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Abstract The recent development of computational methods in repeated
games has made it possible to study the properties of subgame-perfect equilib-
ria in more detail. This paper shows that the lowest equilibrium payoffs may
increase in pure strategies when the players become more patient and this may
cause the set of equilibrium paths to be non-monotonic. A numerical example
is constructed such that a path is no longer equilibrium when the players’
discount factors increase. This property can be more easily seen when the
players have different time preferences, since in these games the punishment
strategies may rely on the differences between the players’ discount factors. A
sufficient condition for the monotonicity of equilibrium paths is that the lowest
equilibrium payoffs do not increase, i.e., the punishments should not become
milder.

Keywords repeated games · minimum payoff · monotonicity · equilibrium
path · unequal discount factors · subgame perfection

1 Introduction

Repeated games have been studied extensively but it is still an open problem
how exactly the set of subgame-perfect equilibria behaves when the players’
time preferences change. Intuitively, it should be easier to support equilibria
when the players are more patient, since patience puts more weight to the
future payoffs. This makes the deviations less profitable since the continuation
payoff is always higher on the equilibrium path compared to the punishment
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payoff that the player receives if he deviates from the equilibrium strategy. This
intuition may, however, lead to wrong conclusions as it ignores one important
factor: the punishment payoff may increase when the players become more
patient, which may change the player’s incentives and produce a profitable de-
viation. This paper examines the punishment strategies and the monotonicity
of equilibria with respect to the discount factor. Many papers have focused on
the properties of the equilibrium payoffs but here we pay special attention to
the sequences of actions, i.e., the equilibrium paths.

The theory of infinitely repeated games has been developed in Abreu (1988)
and Abreu et al. (1986, 1990). These papers characterize the set of subgame-
perfect equilibria and show that the monotonicity of payoffs is related to the
convexity of the payoff set; e.g., the equilibrium payoffs are convex and mono-
tone when the players can use a public correlating device. Recently, Yamamoto
(2010) has shown that without correlated strategies the payoff set is not in
general convex nor monotone no matter how patient the players are, which
is in sharp contrast to the folk theorem Fudenberg and Maskin (1986). The
non-monotonicity of payoffs is also observed in Mailath et al. (2002), see also
Mailath and Samuelson (2006), where they show that the maximum payoff in
a prisoner’s dilemma is decreasing for a certain range of discount factors.

This property can be easily seen in Figure 1, which shows the equilibrium
payoffs in a prisoner’s dilemma for two different discount factor values: δ = 0.4
is shown by the plus signs and δ = 0.45 (more patient players) is given by the
smaller dots. We can see that most of the payoff points move a little when the
players become more patient. For example, the maximum equilibrium payoff
of player 1 inside the circle is given by the path where player 1 defects in the
first stage giving payoff (4, 0) and after that the players keep on cooperating,
which gives them payoff (3, 3). The average payoff of player 1 decreases as
discounting shifts weight from the first stage payoff of 4 to the later payoffs of
3. The monotonicity of payoffs is related to the discreteness of the payoff set
and the properties of average discounted payoffs but not the players’ incentives
nor the punishment strategies.

This paper shows that the monotonicity of paths is a more robust property
of equilibria. The equilibrium paths are monotone in the discount factor if the
punishment payoffs do not increase. This holds, e.g., in any prisoner’s dilemma
where the punishment payoffs remain the same for all discount factors. The
monotonicity means that the players may design a sequence of actions and
if this designed path is an equilibrium for a given level of patience, then it
is also an equilibrium when the players become more patient. Moreover, this
implies that the set of equilibrium paths may only enlarge. However, it is
shown in this paper that the monotonicity of paths does not hold in general.
A numerical example is constructed so that the punishment payoff increases
when the players become more patient. This result raises a little warning to
what may happen in a class of games and emphasizes the importance of the
punishment strategies. It should be noted that the non-monotonicity of paths
is not totally new observation since Mailath and Samuelson (2006) notice it
under imperfect monitoring in Section 7.2.2.
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Fig. 1: Equilibrium payoffs in a prisoner’s dilemma for two discount factors.

