 1]. The weights denote 



Manuscript (October 1, 2004) 

9 
 

the relative importances of the attributes changing from their worst level to their best level 

compared to the changes in the other attributes.  

The value tree can also be constructed hierarchically, i.e. the upper level objectives are 

divided into sub-objectives, and the weighting is carried out locally on each set of these. Then, 

wi in (1) denotes the overall weight of the lowest level attribute i, which is calculated as a 

product of the local weight of this attribute and the local weights of all the preceding upper 

level objectives. 

Preference Programming techniques can be used to model uncertainties in the DM’s 

preference statements with intervals. PAIRS (Salo and Hämäläinen 1992) is a Preference 

Programming technique in which intervals are directly given to constrain both the weight 

ratios of any attribute pairs and the ratings of the alternatives. For example, instead of giving 

an exact weight ratio w1/w2=2, the DM can define that ratio w1/w2 ∈ [1, 4], i.e. the ratio is at 

least 1 but no more than 4. The given intervals constrain the feasible region of the weights S. 

Figure 1 illustrates the feasible region constrained by intervals w1/w2 ∈ [1, 4], w1/w3 ∈ [1, 4] 

and w2/w3 ∈ [1/2, 2]. Similarly, uncertainties in decision outcomes can be modeled with 

ranges of possible values (e.g. vi(xi) ∈ [0.3, 0.5]). As a result, the overall values of the 

alternatives will also be intervals, which can be calculated as extremes of (1) with linear 

programming. The lower bound for the value of alternative x is 
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where vi(xi) is the least allowed value for vi(xi) and w=(w1,…,wn) ∈ S, i.e. the feasible region 

of the weights. The upper bound is calculated analogously. For details see Salo and 

Hämäläinen (1992). 
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Interval models require that we specify the dominance concepts to analyze the results (see 

e.g. Weber 1987, Salo and Hämäläinen 1992). Alternative x dominates alternative y 

absolutely, if the lower bound of the overall value interval of x is higher than the upper bound 

of the interval of y. Alternative x dominates y in a pairwise sense, if the overall value of x is 

higher than the overall value of y for every feasible weight and value combination, i.e. if 

0])()([min
1i
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yvxvw         (3) 

and the inequality is strict at least for some w ∈ S. Thus, pairwise dominance can also exist 

under overlapping value intervals. Absolute dominance implies pairwise dominance, and in 

general, the term dominance is considered to refer to pairwise dominance. 

3.2 Interval sensitivity analysis 

In this paper we apply the PAIRS method to carry out interval sensitivity analysis in 

MAVT. That is, we extend the point estimates of weight ratios and attribute ratings into 

intervals to describe possible variation in these. By studying the consequential changes in the 

overall values and dominance relations, we can elicit how sensitive these are to combined 

variation in all the model parameters. 

The dominance concepts can be used to study the changes in the ranking of the alternatives 

due to combined variations in model parameters. As long as the dominance relations between 

the alternatives remain unchanged, the result is not sensitive to any parameter variation within 

the given intervals. On the other hand, any of the non-dominated alternatives can be 

considered as a suitable candidate for the most preferred alternative. 

In PAIRS, intervals can be simultaneously assigned to both the weight ratios between the 

attributes on any level of the value tree and the ratings of the alternatives. This makes it 

possible to study the joint effects of different types of uncertainties both in the DM’s 
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preference assessments and in the input data on the alternatives. An extreme case is to have 

intervals on all the weight ratios and the ratings of the alternatives, which means that all the 

possible uncertainties in the model are simultaneously taken into account. 

Interval sensitivity analysis can also be applied to the Analytic Hierarchy Process (AHP; 

Saaty 1980). In AHP, the attribute weights are computed from a matrix of all the pairwise 

weight ratio judgments. Thus, Preference Programming we can be used to carry out interval 

sensitivity analyses by setting intervals on all the pairwise judgments. However, in AHP one 

also has to take into account feasibility constraints due to the redundancy of comparisons. 

3.2.1 Interpreting the intervals 

By nature, interval sensitivity analysis is a worst case analysis, as any combinations of 

model parameters within the given intervals are allowed. However, in practice there are 

different ways to interpret the intervals. The strictest one is to set the intervals so that they 

indeed cover all the possible variation in the model parameters. Then, the sensitivity analysis 

can be seen as a way to find a true worst case solution. That is, if a dominating alternative is 

found, it is the best alternative for every feasible combination of model parameters, including 

the worst ones. However, with this interpretation, the intervals may easily become so wide 

that no dominance relations between the alternatives can be established. 

