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Abstract

We present a proportional reaction strategy in a repeated Cournot duopoly game
with discounting. The strategy is based on increasing the total output quantity in
proportion to deviations from a cartel point. Such a strategy was originally proposed
by Osborne (1976) for a static oligopoly. We show that the resulting equilibrium
is subgame perfect and weakly renegotiation proof when the possible deviations
are bounded and the proportional reactions have sufficiently large slopes. The lower
bounds for the slopes depend on the profit functions and discount factors in a simple
way. A strategic explanation for conjectural variations equilibrium is discussed as
well.
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1 Introduction

Tacit collusion in oligopolistic markets can be explained with subgame perfect
equilibrium strategies in the framework of repeated games. In particular, there
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is a long tradition of studying strategies in which a firm’s actions vary contin-
uously as a response to its rivals’ behavior. Following this tradition and the
idea of Osborne’s quota rule (Osborne, 1976) we consider linear strategies in
which unilateral deviations from the cartel point are punished in proportion to
the deviation. We call these strategies proportional strategies and show that
they provide subgame perfect equilibrium in infinitely repeated game with
discounting when restricting to sufficiently small deviations.

The main motivation for continuous strategies is that they are more plausi-
ble in many circumstances than discontinuous strategies, because with them
small deviations lead only to small punishments rather than to the collapse of
collusion (Friedman, 1968, 1973, 1976). Among continuous strategies, linear
reaction strategies have raised particular interest because they are simple but
their subgame perfection is a non-trivial question.

Previously Kalai and Stanford (1985) have shown that linear strategies give
rise to an ε-perfect equilibrium when reaction times are short enough. Further-
more, using linear reaction functions leads to a subgame perfect equilibrium
for a repeated duopoly when using the limit of the means evaluation criterion
instead of discounting (Stanford, 1986a). Ehtamo and Hämäläinen (1993) con-
sider linear reaction strategies in a continuous time natural resource model and
study the credibility of these strategies. They call the corresponding equilib-
rium the incentive equilibrium, because, as they argue, punishing only slightly
from small deviations is apt to encourage cooperation.

As we restrict to sufficiently small deviations we shall define the notion of local
subgame perfection. Alós-Ferrer and Ania (2001) have previously introduced a
related concept — the local Nash equilibrium for static games. As they argue,
restricting to local deviations can be regarded as a form of boundedly rational
behavior. However, since we are dealing with a dynamic game there is also
another motivation for the local approach. Namely, the proportional strategy
can be seen as a linearization of a more general equilibrium strategy. The local
subgame perfection of the linearization then provides a necessary condition for
the subgame perfection of the original strategy.

Our analysis owes to observations made by Osborne (1976) for static oligopoly
settings. Osborne was inspired by the rather long lasting stability of the OPEC
oil cartel and he suggested that maintaining the firms’ market shares sustains
the cartel in practice. In the literature this linear strategy has been called
Osborne’s rule or Osborne’s quota rule, see Phlips (1988, Section 6.2) and
Jacquemin and Slade (1989, Section 3.1.1) for discussion on this strategy.
Osborne realized that the quota rule is also credible when deviations are suf-
ficiently small. 1 We shall notice that the quota rule is a limiting case from

1 By credibility Osborne refers to the property that the punishing firm is better off
by following the linear punishment than by ignoring the deviation. In the literature
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proportional strategies when Osborne’s assumptions hold and the discount
factors approach to one.

Linear reaction strategies as well as the proportional strategy are closely re-
lated to conjectural variations models that have been widely applied in the lit-
erature on imperfect competition. Indeed, the slope of the proportional scheme
can be associated with a conjectural variation parameter. Moreover, conjec-
tural variations can be interpreted as the slopes of firms’ nonlinear reaction
functions analogously as the proportional scheme can be seen as a lineariza-
tion of a more general strategy. Hence, the results for proportional strategies
are relevant for conjectural variations models. Namely, subgame perfection of
proportional strategies could explain conjectural variations equilibrium as a
result of rational behavior: Conjectural variations equilibrium can be main-
tained as an equilibrium with proportional strategies having the conjectural
variations as their slopes.

There is a plethora of papers which analyze conjectural variations in dynamic
settings. One part of this literature deals with dynamics that lead to par-
ticular conjectures (see, e.g., Friedman and Mezzetti, 2002, Jean-Marie and
Tidball, 2006) and another part constructs equilibrium strategies of dynamic
games that yield the same outcome as static conjectural variation models do
(see, e.g., Cabral, 1995, Dockner, 1992). This paper is related to works such
as Kalai and Stanford (1985) and Stanford (1986a) that aim to establish equi-
librium properties for conjectured reaction functions, i.e., reaction functions
corresponding to conjectural variations parameters. In this branch of literature
subgame perfection of the strategies with discounted payoffs as the evaluation
criteria poses the main challenge for which we propose a new resolution.

The proportional strategy that we analyze works only partially as a reaction
function strategy. The deviations are punished in the manner of reaction func-
tions but after a deviation the firm returns to cooperation. Hence, the strategy
does not lead to a sequence of consecutive deviations from the cooperative out-
puts as reaction function models do. The reason for our formulation is that in
infinitely repeated games with discounting the only subgame perfect reaction
function strategies are those that prescribe the stage-game Nash equilibrium
actions in each period, see Stanford (1986b) and Robson (1986).

This paper is structured as follows. In Section 2 we discuss the Osborne’s rule
for a static duopoly model. In Section 3 we define the proportional scheme with
time delay and analyze its properties for bounded deviations. The subgame
perfection is analyzed in Section 4 where implications for conjectural variations
equilibria are also presented. In Section 5 we discuss the results.

credibility often refers to subgame perfection. In this paper credibility is not used
in this meaning.
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2 Osborne’s Rule for a Static Cournot Duopoly

In this section we go through the static Osborne’s rule in an extent appro-
priate to our formulation. For simplicity we first consider a duopoly setting.
Originally Osborne (1976) presented his quota rule in the context of more
general oligopolies. The firms are indexed with i, q = (q1, q2) denotes the pair
of output quantities, and πi is firm i’s profit function. The subscript −i refers
to i’s rival. When we use the index i without specifying its values, we are
considering either of the two firms.

