
Large scale generalized resource constrained scheduling problems:

A genetic algorithm approach

Olli Kämäräinen 1

Vesa Ek 2

Kimmo Nieminen 3

Sampo Ruuth 3

1 IC-Parc, Imperial College, London, UK

2 TietoEnator Corporation, Espoo, Finland

3 Systems Analysis Laboratory, Helsinki University of Technology, Finland

Abstract

Many scheduling problems in production environment are large scale combinatorial optimization problems and

cannot generally be solved optimally in reasonable computing time. We describe a genetic algorithm procedure

for generalized resource constrained scheduling problems, where the objective is to schedule the operations

subject to ready times, due dates, precedence relations and time-dependent resource constraints in order to

optimize the given objective function. The scheduling procedure has two levels. A genetic algorithm is first used

to determining the priorities of the operations. Then the schedule is calculated based on the priorities. Some

experimental results will be discussed.

AMS Subject Classification: Primary 90B35 (Scheduling theory, deterministic),

 Secondary 68T20 (Problem solving (heuristics, search strategies, etc.))

Key words: Production scheduling, Genetic algorithms, Combinatorial optimization

1. Introduction

Production scheduling is an important part of the production planning of many manufacturing companies. By

scheduling it is possible to find the right sequence to do the jobs and the right schedule, when each operation of

the job should be processed at each stage of the production process.

Traditional scheduling methods, such as PERT and CPM, are not enough for production scheduling, because

they produce infinite schedules, i.e. they can not take resource constraints into account. Infinite scheduling may

give results, which are not feasible. A schedule is called feasible, if the precedence relations of the operations are

maintained and the resource and other constraints are satisfied. Resource constrained production scheduling is

called finite capacity scheduling. In manufacturing industry, efficient methods to solve resource constrained

scheduling problems are needed.

In practice, production scheduling often relies on priority based sequencing in order to determine which job a

machine should process at the time, when the machine becomes available. These dispatching algorithms are

simple and flexible, but they lack optimality because they usually make current decisions without considering

future events and what is happening at other machines. This can cause long lead times and big inventories in

highly utilized manufacturing facilities [1].

However, many scheduling problems in real production environment are large scale combinatorial optimization

problems and can not generally be solved optimally in a reasonable computing time. Therefore, metaheuristic

search methods, such as tabu search, simulated annealing and genetic algorithms, have been used to finding

solutions.

This paper deals with a genetic algorithm based scheduling procedure for generalized resource constrained

scheduling problem, where the objective is to schedule the operations subject to ready times, due dates,

precedence relations and time-dependent resource constraints in order to optimize the objective function. The

algorithm has two levels. First, a genetic algorithm determines the priorities of the operations. Then the priorities

are used for calculating the schedule.

The paper is organized as follows. In Chapter 2 the generalized resource constrained scheduling problem is

introduced. Chapter 3 describes the scheduling procedure with genetic algorithm, Chapter 4 provides some

computational results and Chapter 5 includes the summary.

2. Generalized resource constrained scheduling problem

There are different types of project scheduling problems, and in many cases, they are suitable for production

scheduling. For example, the generalized resource constrained project scheduling problem (GRCPSP) described

in Demeulemeester and Herroelen [2] is a convenient formulation for this purpose. We have n jobs Ji , i = 1, … ,

n, each of which consists of ni operations Oi1 , … , Oini. The processing order of operations is determined in

advance. Dummy operations O0 and O* link the jobs together to be one project. An example of production

network is illustrated in Figure 1, where jobs J1, J2 and J3 consist of operations O11 ,…,O19, O21 ,…, O24 and O31

,…, O37.

 Figure 1.

The start time of operation Oiq is denoted as siq and the finish time is fiq. The duration is known beforehand and it

is diq = fiq - siq. Durations d0 and d* of the dummy operations O0 and O* are zero, and thus, their start and finish

times are equal: s0 = f0 and s* = f*. The objective is to solve finish times f = (f11 , … , f1n1 , f21 , … , f2n2 , … , fn1 ,

… , fnnn) of operations Oi1 , … , Oini for each job Ji , i = 1, … , n in order to optimize the objective function J(f).

Because the finish time of an operation equals to the known duration of an operation added to the start time, i.e.

fiq = siq + diq for all operations Oiq, the problem can be considered as solving start times s = (s11 , … , s1n1 , s21 , …

, s2n2 , … , sn1 , … , snnn) in order to optimize the objective function J(s) as well.