One can also use tighter intervals that may not cover all the possible variation in parameter 

values. Then, the analysis should be interpreted as a “what-if”  type sensitivity analysis. That 

is, we study what would be the overall value intervals, if we allowed the parameter values to 

be any values within the given intervals. 

Yet another approach is to consider intervals as confidence intervals (e.g. a 95% 

confidence interval). However, if the distributions of parameter values on the intervals are 
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unknown, the confidence with which the overall values belong to the resulting intervals would 

also be unknown. That is, an overall value interval describes the possible variation of the 

overall value due to each parameter being with a certain confidence level (e.g. 95%) on its 

interval, but this does not imply that the overall value is on its interval with this same 

confidence. To get true confidence intervals for the overall values, one has to assign 

distributions on the parameters, but this leads to the use of a Monte Carlo simulation 

approach. 

Attributes can have different levels of uncertainty, which can be taken into account by 

using intervals of different size. If the DM is not able or willing to give the intervals 

explicitly, he/she can, for example, assign error ratios to the point estimates (see e.g. Bryson et 

al. 1995, Salo and Hämäläinen 2001). They provide a quick way to model the proportional 

uncertainties. For example, with error ratio 2, the weight ratio w1/w2=3 extends to interval 

w1/w2 ∈ [3/2, 3×2] = [1.5, 6]. Similarly, alternatives’  ratings can be extended with error 

margins, e.g. [vi(x)–0.1, vi(x)+0.1]. 

The choice of intervals could however be difficult if there is a high level of uncertainty 

involved. This could lead to a wide set of intervals and a non-acceptable risk region. In this 

case the value of the analysis would be in finding out the key factors that result in the non-

acceptable risk region. That is, what uncertainties have the greatest impact and thus need the 

most consideration.  A detailed analysis might even reveal how much the uncertainties need to 

be reduced to arrive at an acceptable outcome. 

3.2.2 Potential optimality and the decision rules 

In many cases it may be useful to first try to reduce the number of alternatives before the 

final decision on which alternative to choose. The dominance test eliminates clearly inferior 
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alternatives, but the remaining set can still be extensive. Rios Insua and French (1991) discuss 

the use of potential optimality (Hazen 1985) for reducing the number of alternatives. This 

method aims at the optimal solution and only considers alternatives that could potentially be 

the optimal one. In many cases this can be a useful approach, but not necessarily in the worst 

case analysis, as it may possibly reject non-optimal alternatives that might also be acceptable 

to the DM. For example, in the nuclear accident case presented here also a non-optimal 

alternative might be the best decision if it performs reasonably well in all the possible 

scenarios. 

As a result of a worst case analysis there may be several non-dominated alternatives. The 

DM can then use what-if analyses to study with which value intervals there would be only one 

non-dominated alternative. Consequently, he/she can consider whether these intervals could 

be accepted to represent the related uncertainties. If the DM is not able or willing to modify 

the intervals, decision rules (see e.g. Salo and Hämäläinen 2001) can be applied to rank non-

dominated alternatives, for example, according to the minimum values of the overall value 

intervals. 

The possible loss of value estimates (Salo and Hämäläinen 2001) can also be used to 

further compare non-dominated alternatives. The possible loss of value for alternative x is 

calculated as 

])()([max
1,

� =≠∈
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This estimate indicates how much the DM can at most lose in the overall value by choosing 

alternative x instead of any other alternative. That is, the uncertainties might cause the chosen 

alternative to be overtaken by another alternative in some circumstances. However, if the 

possible loss of value is within acceptable limits, then the original choice might still be 
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acceptable. In high-risk situations, such as the one discussed in this paper, global sensitivity 

analyses can be used to eliminate alternatives that potentially could have disastrous outcomes 

in the worst case. Possible loss of value can then be used to further reduce the set of 

alternatives by specifying an acceptable limit for how far from optimality any alternative can 

be at the most. 

3.2.3 Origins of imprecision 

Depending on the origins of imprecision (see e.g. French, 1995) one can assign imprecision 

to the weights of the attributes or to the ratings of the alternatives. An interval assigned to a 

rating of an alternative describes imprecision only in this alternative, and any variation within 

the given interval is assumed to be independent of the allowed variations in the other 

alternatives. On the other hand, by definition the weight of an attribute should reflect the 

importance of the range of this attribute compared to the other attribute ranges (Keeney and 

Raiffa 1976). Consequently, any imprecision on the weight of an attribute affects in a similar 

way all alternatives as then the imprecision is actually assigned to the range of the attribute. 