The first assumption we make for a profit function is the following:

(A1) πi is differentiable, strictly concave, and strictly decreasing in q−i when
qi > 0.

Since πi is a strictly concave function, the maximum of πi under convex con-
straints is unique. Our second assumption is that at the tacitly agreed coop-
erative point firm i’s profit function is increasing with respect to qi. Let qλ

denote the cooperative point, and let us assume that at this point the pro-
duction quantities and the profits are positive. The second assumption can be
written for πi and qλ as

(A2) ∂πi(q
λ)/∂qi > 0.

Osborne’s quota rule is based on the observation that when qλ is a Pareto-
optimal point and profit functions satisfy (A1) and (A2), then there is a joint
tangent line to the contours of the profit functions. This tangent line is defined
by

∇πi(q
λ) · (q − qλ) = 0, (1)

where the dot denotes the usual inner product. The joint tangency property
is illustrated in Figure 1, where the solid contours are for π1 and the dashed
contours are for π2. Although in Figure 1 the line also goes through the origin,
this need not be the case in general. We will discuss this property below. When
qλ is not Pareto-optimal then the line given by (1) is tangential only to the
contour of πi at qλ but not necessarily to the corresponding contour of π−i.

The tangent line (1) takes the form

q−i = L(qi, α
λ
i ) = qλ

−i + αλ
i · (qi − qλ

i ),

where

αλ
i = −

∂πi(q
λ)/∂qi

∂πi(qλ)/∂q−i

. (2)

Under (A1) and (A2) we have αλ
i > 0. We also assume that qλ

i > 0, i = 1, 2,
in which case (A1) gives ∂πi(q

λ)/∂q−i > 0, and thus αλ
i < ∞.
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Figure 1. A Pareto-optimal point and a joint tangent line.

Osborne interpreted the joint tangent line strategically by assuming that firm
i’s rival responds to its actions according to the rule

q−i = r−i(qi, α
λ
i ) = max{qλ

−i, L(qi, α
λ
i )}. (3)

In other words, when firm i pushes its production from qλ
i to increase its

profit, the rival reacts by keeping the joint production on the tangent line,
hence actually decreasing firm i’s profit. For example, if firm 1 moves to q′1 as
in Figure, then firm 2 raises its output to q′2, which decreases firm 1’s profit. As
Osborne showed, following this reaction rule suffices for an equilibrium when
reactions are instantaneous. Note that it is not profitable for firm −i to punish
its rival from decreasing its output below qλ

i .

Osborne showed the equilibrium property of linear reaction rules for n firms,
which is not as obvious result as in the duopoly case. Spence (1978) extends
the result by characterizing a more general class of reaction functions that
give rise to efficient outcomes. The following theorem is a reformulation of
Osborne’s result, and it shows that αλ

i is a lower bound for the slope αi of
L in r−i such that qλ

i becomes firm i’s optimal choice. As we shall discuss
in Section 4.2, αi plays the same role as the conjectural variation parameter.
The below result differs slightly from the Osborne’s original work as we do not
require the Pareto-optimality of qλ. The proof is is given in Appendix.

Theorem 1. Let us assume that αi ≥ αλ
i and assumptions (A1) and (A2)

hold for πi and qλ. Then qλ
i maximizes πi (qi, r−i(qi, αi)).

When profit functions and the slopes of their tangent lines satisfy the assump-
tions made in Theorem 1, then qλ becomes the equilibrium outcome under the
proportional reaction strategies. Osborne further showed that the tangent line
defined by (1) has the ray property if qλ is the joint profit maximum and, in
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addition to satisfying (A1) and (A2), the profits are of the form

πi(q) = P (q)qi − Ci(qi), (4)

for i = 1, 2. Here Ci is the cost function and P is the inverse demand function
that satisfies ∂P (q)/∂q1 = ∂P (q)/∂q2. The ray property says that the common
tangent line q−i = L(qi, α

λ
i ), i = 1, 2, also passes through the origin, see Figure

1. The economic interpretation of this property is that by reacting according to
the rule (3) the firms automatically preserve their market shares at qλ

i /(qλ
1+qλ

2 ),
i = 1, 2. Or putting it in another way, by always reacting so that the market
shares remain constant, the firms move along the joint tangent line and thus
maintain cooperation.

Finally, Osborne discusses the credibility of the quota rule in his paper. The
credibility refers to the property that the punishing firm is better off, at least
for small deviations, by following the rule than by just ignoring the deviation.
In this paper this property is tightened; credibility means that it is better to
follow the punishment line than to choose any other output below it as the
punishment. Note that by (A1), a deviating firm i would not mind if it is
punished less than the proportional scheme L(qi, α

λ
i ) suggests. This property

will be our main ingredient of the equilibrium strategy in dynamic setting.

In Figure 2 we see that for firm 1’s deviation q′1 firm 2 would choose the
punishment q′2 = L(q′1, α

λ
1) among all quantities below this output (vertical

line segment from 0 to q′2). Actually, firm 2 would prefer quantities above q′2,
the optimal output being on the best response line (dark circle). For firm 1’s
outputs larger than qL

1 , e.g., for q′′1 , firm 2 would rather choose an output below
the punishment line. To be more specific, firm 2 would choose the point from
the best response line. Hence, in case of large deviations firm 1 has no reason
to believe that firm 2 would actually follow the proportional scheme, if also
punishment outputs below it were possible; i.e., the proportional strategy is
not credible for deviations larger than qL

1 . Note that qL
1 is the point in which

firm 2’s best response function (the decreasing line) crosses the punishment
line. In the following section we discuss the credibility in the dynamic setting
but the meaning will essentially remain the same.

Osborne’s rule, as presented in this section, is static as the reaction to devi-
ation is assumed to be instantaneous. The idea of punishing from deviations,
however, implies the sequence of actions in the following order: first one of the
firms deviates and then the other reacts. In the next section we formulate the
proportional reaction strategy in a repeated game setting to account for the
time delay between the observation of deviations and the resulting actions. As
in the static setting we obtain lower bounds for the slopes of the proportional
schemes such that cooperative play becomes the equilibrium outcome of the
game.
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Figure 2. Credibility in a static setting. The further on the left the contour is, the
higher the profit.

