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Abstract 

Many scheduling problems in production environment are large scale combinatorial optimization problems and 

cannot generally be solved optimally in reasonable computing time. We describe a genetic algorithm procedure 

for generalized resource constrained scheduling problems, where the objective is to schedule the operations 

subject to ready times, due dates, precedence relations and time-dependent resource constraints in order to 

optimize the given objective function. The scheduling procedure has two levels. A genetic algorithm is first used 

to determining the priorities of the operations. Then the schedule is calculated based on the priorities. Some 

experimental results will be discussed. 
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1. Introduction 

 

Production scheduling is an important part of the production planning of many manufacturing companies. By 

scheduling it is possible to find the right sequence to do the jobs and the right schedule, when each operation of 

the job should be processed at each stage of the production process. 

  

Traditional scheduling methods, such as PERT and CPM, are not enough for production scheduling, because 

they produce infinite schedules, i.e. they can not take resource constraints into account. Infinite scheduling may 

give results, which are not feasible. A schedule is called feasible, if the precedence relations of the operations are 

maintained and the resource and other constraints are satisfied. Resource constrained production scheduling is 

called finite capacity scheduling. In manufacturing industry, efficient methods to solve resource constrained 

scheduling problems are needed. 

 

In practice, production scheduling often relies on priority based sequencing in order to determine which job a 

machine should process at the time, when the machine becomes available.  These dispatching algorithms are 

simple and flexible, but they lack optimality because they usually make current decisions without considering 

future events and what is happening at other machines. This can cause long lead times and big inventories in 

highly utilized manufacturing facilities [1]. 

 

However, many scheduling problems in real production environment are large scale combinatorial optimization 

problems and can not generally be solved optimally in a reasonable computing time.  Therefore, metaheuristic 

search methods, such as tabu search, simulated annealing and genetic algorithms, have been used to finding 

solutions.  

 

This paper deals with a genetic algorithm based scheduling procedure for generalized resource constrained 

scheduling problem, where the objective is to schedule the operations subject to ready times, due dates, 



precedence relations and time-dependent resource constraints in order to optimize the objective function. The 

algorithm has two levels. First, a genetic algorithm determines the priorities of the operations. Then the priorities 

are used for calculating the schedule.  

 

The paper is organized as follows. In Chapter 2 the generalized resource constrained scheduling problem is 

introduced. Chapter 3 describes the scheduling procedure with genetic algorithm, Chapter 4 provides some 

computational results and Chapter 5 includes the summary. 

 

2. Generalized resource constrained scheduling problem 

 

There are different types of project scheduling problems, and in many cases, they are suitable for production 

scheduling. For example, the generalized resource constrained project scheduling problem (GRCPSP) described 

in Demeulemeester and Herroelen [2] is a convenient formulation for this purpose. We have n jobs Ji ,  i = 1, … , 

n, each of which consists of ni operations Oi1 , … , Oini. The processing order of operations is determined in 

advance. Dummy operations O0 and O* link the jobs together to be one project. An example of production 

network is illustrated in Figure 1, where jobs J1, J2 and J3 consist of operations O11 ,…,O19, O21 ,…, O24 and O31 

,…, O37. 

 

   Figure 1.  

 

The start time of operation Oiq is denoted as siq and the finish time is fiq. The duration is known beforehand and it 

is diq = fiq - siq. Durations d0 and d* of the dummy operations O0 and O* are zero, and thus, their start and finish 

times are equal: s0 = f0 and s* = f*. The objective is to solve finish times f = (f11 , … , f1n1 , f21 , … , f2n2 , … , fn1 , 

… , fnnn) of operations Oi1 , … , Oini for each job Ji ,  i = 1, … , n in order to optimize the objective function J(f). 

Because the finish time of an operation equals to the known duration of an operation added to the start time, i.e. 



fiq = siq + diq for all operations Oiq, the problem can be considered as solving start times s = (s11 , … , s1n1 , s21 , … 

, s2n2 , … , sn1 , … , snnn) in order to optimize the objective function J(s) as well.  

 

There are four possible precedence relations between predecessor Oiq and successor Oir, finish-to-start FSiq,ir, 

start-to-start SSiq,ir, finish-to-finish FFiq,ir and start-to-finish SFiq,ir. They tell desired minimum lags between 

successors and predecessors, e.g. in the case of a start-to-start relation, successor Oir should not be started before 

a lag sized SSiq,ir added to start time siq of predecessor Oiq. All of these four time lags are fixed beforehand. 