Thus, for example, linear correlations in the variations of the ratings on some attribute could 

be modeled by assigning imprecision in the weight of this attribute and keeping the ratings 

constant. Then, the relative ratings of the alternatives in this attribute remain the same, but the 

impact of this attribute varies with respect to the other attributes. 

As a simple example, consider attribute Costs on two alternatives A and B. If there is 

imprecision e.g. in some general costs, it is likely to affect similarly to both alternatives (i.e. if 

the Costs of A double, so does the Costs of B). Thus, this kind of imprecision should be 

assigned to the weight of Costs, as it is related to the importance of the range of Costs. 

However, if there are some single variations in the costs of the attributes that are independent 
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of each other, these should be modeled by assigning the imprecision directly to the ratings of 

the alternatives. 

3.2.4 Computer support 

In practice, computer support is needed as the solutions are elicited through linear 

programming. In hierarchical MAVT models, the overall linear extremum problem can be 

decomposed into smaller problems, i.e. so that there is one extremum problem for each branch 

of the hierarchy (Salo and Hämäläinen 1992, 1995). Thus, when varying a model parameter, 

the linear programming problems needs to be re-calculated only on those branches of the 

value tree in which the change is made, and upwards thereof. This makes the model 

computationally quick to solve and update, which is especially important in what-if type of 

analyses. Computer support can also be used, for example, to visualize the results. 

As noted above, there already exist software for interval techniques considered here, and 

sensitivity analyses can be easily run on these software. The WINPRE software provides an 

interactive approach by presenting the overall values of the alternatives and the dominance 

relations immediately to the user when making changes to the model parameters. The user 

can, for example, study what are the parameter values where the dominance relations change, 

and what are the rates of the changes in the overall values when varying the parameter 

intervals. The example case in Section 4 is analyzed using WINPRE and all the figures are 

screen captures from the software. WINPRE is freely available for academic purposes on the 

Decisionarium Web site (www.decisionarium.hut.fi; Hämäläinen 2000, 2003). 

3.3 Comparison with other sensitivity analysis approaches 

Next we shall discuss the suitability of interval sensitivity analysis in different types of 

situations. We compare it to one-way sensitivity analysis and related techniques such as 



Manuscript (October 1, 2004) 

16 
 

tornado diagrams, and the Monte Carlo simulation technique, which are commonly used 

sensitivity analysis approaches in MAVT framework. 

3.3.1 One-way sensitivity analysis 

As a result, one-way sensitivity analysis gives a graph showing the overall values of the 

alternatives with respect to each possible value of some single attribute. Two-way sensitivity 

analysis extends this analysis into two parameters, when the combined effects of variations in 

these are presented with a three-dimensional graph. However, with more than two parameters 

the visualization of the analysis becomes impossible. Yet, with tornado diagrams one can 

study the effects of several different parameter variations in the same graph, but also these 

effects are calculated by varying a single parameter at a time. 

Especially in hierarchical problems, interval sensitivity analysis as a multiparameter 

analysis may provide useful additional information compared to the one-way analysis. In these 

problems, the weighting is carried out locally on each branch of the value tree, and the overall 

weight of a lowest level attribute is obtained as a product of the local weights of this and all 

the preceding upper level attributes. Thus, if one wants to take the joint effects of uncertainties 

in different attribute levels as well as in alternatives into account, multiparameter analysis is 

needed. For example, variation in the weight of attribute Costs with respect to any other 

attribute could easily affect the overall results. However, if the Costs are further divided into 

two sub-attributes, Purchase Costs and Maintenance Costs, the variation in the local weights 

of these is also likely to affect the results, as often an alternative with high Purchase Costs has 

low Maintenance Costs, and vice versa. Thus, multiparameter analysis is needed to also get 

this variation into account. 

On the other hand, the resulting graph in one-way sensitivity analysis directly shows the 

overall values for each possible value for the parameter under consideration. In contrast, in 
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interval sensitivity analysis only the extreme values of the overall values in respect of allowed 

variations in model parameters are shown. Thus, if one wants to study the overall value 

intervals resulting from intervals of different size, he/she has to produce a separate graph for 

each set of intervals, or use the method interactively, i.e. by varying the parameter intervals 

and studying the immediate response in the overall value intervals. 