3 Osborne’s Rule with Time Delay

In this section the duopoly game is played repeatedly infinitely many times
and the firms observe all each others’ previous actions. Furthermore, the firms
maximize their discounted profits, i.e., firm i maximizes

∞
∑

k=0

δk
i πi(q

k),

where k refers to the period and δi ∈ (0, 1) is the firm’s discount factor. The
deviation from cooperation is observed immediately so that the firms can react
to the deviations in the next period.

The proportional scheme works in the repeated setting as follows. After having
observed that the other firm has deviated, i.e., exceeded the cooperative out-
put, the firm punishes the deviator by choosing the output in the next period
according to the proportional scheme. Simultaneous deviations are, however,
neglected and the firms continue as if none of them had deviated. Moreover,
the firms accept that their deviations are punished but the punishment output
should not exceed the output given by the proportional scheme. The deviat-
ing firm should return to cooperation after a deviation, i.e., it should choose
the cooperative output. If the punishment output has, however, exceeded the
proportional scheme, the roles of the original deviator and the punisher are
changed; i.e., exceeding the proportional scheme is interpreted as a deviation
from the cooperative point qλ.

We say that a firm has played conventionally if its behavior does not give a
reason to punish it. The only reasons to punish firm i are that it has unilater-
ally exceeded the cooperative output qλ

i , or it has punished the other firm too
harshly, i.e., qk

i > L(qk−1
−i , α−i) = qλ

i +α−i · (q
k−1
−i − qλ

−i). Formally, the strategy
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is to choose q0
i = qλ

i and for k ≥ 1 play as follows:

i) qk
i = qλ

i , if in period k−1 both firms have played conventionally, deviated
simultaneously, or only firm i has not played conventionally.

ii) qk
i = L(qk−1

−i , α−i), if the other firm has not played conventionally in period
k − 1.

We denote the above strategy for firm i with slope α−i by ωi(α−i). The strategy
profile with both using proportional schemes is ω(α) = (ω1(α2), ω2(α1)) with
α = (α1, α2). The slopes of the proportional schemes are common knowledge,
i.e., both firms know each other’s punishment scheme.

Ehtamo and Hämäläinen (1993) study a similar strategy as ω(α) in a con-
tinuous time setting in maintaining Pareto-optimal solution as the outcome
of a resource management game. However, according to their formulation of
the proportional scheme, the players do not return to cooperation immedi-
ately after they have deviated. This is also the case with the linear reaction
strategy studied by Kalai and Stanford (1985) and Stanford (1986a). Since
the deviating players return to cooperation, ωi(α−i) works only partially as a
reaction function strategy. The deviations are punished in the manner of re-
action functions but after deviations firms return to cooperation unlike when
using reaction function strategies.

The following Lemma shows that qk
i = qλ

i , for all k, is the optimal choice of
actions for firm i when the other player uses ω−i(αi) and the slope αi is steep
enough. Hence, the equilibrium outcome of the game with ω(α) is cooperative
play, i.e., qk = qλ for all k. The proof of Lemma 1 is given in Appendix.

Lemma 1. Let us assume that (A1) and (A2) hold for πi. Then the optimal
sequence of actions for firm i is to choose qk

i = qλ
i for all k ≥ 0, when the

other firm follows ω−i(αi) with αi ≥ αλ
i /δi.

The lower bound that is obtained for the slope of the proportional scheme
for firm −i is the slope of the static equilibrium strategy divided by firm i’s
discount factor. This means that in presence of time lag, the deviator has
to be punished stronger than the static equilibrium strategy would suggest.
Furthermore, the lower bound depends only on the deviating firm’s discount
factor and the point qλ. The larger the discount factor is, the less the equilib-
rium slope of the static setting has to be increased. This is natural since the
smaller the discount factor is, the more the deviator should suffer from the
current punishment.

By following ωi(α−i), with α−i > 0, firm i increases its output when the other
firm has deviated. If we had α−i < 0, then following ωi(α−i) would decrease
firm i’s profits while deviating would be profitable for the other firm since by
(A1) firm −i’s profits are decreasing with respect to qi. It follows that ω(α)
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cannot sustain cooperation when ∂πi(q
λ)/∂qi < 0 for either of the firms since

the lower bound αλ
i /δi depends on this partial derivative.

3.1 Credibility

It follows from Lemma 1 that the equilibrium outcome of the game is co-
operative play, when the proportional schemes have sufficiently steep slopes.
However, this does not guarantee that it would actually be optimal for the
punishing firm to follow the proportional scheme, or the deviator to return to
cooperation.

Following Osborne’s original idea we say that ω(α) is credible for firm i if it is
optimal for firm i to follow ωi(α−i) when the deviator returns to cooperation
and accepts punishments not above the line L(qi, αi); i.e., when firm −i follows
ω−i(αi). Consequently, if ω(α) is credible for the punishing firm, the other firm
knows that the deviations are really punished according to the proportional
scheme. The notion of credibility, in the sense it is used here, has also been
discussed by Holahan (1978), Rothschild (1981), and Ehtamo and Hämäläinen
(1993). However, in these papers a firm does not need to worry about the
rival’s future actions and credibility rather means that it is better to follow
the proportional scheme than to do nothing.

In the rest of the paper we denote the interval of acceptable deviations by
Ii(q̄i) = (qλ

i , q̄i], q̄i > qλ
i , and the interval of acceptable punishments by IL

i (q−i) =
[0, L(q−i, α−i)]. We need the interval Ii(q̄) because credibility as well as sub-
game perfection will be obtained only when restricting to sufficiently small
deviations, here q̄ denotes the upper bound of acceptable deviations. Formally
the credibility of ω(α) for firm i is defined as follows.

Definition 1. ω(α) is credible for firm i on I−i(q̄−i) if it is optimal for firm i to
follow ωi(α−i) after any unilateral deviation by firm −i on I−i(q̄−i), assuming
that firm −i follows ω−i(αi) after the deviation.