There are four possible precedence relations between predecessor Oiq and successor Oir, finish-to-start FSiq,ir,

start-to-start SSiq,ir, finish-to-finish FFiq,ir and start-to-finish SFiq,ir. They tell desired minimum lags between

successors and predecessors, e.g. in the case of a start-to-start relation, successor Oir should not be started before

a lag sized SSiq,ir added to start time siq of predecessor Oiq. All of these four time lags are fixed beforehand.

Because the duration diq of each operation Oiq is known beforehand, all the lags from precedence relations can be

combined using the following formula [2].

};;;max{' , , , , , iririqiriqiriqiriqiqiriqiriq dFFFSddSFdSSFS −−−−= (1)

The generalized resource constrained scheduling problem is now formulated as follows:

)f(Optimize J (2)

scheduling backwardin ,

scheduling forwardin ,
 subject to

*

00

=
=

Etf
ts

 (3)

,),(,'
, HOOFSfs iriqiriqiqir ∈∀+≥ (4)

 , iqiqiq Ogs ∀≥ (5)

iqiqiq Ohf ∀≤ , (6)

 21,,...,2,1 , *,, ,...,K,kftar tk

tSiqO
kiq ==≤∑

∈

 (7)

The scheduling direction can be forward or backwards. In forward scheduling, start time s0 of the first dummy

operation is fixed to t0. Correspondingly, in backward scheduling, finish time f* of the last dummy operation is

fixed to tE. Precedence constraints (4) set start time sir of successor Oir to be more than finish time fiq of

predecessor Oiq and converted minimum lag FS’iq,ir between operations Oiq and Oir. H denotes a set of all pairs of

operations Oiq and Oir indicating precedence constraints. According to ready time and due date constraints (5)

and (6), operation Oiq may not be started before ready time giq and finished after due date hiq. The time scale is

discretized into constant intervals ∆t = ti - ti-1 starting from the time t0. For convenience, the time unit ∆t is scaled

to 1 and the start time t0 is adjusted to zero. We have K renewable resource types (such as machines) Mk, k = 1,

… , K and operation Oiq requires resource type Mk a fixed number of riq,k.. In (7), the availability ak,t of resource

type Mk in time interval (t-1, t] may not be exceeded. St denotes the set of operations in progress during time

interval (t-1, t]. In this formulation, operations may not be interrupted during the execution and resumed at a

later time.

3. Scheduling procedure

The algorithm consists of two phases. First, the priorities of the operations are determined. After that, the

schedule is calculated based on the priorities of the operations.

3.1. Genetic algorithm

A genetic algorithm is used in determining the priorities of the operations. A vector of integers, which is called a

chromosome, consists of the priorities of the operations to be scheduled. In evolutionary computing terms, an

integer denoting a decision variable is called a gene, which now represents a priority of an operation. This

representation is used e.g. in the scheduling procedure described in Lee and Kim [4]. A set of chromosomes is

called a population and a population at a given time is called a generation. For example, if the population

consists of N chromosomes and a chromosome consists of M genes, then there is N integer vectors with size M.

An evaluation function measures the quality of the solution given by a chromosome. The purpose of an

evaluation function is to assign a numerical value to a chromosome. The evaluation function can be considered

as an objective function of the optimization problem. Here the evaluation function for each chromosome is

calculated by the priority scheduling procedure formulated in Chapter 3.2. The goal of scheduling is to construct

a feasible schedule, which optimizes the chosen evaluation function. We use a simple version of genetic

algorithm, and it can be formulated as follows:

1. The initial generation is created, i.e. a random integer is given to each gene of each chromosome of the

population so that two genes in the same chromosome does not have the same value.

2. Create the next generation:

• Initialize the new generation by duplicating the previous generation.

• Find the best chromosome, i.e. the chromosome with the best evaluation value, of the previous

generation.

• Divide the population into pairs of chromosomes. Let l be the index of a pair. Repeat the next steps for

all pairs l.

- Select randomly a chromosome from the previous generation and a crossover point. The

crossover point lies between two consecutive genes.

- Crossover: Swap the values of genes (i.e. the priorities of the operations) after the crossover

point between the randomly selected chromosome and the best chromosome with a probability

called a crossover rate. Replace the pair l with the two new offspring chromosomes.