3.3.2 Monte Carlo simulation 

In Monte Carlo simulation one assigns distributions on the model parameters. As a result, 

one gets the overall value distributions for the alternatives, which reflect the variation in the 

model parameters. One can also estimate additional statistical measures, such as a probability 

for an alternative being better than some other alternative. 

On the ratings of the alternatives, distributions can easily be assigned directly within their 

ranges. On the weights of the attributes, there are different ways to assign the distributions, 

e.g. directly to the weights (Butler et al. 1997), to the feasible regions of the weights (Haines 

1998; Moskowitz et al. 2000), or to the set of n–1 weight ratios, similarly as intervals are 

applied in the interval SMART/SWING method (Mustajoki et al. 2004). However, in practice 

the use of these approaches becomes very difficult due to normalization of the weights and 

reciprocity of the weight ratios. For example, distributions assigned to the weights are not the 

same after the normalization of the weights. Also, distributions on the feasible regions and 

weight ratios may lead to ambiguous distributions on the weight ratios that are not explicitly 

defined. E.g., a uniform distribution assigned for the weight ratio interval w1/w2 ∈ [1, 2] 

implies that the corresponding distribution on reciprocal interval w2/w1 ∈ [1/2, 1] is not 

uniform. In addition, if the uncertainty is assumed to originate from ratio based elicitation, the 

interpretation of the given distributions may be problematic. 
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In many cases, the DM is interested in these extreme values, e.g. to get a worst case 

solution, or study deterministic dominance relations between the alternatives. For this 

purpose, our interval sensitivity analysis should be used, as it explicitly concentrates on the 

extremes of the intervals. Monte Carlo simulation can be used to find additional statistical 

information on the value distributions and relations between the alternatives. However, the 

assignment of the distributions and sampling under constraints could often be an 

overwhelming task. 

4. Interval sensitivity analysis in a nuclear accident exercise 

We demonstrate the use of interval sensitivity analysis with a model developed in a decision 

conference, i.e. facilitated training workshop exercise. The case is a hypothetical nuclear 

accident where protective actions on the milk production chain were to be decided (Ammann 

et al. 2001). The conference was one in a series of decision conferences on nuclear emergency 

management (see Hämäläinen et al. 2000). Although no real decisions were made in the 

exercise, the gained experiences are to be utilized if a real accident took place. The 

participants of the conference and the preparatory meetings were representatives of the safety 

authorities and experts on radiation, farming and the dairy industry. 

4.1 Multi-attribute value tree 

A MAVT approach was used to structure the problem. The value tree (Figure 2) was 

developed on the basis of the discussion in the decision conference and in the preliminary 

meetings. It describes the objective hierarchy, in which the Overall objective of finding the 

best action is composed of three main objectives: Health effects, Socio-psychological effects 

and Costs. These are further divided into sub-objectives (i.e. attributes) and the alternatives 

are measured with respect to these. The overall values of the alternatives are calculated from 
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(2), in which the weight of each attribute elicited as a product of the local weights of this and 

all the preceding objectives. 

It was assumed that due to the accident, fodder in the area becomes contaminated, and if 

nothing is done, the radioactivity migrates into milk products. As a precautionary action, the 

cattle were sheltered and provided with uncontaminated fodder and water for the first week 

after the accident. Our focus was on the later phase actions (from 1 to 12 weeks after the 

accident). Three protective action policies were considered: (i) supplying clean fodder 

(‘Fod’ ), i.e. uncontaminated fodder is transported into the contaminated area, (ii) production 

change (‘Prod’ ), i.e. the milk production is replaced by other dairy products, as the 

production processes of these can enrich, dilute or secrete radio nuclides, and (iii) banning 

milk (‘Ban’ ), i.e. the use of contaminated milk is totally banned. In addition, an action where 

nothing is done (‘---’ ) was included in the analysis as a reference. The actions were divided 

into two phases. The first phase covers the actions during weeks 2 to 5 after the accident and 

the second phase covers weeks 6 to 12. The actual alternatives considered were combinations 

of these. For example, ‘Ban+Fod’  represents an alternative where the use of milk is banned 

during weeks 2 to 5 and clean fodder is supplied during weeks 6 to 12. In Figure 2, the 

alternatives are shown as the rightmost elements of the value tree. For further details, see 

Ammann et al. (2001). 