The credibility of ω(α) for firm i means two things: Within the acceptable
range of punishment outputs IL

i (q−i), where q−i is the deviation in the prior
period, it is optimal for firm i to choose the output given by the proportional
rule, and it is better to follow ωi(α−i) than to choose the maximal deviation
and then to be punished. In particular, credibility requires that the firm that
has first deviated punishes the other firm for its unfair punishment outputs
strongly enough. The condition for the optimality of the proportional scheme
within the range of acceptable punishment outputs IL

i (q−i) is

πi

(

L(q−i, α−i), q
λ
−i

)

= max
x∈IL

i
(q

−i)
πi(x, qλ

−i). (5)
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Let us further define

qL
−i = sup

{

x ∈ R : (5) holds for all q−i ∈ [qλ
−i, x]

}

,

which gives an upper bound for the largest interval where ω(α) is credible for
firm i. When the deviation exceeds qL

i the punishing firm would rather choose
a smaller quantity than the one given by the proportional scheme. Hence, the
greatest upper bound for the credibility interval is obtained from the crossing
point of the best response function and the proportional strategy. This is as
in the static setting of Section 2, see also Figure 2.

The following lemma shows that ω(α) is credible for firm i when the deviations
do not exceed qL

−i and the punishment outputs that exceed L(q−i, α−i) are
treated as deviations. The proof is given in Appendix and technically it is
close to that of Lemma 1.

Lemma 2. Let us assume that πi satisfies (A1) and (A2), and qL
−i > qλ

−i.
Then the strategy ω(α) is credible for firm i on I−i(q

L
−i) when αi ≥ αλ

i /δi and
α−i > 0.

We can observe that the farther the best response function Ri crosses the line
qi = L(q−i, α−i), the greater qL

i becomes. Furthermore, when the slope α−i

decreases, the upper bound increases. In particular, the slope may decrease
as δi increases. Finally, we point out that it may happen that firm’s Cournot
quantity is less than qL

i , i.e., in some cases even quite large deviations can be
punished credibly with the proportional scheme.

3.2 Re-establishing Cooperation

In addition to credibility, it should be optimal for the deviator to return to
cooperation when the retaliation follows the proportional scheme. In that case
the proportional scheme prevents further deviations from cooperative play.
More formally this property is defined as follows.

Definition 2. ω(α) returns firm i to cooperation on Ii(q̄i), if it is optimal for
the firm to follow ωi(α−i) after any of its own unilateral deviations on Ii(q̄i),
assuming that firm −i follows ω−i(αi).

The strategy profile ω(α) can be shown to return a firm to cooperation for
bounded deviations when the firm’s marginal profit is decreasing with respect
to the other firm’s output. We can formulate this condition for πi as follows:

(A3) ∂πi(q
λ
i , q−i)/∂qi is decreasing with respect to q−i.
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In the specific case when πi is of the form (4), the assumption (A3) holds when
∂P (qλ

i , q−i)/∂qi and P (qλ
i , q−i) are decreasing with respect to q−i.

The result on re-establishing cooperation is formulated in the following lemma,
the proof of which is partly based on Lemma 1 and is given in Appendix.

Lemma 3. Let us assume that πi satisfies (A1)–(A3), and αi ≥ αλ
i /δi. Then

ω(α) returns firm i to cooperation on Ii(q
+
i ) with

q+
i = sup

{

x ∈ R : ∂πi

(

qλ
i , L(qi, αi)

)

/∂qi ≥ 0 ∀qi ∈ [qλ
i , x]

}

,

assuming that q+
i > qλ

i .

The explanation for the upper bound q+
i is that if the deviation qk

i is too
large, it becomes optimal for firm i to choose qk+1

i < qλ
i . This happens because

by decreasing the output quantity in the period after the deviation, the firm
can compensate the punishment, which loses its effect as a sufficient threat to
prevent further deviations.

4 Subgame Perfection for Bounded Deviations

We have observed that for sufficiently small deviations the proportional scheme
is credible, i.e., it is optimal for the punishing firm to follow the proportional
strategy. Moreover, it returns firms to cooperation for bounded deviations
when marginal profits are decreasing, i.e., it prevents further deviations from
cooperation after sufficiently small unilateral deviations. When these proper-
ties hold simultaneously the strategy profile ω(α) is a subgame perfect equilib-
rium (SPE) for bounded deviations, which means that if the deviations have
been and will be small enough during the history of the play, it is optimal for
both firms to follow ω(α) when they know that the other firm will follow it,
too.

Within the range of deviations where the equilibrium is subgame perfect,
the strategy profile is also a weakly renegotiation proof equilibrium (WRPE),
which means that in addition to subgame perfection none of the continuation
payoffs of ω(α) is Pareto dominated by any other continuation payoff of ω(α)
(Farrell and Maskin, 1989). Continuation payoffs are the discounted profits
that the firms obtain when they follow ω(α) beginning from a given history of
the play. Hence, weak renegotiation proofness can be interpreted as the result
of the firms negotiating the original agreement anew in any contingencies.

The following theorem summarizes the assumptions on the profit functions
and the resulting properties of ω(α). Here we denote qα

i = min{qL
i , q+

i }.
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Theorem 2. Let us assume that (A1)–(A3) hold for both profit functions and
αi ≥ αλ

i /δi for i = 1, 2. Then ω(α) is a WRPE, when the unilateral deviations
do not exceed qα

i for i = 1, 2.

Proof. If none of the firms has deviated from qλ
i , i.e., qk−1

i ≤ qλ
i , i = 1, 2, or

they have both deviated simultaneously from qλ
i , i.e., qk−1

i > qλ
i , i = 1, 2, then

by Lemma 1 it is optimal for the players to follow ω(α). If firm i has deviated
in period k − 1 while the other firm has played conventionally and qk−1

i ≤ q+
i ,

then by Lemma 3 it is optimal for firm i to return to cooperation as suggested
by ωi(α−i). On the other hand, by Lemma 2 it is optimal for the punishing
firm to choose the output according to ωi(α−i) when q−i ≤ qL

−i. Thus, ω(α) is
a SPE.