- Mutation: Swap two randomly selected genes of a chromosome with a probability called

mutation rate. Apply the mutation to the both chromosomes in the pair l.

• Replace the last chromosome of the population with the best chromosome of the previous generation.

This is called an elitism and it guarantees that the next generation will contain a chromosome, which is

better than or equal to the best chromosome in the previous generation.

3. If the termination condition is met, then stop. Otherwise, go to step 2.

There are several other ways to use a genetic algorithm. E.g. the initial population could be created by some

effective priority rules. In reproduction, a random chromosome from previous generation could be chosen and

taken to the new population e.g. with a probability given by the evaluation function [4]. In crossover, instead of

only one crossover point, there can be also several ones. The mutation can be done also with a sequence mutator

that changes a certain sequence of genes into a reverse order. Promising ideas to improve the performance of

genetic algorithms are the self-adapting genetic algorithm approach (Hartmann [3]) and the gene bank method

(Tyni and Ylinen [5]).

3.2. Priority scheduling procedure

The priority scheduling procedure is given below. It tells how to construct the schedule based on the priorities

given by a chromosome. If a population contains N chromosomes, there are N schedules correspondingly. The

procedure below is for forward scheduling, but it can be easily converted into backward scheduling.

1. Determine the priorities of operations using the genetic algorithm. Create set E of all the operations that do

not have a predecessor.

2. Select the operation with the highest priority from the set E. Set the start time of the operation to be the

earliest time when the operation could be started with respect to

• minimum time lags between the operation and its predecessors,

• ready time constraint of the operation and

• resource requirements of the operation such that there are enough resources available during the

execution of the operation.

Reduce the resource availabilities respectively.

3. Remove the scheduled operation from set E and add its successors to set E. If set E is empty, stop.

Otherwise, go to step 2.

When all the operations are scheduled, the objective function can be calculated based on the properties of the

scheduled operations. The priority scheduling procedure above produces a feasible solution (if it exists) with

precedence and resource constraints (4) and (7). Depending on the scheduling direction, either ready time (5) or

due date constraints (6) can be taken into account in the priority scheduling phase. A forward schedule is feasible

with the ready time constraints, but it may be non-feasible with the due dates. Correspondingly, in spite of

managing the due dates, a backward schedule may have problems with the ready time constraints. In forward

scheduling, the due date constraints for individual operations are taken into account by using a penalty term in

the objective function:

},0max{)f()f(
1

iq

n

q
iq

iJ
i hfwJJ

i

∑∑
=∀

−+= (8)

The tardiness, max{0, fiq –hiq}, of operation Oiq ∈ {Oi1 , … ,Oini} is multiplied by the penalty weight wi of job Ji.

Correspondingly, in backward scheduling, the penalty terms are used to dealing with the ready time constraints.

The backward scheduling objective function is formulated as follows:

},0max{)f()f(
1

iq

n

q
iq

iJ
i sgwJJ

i

∑∑
=∀

−+= (9)

4. Computational experiments

4.1. Test data

The computational experiments have been run with the following test cases: First, the number of jobs n is

selected. Every job has 14 consecutive operations, whose durations are generated from a discrete uniform

distribution with range [1,8]. The minimum lags between consecutive operations are selected randomly from a

discrete uniform distribution with range [-1,5]. We have also 14 resource types and each operation requires one

resource unit so that e.g. the first operation of a job uses the first resource type, the second operation needs the

second resource type etc. The availability of a resource type varies between 0 and 2n/100+1. The time intervals

between the availability changes vary between 1 and 100 (all of them are generated from a discrete uniform

distribution).

 The ready times and the due dates are generated as follows: At first, we select for each job Ji, i=1,…,n a random

integer b from an uniform distribution with range [1,10n]. The due date for the last operation Oi14 of the job

equals b added to constant 720 and the smallest possible duration of the job. For every fifth job, we select

randomly also another operation Oiq between Oi1 and Oi13 and set a due date, which is b added to constant 720

and the minimum duration from Oi1 to Oiq. For every seventh job, we select again Oiq, q = 1,…,13, from a

discrete uniform distribution and set a ready time to b added to the minimum duration from Oi1 to Oiq-1 (without

adding 720).