The attribute weights and the alternatives’  ratings used (Table 2) are based on the 

preferences of one of the participant groups in the conference. The estimates for the 

consequences of Health effects and Costs were calculated with a Real-time On-line DecisiOn 

Support System called RODOS (Ehrhardt and Weis 2000). The values of Socio-psychological 

attributes were directly rated by the group. Attribute weighting was carried out with the 

SWING method (von Winterfeldt and Edwards 1986). In SWING, the DM first identifies the 
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most important attribute (i.e. an attribute whose consequence he/she most preferably would 

change from its worst possible level to its best possible level), and gives this a hundred points. 

Then, he/she assigns fewer points to the other attributes to denote the relative importance of 

the consequence changes in these compared to the change in the most important attribute. 

Finally, the actual attribute weights are elicited by normalizing the sum of these points to one. 

Table 2. Weights of the attributes and the ratings of the alternatives. 

 Weights Ratings 

 Local 
weight 

Overall 
weight 

---
+  
--- 

Fod
+  

--- 

Fod
+  

Fod 

Prod 
+  
Fod 

Ban
+  

Fod 

Ban
+  

Ban 

Health 0.588        
 Thyroid cancer 0.909 0.534 0.01 0.98 1.00 0.98 1.00 1.00 
 Other cancers 0.091 0.053 0.04 0.90 0.98 0.95 0.98 1.00 
Socio-psychological 0.294        
 Reassurance 0.526 0.155 0.00 0.18 0.60 0.48 0.76 0.86 
 Anxiety 0.053 0.016 0.00 0.21 0.87 0.75 0.49 0.35 
 Industry 0.158 0.046 0.10 0.46 0.67 0.34 0.19 0.14 
 Feasibility 0.263 0.077 1.00 0.65 0.55 0.78 0.67 0.46 
Costs 0.118 0.118 1.00 0.88 0.82 0.70 0.26 0.00 
 

The overall values for the alternatives are shown in Figure 3. The alternatives are listed at 

the bottom, and the upper and lower bounds for the overall value of each alternative are 

shown above its name. The bounds are also graphically shown on a [0–1] value scale between 

the numerical values. One should note that now the lower and upper bounds are the same, as 

both the attribute weights and the alternatives’  consequences are exact point estimates. The 

figure indicates that alternative ‘Fod+Fod’ , where clean fodder is provided for both periods, 

is the best alternative with overall value of 0.86. 

4.2 Sensitivity analysis 

This example is a typical case where interval sensitivity analysis is useful. In emergency 

planning we often want to design precautionary actions following the worst case approach. 
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The alternative with the highest performance score need not be the right one to choose if a 

worst case analysis reveals a risk of getting an unacceptably low performance under certain 

circumstances. An alternative with a slightly lower scoring on an average might be preferred, 

if the analysis shows that it performs in an acceptable way in all possible circumstances. 

To illustrate the need for multiparameter analysis, consider the phenomenon that can arise 

due to the hierarchical structure of the model. For example, alternative ‘---+---’  has a 

rating 1.00 on the attribute Costs, but a low rating on the Health effects. Thus, any variation in 

the weight ratio between these attributes should have a considerable effect on the overall 

results. However, variation between the local weights of Reassurance and Feasibility under 

the Socio-psychological effects should also be taken into account, as for example, alternative 

‘---+---’  has ratings 0.00 and 1.00, respectively, on these attributes. Thus, a 

multiparameter analysis is needed to simultaneously take into account the possible variations 

in both these. 

Next, we demonstrate the use of interval sensitivity analysis in this case. The objective is to 

study the changes in the relations between the alternatives when all the possible uncertainties 

in the problem are considered. The analysis consists of three phases. First, the sensitivity in 

the weight assessment is studied by extending the weight ratios to intervals. Next, the effects 

of the possible variation in the alternatives’  values are studied by giving these as intervals. 

Finally, uncertainties in both of these are simultaneously taken into account. The 

approximation of uncertainties is based on the results of the survey carried out among the 

DMs in the conference. 