Weak renegotiation proofness holds because the deviator’s losses increase as
the deviation gets larger whereas the other firm’s profit increases. Hence, when
comparing the continuation payoffs, one of the firms is always worse off and
one of them is better off after unilateral deviations. Therefore, no continuation
payoffs of ω(α) dominate any other. 2

According to Theorem 2, deviations have to be punished in proportion to the
αλ

i obtained from the static Osborne’s rule times the inverse of the discount
factor δi. The slope of the static equilibrium strategy is obtained as the limit
of the lower bound of the proportional scheme when the discount factor goes
to one. In particular, the line of constant market shares is the limit of both
firms’ proportional schemes when the joint profit maximizing point is to be
supported as the equilibrium outcome. Obtaining the static case in the limit
is natural, since large discount factor could be interpreted as an implication
of an ability to react rapidly to rivals’ output changes. See Kalai and Stanford
(1985) for another approach to consider reaction times.

One interpretation of Theorem 2 is that the equilibrium is subgame perfect
even though large deviations were possible but the firms trust that the other
firm will not make such deviations intentionally. As a just married couple
would believe their relationship to last forever without unexpectedly serious
deviations, the firms would believe in a similar way. Behind such a belief there
might well be a local continuous mechanism that sustains cooperation under
small unintentional errors. Intuitively, large deviations would signal breaking of
cooperation and launching yet another type of mechanism. Indeed, if we have
a strategy profile that is subgame perfect for all deviations, then switching
to this strategy profile after deviations that exceed qα

i , i = 1, 2, and using
proportional strategies for smaller deviations, is a possible way to sustain
qλ as SPE outcome for all deviations. For example, switching to Cournot
quantities after deviations larger than qα

i , i = 1, 2, would work as a way to
obtain subgame perfection for all deviations. Cournot-trigger is known to be
SPE when πi(q

λ), i = 1, 2, are greater than profits at the Cournot-point and
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the discount factors are large enough. It can be shown that the combination
of a proportional strategy and a trigger strategy would be subgame perfect for
exactly the same discount factors as the trigger strategy.

Let us now go to the characterization of those cooperative points that can
be supported as WRPE outcomes for bounded deviations with proportional
schemes. If qλ is a WRPE outcome for bounded deviations under ω(α), we
say that it can be supported locally with ω(α). More formally this property is
defined below.

Definition 3. qλ is locally supportable as a WRPE outcome with proportional
strategies if there are α > 0 and intervals of deviations and punishments such
that ω(α) is WRPE when restricting the possible deviations and punishments
to these intervals.

Note that, as punishments depend continuously on deviations, they are bounded
whenever deviations are bounded. Hence, we could simply define local sub-
game perfection by requiring the deviations to be bounded. However, even
though deviations should not exceed qα

i , the punishment outputs may exceed
this upper bound, i.e., it may happen that L(qα

−i, α−i) > qα
i . The above defi-

nition emphasizes that deviations and punishments may have different upper
bounds.

The following lemma shows that the upper bound of allowed deviations is
larger than qλ

i when the proportional scheme has a positive slope and πi

is continuously differentiable. Hence, when both firms’ profit functions and
proportional schemes satisfy these conditions, then for any discount factors
δi ∈ (0, 1), i = 1, 2, there are intervals of deviations on which ω(α) is a
WRPE. The proof of the lemma is given in Appendix.

Lemma 4. Let us assume that πi, i = 1, 2, satisfy (A2) and (A3), are con-
tinuously differentiable, and αi > 0 for i = 1, 2. Then qα

i > qλ
i for i = 1, 2.

The set of supportable cooperative points depends on assumptions (A2) and
(A3). Namely, whenever these conditions hold for profit functions at qλ, the
result of Lemma 4 is valid. Hence, ω(α) supports qλ as a locally WRPE out-
come if the firms’ marginal profits are decreasing with respect to each others
outputs, ∂πi(q

λ)/∂qi > 0, for i = 1, 2, and the slopes αi, i = 1, 2, are steep
enough. Recall that the positivity of the partial derivative is required for αλ

to be positive.

The set of points on which (A2) holds is actually the part of q1, q2-plane that
is below the best response functions, i.e., qλ

i < Ri(q
λ
−i), for i = 1, 2. This is

shown in the following lemma, the proof of which is presented in Appendix.

Lemma 5. When πi satisfies (A1), then (A2) is equivalent to qλ
i < Ri(q

λ
−i).
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The above result is intuitive. Namely, when the firm’s cooperative output is
below the best response to the other firm’s output, the firm would like to
increase the output, which means that (A2) holds.

By combining lemmas 4 and 5, and Theorem 2 we obtain the following “folk
theorem” for locally supportable points. Here (A3) is assumed to hold for all
quantity pairs, which means that at any output level the firms’ marginal profits
are decreasing with respect to rival’s output.

Theorem 3. Let us assume that both profit functions are continuously differ-
entiable, satisfy (A1), and ∂πi(q)/∂qi is decreasing with respect to q−i for all
qi > 0 and i = 1, 2. Then any qλ with 0 < qλ

i < Ri(q
λ
−i), for i = 1, 2, is locally

supportable as a WRPE outcome with proportional strategies.

It follows from Theorem 3 that the set of locally supportable outcomes is non-
empty when the Cournot quantities are positive. Namely, at the Cournot point
the firms’ best response functions cross and at least the points that both pre-
fer to the Cournot point are locally supportable. Moreover, all Pareto-optimal
points, except for the firms’ global optima, belong to the set of locally sup-
portable points. The global optima cannot necessarily be supported because at
these points qλ

i = 0 for either of the firms, and then αλ
i may become infinitely

large.

4.1 Example: Symmetric Duopoly with Quadratic Profits

This example illustrates how the upper bound of the allowed deviations is
determined. Let us assume that δi = δ and πi(q) = (a− qi − q−i)qi for i = 1, 2,
which satisfy (A1). The profits are of this form when the inverse demand
function P and the cost functions C1 and C2 are linear. Here a − q1 − q2 is
assumed to be positive so that profits are positive.