Because the duration diq of each operation Oiq is known beforehand, all the lags from precedence relations can be 

combined using the following formula [2].  
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The generalized resource constrained scheduling problem is now formulated as follows:  
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The scheduling direction can be forward or backwards. In forward scheduling, start time s0 of the first dummy 

operation is fixed to t0. Correspondingly, in backward scheduling, finish time f* of the last dummy operation is 



fixed to tE. Precedence constraints (4) set start time sir of successor Oir to be more than finish time fiq of 

predecessor Oiq and converted minimum lag FS’iq,ir between operations Oiq and Oir. H denotes a set of all pairs of 

operations Oiq and Oir indicating precedence constraints. According to ready time and due date constraints (5) 

and (6), operation Oiq may not be started before ready time giq and finished after due date hiq. The time scale is 

discretized into constant intervals ∆t = ti - ti-1 starting from the time t0. For convenience, the time unit ∆t is scaled 

to 1 and the start time t0 is adjusted to zero. We have K renewable resource types (such as machines) Mk, k = 1, 

… , K and operation Oiq requires resource type Mk a fixed number of riq,k.. In (7), the availability ak,t of resource 

type Mk  in time interval (t-1, t] may not be exceeded. St denotes the set of operations in progress during time 

interval  (t-1, t]. In this formulation, operations may not be interrupted during the execution and resumed at a 

later time.  

 

3. Scheduling procedure 

 

The algorithm consists of two phases. First, the priorities of the operations are determined. After that, the 

schedule is calculated based on the priorities of the operations.  

 

3.1. Genetic algorithm 

 

A genetic algorithm is used in determining the priorities of the operations.  A vector of integers, which is called a 

chromosome, consists of the priorities of the operations to be scheduled. In evolutionary computing terms, an 

integer denoting a decision variable is called a gene, which now represents a priority of an operation. This 

representation is used e.g. in the scheduling procedure described in Lee and Kim [4]. A set of chromosomes is 

called a population and a population at a given time is called a generation. For example, if the population 

consists of N chromosomes and a chromosome consists of M genes, then there is N integer vectors with size M.  

 



An evaluation function measures the quality of the solution given by a chromosome.  The purpose of an 

evaluation function is to assign a numerical value to a chromosome. The evaluation function can be considered 

as an objective function of the optimization problem. Here the evaluation function for each chromosome is 

calculated by the priority scheduling procedure formulated in Chapter 3.2. The goal of scheduling is to construct 

a feasible schedule, which optimizes the chosen evaluation function. We use a simple version of genetic 

algorithm, and it can be formulated as follows: 

 

1. The initial generation is created, i.e. a random integer is given to each gene of each chromosome of the 

population so that two genes in the same chromosome does not have the same value.  

2. Create the next generation: 

• Initialize the new generation by duplicating the previous generation.  

• Find the best chromosome, i.e. the chromosome with the best evaluation value, of the previous 

generation.  

• Divide the population into pairs of chromosomes. Let l be the index of a pair. Repeat the next steps for 

all pairs l.  

- Select randomly a chromosome from the previous generation and a crossover point. The 

crossover point lies between two consecutive genes. 

- Crossover: Swap the values of genes (i.e. the priorities of the operations) after the crossover 

point between the randomly selected chromosome and the best chromosome with a probability 

called a crossover rate. Replace the pair l with the two new offspring chromosomes.  

- Mutation: Swap two randomly selected genes of a chromosome with a probability called 

mutation rate. Apply the mutation to the both chromosomes in the pair l.  

• Replace the last chromosome of the population with the best chromosome of the previous generation. 

This is called an elitism and it guarantees that the next generation will contain a chromosome, which is 

better than or equal to the best chromosome in the previous generation. 

3. If the termination condition is met, then stop. Otherwise, go to step 2. 



 

There are several other ways to use a genetic algorithm. E.g. the initial population could be created by some 

effective priority rules. In reproduction, a random chromosome from previous generation could be chosen and 

taken to the new population e.g. with a probability given by the evaluation function [4]. In crossover, instead of 

only one crossover point, there can be also several ones. The mutation can be done also with a sequence mutator 

that changes a certain sequence of genes into a reverse order. Promising ideas to improve the performance of 

genetic algorithms are the self-adapting genetic algorithm approach (Hartmann [3]) and the gene bank method 

(Tyni and Ylinen [5]). 

 

3.2. Priority scheduling procedure 

 

The priority scheduling procedure is given below. It tells how to construct the schedule based on the priorities 

given by a chromosome. If a population contains N chromosomes, there are N schedules correspondingly. The 

procedure below is for forward scheduling, but it can be easily converted into backward scheduling. 

 

1. Determine the priorities of operations using the genetic algorithm. Create set E of all the operations that do 

not have a predecessor. 

 

2. Select the operation with the highest priority from the set E. Set the start time of the operation to be the 

earliest time when the operation could be started with respect to 

• minimum time lags between the operation and its predecessors, 

• ready time constraint of the operation and 

• resource requirements of the operation such that there are enough resources available during the 

execution of the operation. 

Reduce the resource availabilities respectively.  