The scheduling direction is forwards, and the objective is to minimize the makespan, i.e. finish time f* of the last

dummy operation. In the objective function (8), all the penalty weights wi are set to 20. The crossover and the

mutation rate are both set to 0.5. The procedure terminates, when the computing time exceeds 30 minutes. The

tests are run for problem sizes (i.e. the number of operations) 2800, 4200, 5600, 7000 and 8400 with population

sizes 100 and 200. The procedure is implemented with C++ language and the test runs are executed on a

personal computer with two 450 MHz Pentium II processors.

4.2. Results

The computational results are shown in Table 1. The generation, in which a feasible solution with the due dates

is found, is presented for each combination of the problem size and the population size. Also, the average

tardiness per job after the first and the final generation are provided. The results indicate, that the algorithm

decreases tardiness, and a feasible solution seems to be found soon. The convergence of the algorithm is highly

dependent on the test cases and the algorithm parameters, including the termination condition. Table 2 provides

approximate computational time of calculating the evaluation function for one chromosome.

 Table 1.

 Table 2.

5. Summary

In this paper, we proposed a procedure for solving a generalized resource constrained scheduling problem. In the

procedure, the schedule is calculated based on priorities of operations. Priorities are generated using a genetic

algorithm.

Preliminary computational results are promising and refer to that good and feasible solutions may be found

quickly with the procedure. A reasonable computing time is important so that frequent re-scheduling is possible

in the dynamic production environment with external and internal disturbances. The procedure can be applied to

quite large real world scheduling problems.

References

[1] Baker A.D., Merchant M.E.: Automatic factories: How will they be controlled?. IEEE Potentials,

December 1993: 15-20

[2] Demeulemeester E.L., Herroelen W.S.: A Branch-and-bound procedure for the generalized resource-

constrained project scheduling problem. Operations Research 45: 201-212 (1997)

[3] Hartmann, S.: Self-Adapting Genetic Algorithms with an Application to Project Scheduling.

Manuskripte aus den Instituten für Betriebswirtschaftslehre, No. 506, University of Kiel, Germany

(1999)

[4] Lee J.-K., Kim Y.-D.: Search Heuristics for Resource Constrained Project Scheduling. Journal of

Operations Research 47: 678-689 (1996)

[5] Tyni T., Ylinen, J.: Improving the Performance of Genetic Algorithms with a Gene Bank. In: K.

Miettinen, M.M. Mäkelä, J. Toivanen (eds.): Proceedings of EUROGEN99 Short Course on

Evolutionary Algorithms in Engineering and Computer Science. Reports of the Mathematical

Information Technology No A 2/1999, University of Jyväskylä, Finland, pp. 162-170 (1999)

Contact information

Mr. Olli Kämäräinen (corresponding author)

IC-Parc

Imperial College of Science, Technology and Medicine

William Penney Laboratory

London SW7 2AZ

UK

E-mail: o.kamarainen@ic.ac.uk

Mr. Vesa Ek

TietoEnator

P.O.Box 43

FIN-02131 Espoo

Finland

E-mail: vesa.ek@tietoenator.com

Mr. Kimmo Nieminen

Systems Analysis Laboratory

Helsinki University of Technology

P.O.Box 1100

FIN-02015 HUT

Finland

E-mail: kimmo.nieminen@hut.fi

Prof. Sampo Ruuth

Systems Analysis Laboratory

Helsinki University of Technology

P.O.Box 1100

FIN-02015 HUT

Finland

E-mail: sampo.ruuth@hut.fi

O0

O11 O12 O13

O18

O14

O16

O15

O17

O19

O21 O22 O23 O24 O*

O31 O32 O33

O36

O34 O35

O37

J1

J2

J3

Figure 1. Network of operations

Problem size 2800 4200 5600 7000 8400
Population size 100 200 100 200 100 200 100 200 100 200

Number of generations 81 40 40 20 23 11 15 7 9 4
Feasible solution found 25 12 - - 14 - 15 2 - -
Av. tard. per job (first) 1.00 0.91 2.85 2.32 0.48 0.23 0.02 0.08 3.28 2.92
Av. tard. per job (final) 0 0 1.68 1.11 0 0.02 0 0 2.80 2.25

Table 1. Computational results

Problem size 2800 4200 5600 7000 8400
Comp. time for one chromosome (sec) 0.22 0.44 0.76 1.15 1.81

Table 2. Approximate computing time per one chromosome