The slope of the tangent line for πi at the cooperative point qλ, as defined in
(2), is αλ

i = (a−2qλ
1 −qλ

−i)/q
λ
i . We can see that when qλ

−i is kept fixed and qλ
i is

increased αλ
i decreases, which means that firm i’s deviations become easier to

prevent with ω(α). As qλ
i goes to zero the slope αλ

i becomes infinitely large, i.e.,
the deviations become more difficult to punish. In particular, no proportional
scheme prevents firm i’ deviations from a point in which it produces nothing.

Let us assume that qλ is the joint profits maximizing point, i.e., qλ = (a/4, a/4).
Note that assumptions (A2) and (A3) are satisfied at this point. The slopes
of the tangent lines are αλ

i = 1, i = 1, 2. Hence, we should have αi ≥ 1/δ,
i = 1, 2, for ω(α) to be a SPE. Let us take αi = 1/δ for i = 1, 2. Then the

14



proportional scheme for firm i is

L(q−i, α
λ
−i) = (1 − 1/δ)a/4 + q−i/δ.

Now qL
−i is obtained at the intersection of the best response function

Ri(q−i) = (a − q−i)/2

and the line of punishment outputs. The intersection point is at qL
−i = qL

i =
(δ + 1)a/(2δ + 4). Furthermore, the upper bound q+

i of Lemma 3 is obtained
from

∂πi

(

qλ
i , L(qi, αi)

)

/∂qi = a − 2qλ
i − L(qi, αi) ≥ 0,

which gives q+
i = (1 − δ/2)a. Noticing that q+

i ≥ qL
i we have qα

i = qL
i .

Now we can see that the more patients the firms are, the more tolerant they
become to deviations, i.e., the larger qα

i , i = 1, 2, become. Furthermore, as
δ → 1 we have qα

i → a/3, which equals the firms’ Cournot quantities.

4.2 Conjectural Variations Equilibria

In this section we discuss a possible way to detect empirically whether an
observed market situation can be interpreted as a collusion with proportional
strategies as the supporting mechanisms. This discussion is based on the obser-
vation that proportional strategies are linked to conjectural variations models.
The main idea of these models is that each firm believes that its rival’s choices
depend on the firm’s output. 2 Hence, firm i is assumed to have a conjecture
on its rival’s reactions around qλ. This behavioral assumption is captured in
the conjectural variation parameter νi = dq−i(q

λ
i )/dqi.

As the static Osborne’s rule, conjectural variations models assume that the
response for deviations is instantaneous. Indeed, in the static setting the slope
of the punishment line L(qi, αi) plays exactly the same role as a constant
conjectural variation νi. Hence, αi can be identified with νi. In conjectural
variations literature L is called the conjectured reaction function. Instead of
associating νi with the conjectured reaction function we associate it with a pro-
portional strategy. Consequently, proportional strategies in repeated game give
a rational justification for conjectural variations models; when the conjectural
variations are large enough, a conjectural variations equilibrium corresponds
to a locally subgame perfect equilibrium under proportional strategies. More
specifically, a conjectural variations equilibrium can be interpreted as a locally

2 In the most general formulation the choices depend on both firms’ outputs.
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SPE (or WRPE to be specific) with the slopes of proportional schemes equal-
ing the conjectural variations. Recall that the assumptions (A1)–(A4) should
hold.

We say that conjectural variations that lead to a locally SPE are strategically
consistent. More formally this consistency is defined as follows.

Definition 4. Firm i’s conjectural variation is strategically consistent if νi ≥
αλ

i /δi. If qλ is below the reaction functions and ν1 and ν2 are strategically con-
sistent, then the conjectural variations equilibrium is strategically consistent.

Other dynamic interpretations of conjectural variations and various consis-
tency concepts have been discussed, e.g., in Figuières et al. (2004, Chapters 2
and 3).

Let us assume that firm i’s profit function is of the form (4) and P (q) =
P (

∑

j qj). With the conjectural variation νi, the necessary conditions for firm
i’s static profit maximization problem can be written as

1 − C ′
i(q

λ
i )/P (qλ) = 1/|η|(1 + νi), (6)

where |η| = −[∂qi/qi]/[∂P (q)/P (q)], i.e., |η| is the absolute value of the elas-
ticity of demand. The left hand side of (6) is the firm’s Lerner index and we
denote it by LEi. This index measures the competitiveness of an oligopolistic
market; the larger the Lerner index is, the less competitive the market is.

Note that as we are not considering a static oligopoly game, condition (6)
need not hold for νi = αi. However, we can derive another relationship for
νi, LEi, and η to obtain strategic consistency. Namely, it can be seen that
αλ

i = LEi/|η| − 1. Hence, strategic consistency, i.e., νi ≥ αλ
i /δi, requires that

δiνi ≥ LEi/|η| − 1. By using this inequality we can estimate the lowest strate-
gically consistent conjectures for given discount factors, demand elasticities,
and Lerner indices. Let us also observe that (A2) can be written equivalently
as LEi > 1/|η|, when P (qλ) > 0. Hence, empirically observed Lerner indices
that are greater than 1/|η| could be due to tacit collusion with proportional
strategies.

5 Discussion

We have shown that for sufficiently regular profit functions, using proportional
reaction strategies sustains cooperation as a subgame perfect outcome when
the deviations are small enough. Using the strategies is also Nash equilibrium
for all deviations. The slopes of the proportional strategies and the ranges of
acceptable deviations depend on the profit functions and discount factors in
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a simple way. Moreover, the cooperative point that is to be supported as the
equilibrium outcome should be in the region below the firms’ best response
functions.

Local subgame perfection could be seen as one form of bounded rationality
similarly as ε-equilibria. The firms are behaving optimally only when they
omit their rival’s possibility of making large deviations. Nevertheless, the main
motivation for the local nature of the results of this paper is that a linear
strategy can be obtained as a linearization from a more general nonlinear
equilibrium strategy. Since linearization is reasonably accurate only in the
neighborhood of the cartel point, it is natural that the properties of a linear
strategy are also local. Local equilibrium properties of linear strategies were
first analyzed by Osborne (1976) in a static setting.