 



3. Remove the scheduled operation from set E and add its successors to set E. If set E is empty, stop. 

Otherwise, go to step 2. 

 

When all the operations are scheduled, the objective function can be calculated based on the properties of the 

scheduled operations. The priority scheduling procedure above produces a feasible solution (if it exists) with 

precedence and resource constraints (4) and (7). Depending on the scheduling direction, either ready time (5) or 

due date constraints (6) can be taken into account in the priority scheduling phase. A forward schedule is feasible 

with the ready time constraints, but it may be non-feasible with the due dates. Correspondingly, in spite of 

managing the due dates, a backward schedule may have problems with the ready time constraints. In forward 

scheduling, the due date constraints for individual operations are taken into account by using a penalty term in 

the objective function:  
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The tardiness, max{0, fiq –hiq}, of operation Oiq ∈ {Oi1 , … ,Oini} is multiplied by the penalty weight wi of job Ji. 

Correspondingly, in backward scheduling, the penalty terms are used to dealing with the ready time constraints. 

The backward scheduling objective function is formulated as follows: 
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4. Computational experiments 

 

4.1. Test data 

 



The computational experiments have been run with the following test cases: First, the number of jobs n is 

selected. Every job has 14 consecutive operations, whose durations are generated from a discrete uniform 

distribution with range [1,8]. The minimum lags between consecutive operations are selected randomly from a 

discrete uniform distribution with range [-1,5]. We have also 14 resource types and each operation requires one 

resource unit so that e.g. the first operation of a job uses the first resource type, the second operation needs the 

second resource type etc. The availability of a resource type varies between 0 and 2n/100+1. The time intervals 

between the availability changes vary between 1 and 100 (all of them are generated from a discrete uniform 

distribution). 

 

 The ready times and the due dates are generated as follows: At first, we select for each job Ji, i=1,…,n a random 

integer b from an uniform distribution with range [1,10n]. The due date for the last operation Oi14 of the job 

equals b added to constant 720 and the smallest possible duration of the job. For every fifth job, we select 

randomly also another operation Oiq between Oi1 and Oi13 and set a due date, which is b added to constant 720 

and the minimum duration from Oi1 to Oiq. For every seventh job, we select again Oiq, q = 1,…,13, from a 

discrete uniform distribution and set a ready time to b added to the minimum duration from Oi1 to Oiq-1  (without 

adding 720).  

 

The scheduling direction is forwards, and the objective is to minimize the makespan, i.e. finish time f* of the last 

dummy operation. In the objective function (8), all the penalty weights wi are set to 20. The crossover and the 

mutation rate are both set to 0.5. The procedure terminates, when the computing time exceeds 30 minutes. The 

tests are run for problem sizes (i.e. the number of operations) 2800, 4200, 5600, 7000 and 8400 with population 

sizes 100 and 200. The procedure is implemented with C++ language and the test runs are executed on a 

personal computer with two 450 MHz Pentium II processors. 

 

4.2. Results 

 



The computational results are shown in Table 1. The generation, in which a feasible solution with the due dates 

is found, is presented for each combination of the problem size and the population size. Also, the average 

tardiness per job after the first and the final generation are provided. The results indicate, that the algorithm 

decreases tardiness, and a feasible solution seems to be found soon. The convergence of the algorithm is highly 

dependent on the test cases and the algorithm parameters, including the termination condition. Table 2 provides 

approximate computational time of calculating the evaluation function for one chromosome. 

 

   Table 1. 

 

   Table 2. 

 

 

 

5. Summary 

 

In this paper, we proposed a procedure for solving a generalized resource constrained scheduling problem. In the 

procedure, the schedule is calculated based on priorities of operations. Priorities are generated using a genetic 

algorithm. 

 

Preliminary computational results are promising and refer to that good and feasible solutions may be found 

quickly with the procedure. A reasonable computing time is important so that frequent re-scheduling is possible 

in the dynamic production environment with external and internal disturbances. The procedure can be applied to 

quite large real world scheduling problems.  
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Figure 1. Network of operations 



 

Problem size 2800 4200 5600 7000 8400 
Population size 100 200 100 200 100 200 100 200 100 200 

Number of generations 81 40 40 20 23 11 15 7 9 4 
Feasible solution found 25 12 - - 14 - 15 2 - - 
Av. tard. per job (first) 1.00 0.91 2.85 2.32 0.48 0.23 0.02 0.08 3.28 2.92 
Av. tard. per job (final) 0 0 1.68 1.11 0 0.02 0 0 2.80 2.25 

 

Table 1. Computational results 



 

Problem size 2800 4200 5600 7000 8400 
Comp. time for one chromosome (sec) 0.22 0.44 0.76 1.15 1.81 

 

Table 2. Approximate computing time per one chromosome 

 