To model uncertainty in the weight assessment, the weight ratio estimates are extended into 

intervals. For each pairwise attribute comparison, an error ratio 2 is used to reflect this 

uncertainty. Figure 4 shows the resulting value intervals and dominance relations (e.g. “A → 
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B”  denotes that A dominates B). Attribute ‘Fod+Fod‘  still dominates all the other 

alternatives. Thus, the choice of the most preferred alternative is not sensitive to considerable 

variations in the weights. One should note that alternatives ‘Fod+---‘ , ‘Prod+Fod‘ , 

‘Ban+Fod‘  and ‘Ban+Ban‘  are all dominated, although the upper bound of these is higher 

than the lower bound of ‘Fod+Fod’ . Thus, dominance is pairwise, i.e. there is no single 

feasible weight combination with which the overall value of any of these is higher than the 

overall value of ‘Fod+Fod’ . 

In the second phase, uncertainty in the DMs’  subjective estimates in the Socio-

psychological effects is studied. This uncertainty can be taken into account by extending the 

original rating estimates into intervals. However, one should note that any variation within 

these intervals is assumed to be independent of variations in the other alternatives, and 

possible uncertainties in the ranges of attributes are taken into account in the variation of the 

weights. We assumed an uncertainty level of ±10% of the value interval and introduced 

related intervals into the model. Figure 5 shows the resulting value intervals and dominance 

relations. In this case, ‘Fod+Fod‘  dominates all the other alternatives except ‘Prod+Fod‘ . 

Thus, the choice of the best alternative is not very sensitive to considerable variations in the 

participants’  value estimates either. 

Finally, Figure 6 shows the overall value intervals including uncertainties both in the 

weight assessment and in the value estimation. Although the previous analyses did not show 

the problem to be very sensitive on these uncertainties alone, under these joint effects all the 

alternatives except ‘---+---’  become non-dominated. Thus, the DM can for sure only 

eliminate alternative ‘---+---’  and be confident that at least some protective actions should 

be taken. However, of the non-dominated alternatives, ‘Fod+Fod’  still performs well. For 

example, it has the highest lower and upper bounds of the overall value interval (0.75 and 
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0.93, respectively). Thus, this analysis can also increase the confidence on the alternative 

‘Fod+Fod’ , as even in the worst case it is not considerably worse than any of the other 

alternatives. 

The above analysis showed how to quickly assign uncertainties in the model. However, in 

practice the DM can continue the process by further adjusting the intervals interactively, and 

study how the overall value interval is affected by these changes. He/she can, for example, 

tighten the intervals and evaluate which what are the widest intervals with which ‘Fod+Fod’  

is the only dominated alternative, and then consider whether to accept these intervals to 

represent the allowed uncertainties in the problem. 

5. Conclusion 

In this paper we have described how to use interval modeling in global sensitivity analyses 

in multilevel value trees to analyze the effects of the total impacts of all combined 

uncertainties on the performance of the alternatives. Our approach is concerned with the 

extreme values of the intervals, which are needed, e.g., if one is interested in a worst case 

scenario. The proposed approach is computationally fast and the interpretation of the results is 

conceptually straightforward also for non-mathematicians. With software, such as WINPRE, 

intervals can be easily given and graphical output visualizes the magnitude of the total 

uncertainty in an easy to understand way. 

The intervals can be constructed in different ways. Strict maximum and minimum values 

will enable worst case analyses. The decision maker can also assign error ratios to point 

estimates or treat the intervals as a kind of confidence interval, although in this case one needs 

to be careful when interpreting the results. Yet, one can assign different levels of uncertainties 

in all the model parameters simultaneously. By varying the intervals the DM can also carry 

out what-if analyses and immediately see the results. This is useful e.g. for finding the level of 
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uncertainty allowed for the decision to still be the best in all circumstances. In a more detailed 

analysis the interval method can also show which factors affect the outcome the most. That is, 

by adding imprecision to different factors one by one, the analysis will reveal what 

information should be collected and how much that will reduce the uncertainty in the model. 

As demonstrated in our example, the proposed approach is likely to be attractive in high-

risk situations where a worst case analysis is needed and where the DMs might want to 

quickly try out different what-if analyses. Also when following the precautionary principle a 

global sensitivity analysis using intervals would be useful. 
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Figure 1. Example of the feasible region of the weights S on the weight plane w1 + w2 + w3 = 1. 
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Figure 2. Value tree for the protective actions in the case. 
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Figure 3. Overall values for the alternatives. 
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Figure 4. Overall intervals and dominance relations calculated with uncertainty in the weight 

assessment. 
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Figure 5. Overall intervals and dominance relations calculated with uncertainty in value estimation. 
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Figure 6. Overall intervals and dominance relations when all the possible uncertainty in the problem is 

taken into account. 

 