The linearization idea appears also in the conjectural variations literature,
where the conjectural variations are explained as slopes of linearized reactions.
Indeed, the results of this paper give new motivation for both Osborne’s model
and conjectural variations. Osborne’s quota rule is obtained as a limiting case
from the proportional equilibrium strategies in repeated game as discount fac-
tors approach to one. For conjectural variations equilibrium these strategies
give a possible explanation: With large enough conjectures the correspond-
ing equilibrium becomes locally subgame perfect with proportional strategies,
where the slopes equal the conjectural variations.

The local results of this paper show that using linear strategies provides a
simple way to punish small unintentional errors or trembles so that collusion
can be re-established. Moreover, in a duopoly setting the equilibrium is weakly
renegotiation proof, which means that there is no need to renegotiate the
cooperation anew after small deviations. To obtain subgame perfection for all
deviations the proportional scheme can be combined with other equilibrium
strategies, e.g., with trigger strategies such that only large deviations lead to
collapse of the cartel and launch the trigger. In the spirit of forward induction,
deviations can be interpreted as strategic signals: A small deviation signals an
accidental error but a large deviation is a signal of breaking the collusion.

Appendix: Auxiliary Proofs

In this appendix Iλ
i = [0, qλ

i ] denotes the interval of acceptable outputs for firm i,
given that the other firm has played conventionally. Recall that Ii(q̄i) = (qλ

i , q̄i] and
IL
i (q−i) = [0, L(q−i, α−i)] is firm i’s set of acceptable punishment outputs after a

deviation q−i by the other firm.

It is worth noticing that all the proofs go through with assuming concavity of πi

instead of strict concavity.
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Proof of Theorem 1: Let us first observe that the maximization problem

max
qi≥0

πi (qi, r−i(qi, αi)) ,

where r−i(qi, αi) = max{qλ
−i, L(qi, αi)), has exactly the same solution as the convex

optimization problem

max πi(q)

s.t. q ∈
{

q̂ ∈ R
2 : q̂i ≥ 0, q̂−i ≥ max{qλ

−i, L(q̂i, αi)
}

}.

This is because πi is decreasing with respect to q−i so that at the optimum we have
qi = max{qλ

−i, L(qi, αi)) even though inequality was allowed. The necessary and
sufficient condition of this problem at qλ is that the below variational inequality
holds for all feasible q:

∇πi(q
λ) · (q − qλ) ≤ 0, (7)

i.e.,
[∂πi(q

λ)/∂qi](qi − qλ
i ) + [∂πi(q

λ)/∂q−i](q−i − qλ
−i) ≤ 0.

For qi > qλ
i condition (7) holds when

[∂πi(q
λ)/∂qi](qi − qλ

i ) + αi[∂πi(q
λ)/∂q−i](qi − qλ

i ) ≤ 0,

because now q−i ≥ L(qi, αi). By (A1) and (A2) αi ≥ αλ
i > 0, and by (A1)

∂πi(q
λ)/∂q−i < 0. Thus,

αi · (qi − qλ
i ) · ∂πi(q

λ)/∂q−i ≤ αλ
i · (qi − qλ

i ) · ∂πi(q
λ)/∂,

which gives the optimality condition.

For qi ≤ qλ
i we have q−i ≥ qλ

−i. Hence, the left hand side of condition (7) is less
than zero if [∂πi(q

λ)/∂qi](qi − qλ
i ) is less than zero. It follows from (A2) that πi is

decreasing with respect to qi. Hence, we obtain the inequality [∂πi(q
λ)/∂qi](qi−qλ

i ) ≤
0, i.e., (7) holds for qi ≤ qλ

i . 2

Proof of Lemma 1: Let {qk}k be a sequence of output quantity pairs and
Πi({q

k}k) =
∑

k δk
i πi(q

k). The assumption is that q0
−i = qλ

−i, and we need to show
that then it is optimal for firm i to choose qk

i = qλ
i for all k ≥ 0, which means that

qk = qλ for all k is the optimal choice of output quantity pairs for firm i.

As in Theorem 1, the choice of the output can be written as a convex optimization
problem

maxΠi({q
k}k)

s.t. {qk}k ∈ F (αi),

where

F (αi) =
{

{qk}k : qk
i ≥ 0 ∀k ≥ 0, q0

−i = qλ
−i,

qk
−i ≥ max{qλ

−i, L(qk−1
i , αi)} ∀k ≥ 1

}

.

18



We assume that in the above optimization problem {qk}k ∈ l∞ × l∞, which is a
Banach-space with the norm ‖{qk}k‖ = maxk |q

k
1 | + maxk |q

k
2 |. Hence, the sequence

{qk}k should be bounded, which is not too restrictive assumption since choosing
large outputs usually causes losses for the firms. Moreover, the results that are
based on this lemma require that the outputs stay within certain ranges.

Analogously to the static case, the sufficient and necessary condition for the opti-
mality of {qλ}k is that the variational inequality

∇Πi({q
λ}k)({q

k}k − {qλ}) ≤ 0 (8)

holds for all {qk}k ∈ F (αi), see, e.g., Ekeland and Témam (1976, Proposition 2.1
in Chapter II). Here ∇Πi({q

λ}k) denotes the Fréchet-differential of Πi at {qλ}k. It
can be seen that

∇Πi({q
λ}k){q

k}k =
∑

k

δk
i ∇πi(q

λ) · qk.

In the following we denote I+ = {k : qk
i > qλ

i } and I− = {k : qk
i ≤ qλ

i }. Now for
k ∈ I− we have qk

−i ≥ qλ
−i and for k ∈ I+ we have qk

−i ≥ L(qi, α). The latter yields

qk+1
−i − qλ

−i ≥ αi(q
k
i − qλ

i ) for k ∈ I+. Let us now consider (8) in more detail:

∇Πi({q
λ}k)({q

k}k − {qλ}) =
∑

k

δk
i ∇πi(q

λ) · (qk − qλ)

=
∑

k

δk
i [(qk

i − qλ
i )∂πi(q

λ)/∂qi + (qk
−i − qλ

−i)∂πi(q
λ)/∂q−i]

≤
∑

k∈I+

δk
i (qk

i − qλ
i )∂πi(q

λ)/∂qi +
∑

k∈I+

αiδ
k+1
i (qk

i − qλ
i )∂πi(q

λ)/∂q−i

+
∑

k∈I
−

δk
i (qk

i − qλ
i )∂πi(q

λ)/∂qi +
∑

k∈I
−

δk
i (qk

−i − qλ
−i)∂πi(q

λ)/∂q−i

≤
∑

k∈I+

δk
i (qk

i − qλ
i )∂πi(q

λ)/∂qi +
∑

k∈I+

(αλ
i /δi)δ

k+1
i (qk

i − qλ
i )∂πi(q

λ)/∂q−i = 0,

(9)

where the last equality follows by plugging αλ
i from (2) in the equation. The second

last inequality holds because αi ≥ αλ
i /δi and the terms of the sum with k ∈ I− are

negative. The latter is true because ∂πi(q
λ)/∂q−i < 0 by (A1), and ∂πi(q

λ)/∂qi > 0
by (A2). The above deduction shows the optimality of the sequence qk

i = qλ
i for all

k. 2

Proof of Lemma 2: Because qα
i ≤ qL

i , it is optimal to choose q1
i = L(q0

−i, α−i)
within the acceptable range of punishments IL

i (q0
−i), when q0

−i ∈ I−i(q
L
−i) and q0

i ∈
Iλ
i . Hence, we only need to show that it is not optimal to make the maximal deviation

from ωi(α−i) and then to be punished. This is the case because

max
{qk}∈F (αi)

Πi

(

{qk}k

)

= πλ
i /(1 − δi) ≤ πi

(

L(q0
−i, α−i), q

λ
−i

)

+ δiπ
λ
i /(1 − δi),

where the first equality follows from Lemma 1, and the inequality holds because

πi

(

L(q0
−i, α−i), q

λ
−i

)

≥ πλ
i
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by the choice q0
−i ∈ I−i(q

L
−i). Note that by making an unreasonably large punishment

the firm cannot exceed the profits that maximize Πi

(

{qk}k

)

subject to {qk} ∈ F (αi)
Thus, ω(α) is credible for firm i. 2

Proof of Lemma 3:

Let us denote q̃−i = L(q0
i , αi) and q′ = (qλ

i , q̃−i). It is optimal to choose qk
i = qλ

i for
all k ≥ 1, if the variational inequality

∇πi(q
′) · (q1 − q′) +

∑

k≥2

δk−1
i ∇πi(q

λ) · (qk − qλ) ≤ 0 (10)

holds for all feasible sequences {qk}k, similarly as in the proof of Lemma 1. This
condition can be written as:

S1 + S2 ≤ 0,

where S1 contains the terms that include q1
i and q1

−i, and S2 contains the rest of
the sum. As in the necessary condition (8), we have:

S2 ≤
∑

k∈I+

δk−1
i (qk

i − qλ
i )[∂πi(q

λ)/∂qi] +
∑

k∈I+

αiδ
k
i (qk

i − qλ
i )[∂πi(q

λ)/∂q−i]

+
∑

k∈I
−

δk−1
i (qk

i − qλ
i )[∂πi(q

λ)/∂qi] +
∑

k∈I
−

δk−1
i (qk

−i − qλ
−i)[∂πi(q

λ)/∂q−i],

where I+ = {k ≥ 2 : qk
i > qλ

i } and I− = {k ≥ 2 : qk
i ≥ qλ

i }. As in the case q0
i = qλ

i

in the proof of Lemma 1, it can be shown that S2 ≤ 0 when αi ≥ αλ
i /δi.

Hence, to obtain (10) we need to show that S1 ≤ 0. Let us first note that

∇πi(q
′) · (q1 − q′) = [∂πi(q

′)/∂qi](q
1
i − qλ

i )

because q1
−i = q̃−i according to ω−i(αi). From this and the proportional scheme we

obtain

S1 =

{

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] if q1

i > qλ
i ,

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) if q1
i ≤ qλ

i .

Let us assume that q1
i > qλ

i . By the assumption (A3) we have ∂πi(q
′)/∂qi ≤

∂πi(q
λ)/∂qi and hence

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) ≤ [∂πi(q
λ)/∂qi](q

1
i − qλ

i ).

It follows that

[∂πi(q
′)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] ≤

[∂πi(q
λ)/∂qi](q

1
i − qλ

i ) + αiδi(q
1
i − qλ

i )[∂πi(q
λ)/∂q−i] ≤

[∂πi(q
λ)/∂qi](q

1
i − qλ

i ) + αλ
i (q1

i − qλ
i )[∂πi(q

λ)/∂q−i] = 0

where the last equality is obtained by plugging αλ
i in the equation. Hence, S1 ≤ 0

and consequently (10) holds.
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Because [∂πi(q
′)/∂qi] ≥ 0 by q0

i ≤ q+
i , we have S1 ≤ 0 also for q1

i ≤ qλ
i . Thus, (10)

holds for all feasible sequences. 2

Proof of Lemma 4: The continuity of ∂πi(q
λ
i , q−i)/∂qi, (A2), and (A3) imply

that q+
i > qλ

i . By (A2) we know that πi is growing at qλ with respect to its first
argument. It then follows from the continuity of the derivative that there is q̃i > qλ

i

such that for all q1
i , q

2
i ∈ [qλ

i , q̃i], with q1
i ≥ q2

i , we have πi(q
1
i , q

λ
−i) ≥ πi(q

2
i , q

λ
−i), i.e.,

πi is growing on [qλ
i , q̃i] with respect to qi.

Since αi > 0, there is q̂−i > qλ
−i such that q̃i = L(q̂−i, α−i), i.e., L maps [qλ

−i, q̂−i]
into [qλ

i , q̃i]. Because πi is growing on [qλ
i , q̃i] it follows that for all q0

−i ∈ Ii(q̂−i) it is
optimal to choose q1

i = L(q0
−i, αi). Thus, qL

−i ≥ q̂−i > qλ
−i, and we have qα

i > qλ
i . 2
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