The relationship between the punishment payoffs and the stage game’s min-
imax payoffs has received much attention in the literature, primarily related
to the folk theorems (Fudenberg and Maskin, 1986, Abreu et al., 1994, Wen,
1994). The recent work has focused on the case of unequal discount factors
(Lehrer and Pauzner, 1999, Salonen and Vartiainen, 2008, Houba and Wen,
2011, Guéron et al., 2011, Chen and Takahashi, 2012). Moreover, Gossner
and Hörner (2010) examine the lowest equilibrium payoffs when the players
cannot perfectly observe the opponents’ actions. In these games, the lowest
equilibrium payoff can be strictly lower than the minimax payoff; see Ex. 5.10
in Fudenberg and Tirole (1991). In this paper, we assume perfect monitoring
and hence the punishment payoff is never below the minimax value.

Many computational methods for repeated games (Cronshaw and Luen-
berger, 1994, Cronshaw, 1997, Judd et al., 2003, Burkov and Chaib-draa, 2010,
Salcedo and Sultanum, 2012, Abreu and Sannikov, 2014) are based on the set-
valued fixed-point characterization of Abreu et al. (1986, 1990). Recently, Berg
and Kitti (2012) have shown that the equilibrium paths consist of repeating
fragments called elementary subpaths. This has provided a new methodology
for analyzing the set of equilibria, computing the pure-strategy payoffs (Berg
and Kitti, 2013) and identifying the equilibrium payoffs as particular fractals
(Berg and Kitti, 2014). These papers assume that the punishment payoffs are
known but it has turned out that the punishment paths may be very compli-
cated and difficult to find in some games. This paper offers a simple solution
for finding the punishment paths, when the set of equilibrium paths is small
enough, i.e., when the discount factors are small. A better algorithm using
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the idea of branch and bound is presented in Berg and Kärki (2014a), but
also it has problems finding the punishment paths in certain games. Solving
this problem is left for future research and here we focus on examining the
properties of the punishment paths.

The paper is structured as follows. In Section 2, the repeated game model is
formulated and the notion of subgame-perfect equilibrium is defined. Section
3 examines the monotonicity of equilibrium paths and payoffs. A numerical
method for finding the punishment paths is presented in Section 4. Three
examples are given in Section 5; they demonstrate the punishment payoffs in
an oligopoly game, the non-monotonicity of equilibrium paths, and the case of
unequal discount factors. Section 6 concludes.

2 Subgame-Perfect Equilibria

The game has n players and N = {1, . . . , n} denotes the set of players. The
set of actions available to player i in the stage game is Ai. Each player is
assumed to have finitely many actions. The set of action profiles is denoted
by A = ×iAi. Moreover, a−i denotes the action profile of other players than
player i. The corresponding set of action profiles is A−i = ×j ̸=iAj . Function
u : A 7→ Rn gives the vector of payoffs that the players receive in the stage
game when a given action profile is played, i.e., if a ∈ A is played, player i
receives payoff ui(a).

In the supergame, the stage game is repeated infinitely many times and
the players discount the future payoffs with discount factors δi ∈ [0, 1), i ∈ N .
Perfect monitoring is assumed: all players observe the chosen action profile
at the end of each period. A history contains the path of action profiles that
have been played before. The set of length k histories or paths is denoted by
Ak = ×kA. The empty path is ∅, i.e., A0 = {∅}, which corresponds to the
history in the beginning of the game. Infinitely long paths are denoted by A∞.
When referring to the set of paths beginning with a given action profile a,
notation Ak(a) and A∞(a) are used for length k and infinitely long paths,
respectively. Moreover, A is the set of all paths, finite or infinite, and A(a)
is the set of all paths starting with a, i.e., union of Ak(a), k = 1, 2, . . . and
A∞(a).

It is assumed that the players use pure strategies, i.e., randomized and
correlated strategies are not allowed. A strategy for player i in the supergame
is a sequence of mappings σ0

i , σ
1
i , . . ., where σ

k
i : Ak 7→ Ai. The set of strategies

for player i is Σi. The strategy profile composed of σ1, . . . , σn is denoted by σ.
Given a strategy profile σ and a path p, the restriction of the strategy profile
after p is σ|p. The outcome path induced by σ is (a0(σ), a1(σ), . . .) ∈ A∞,
where ak(σ) = σk(a0(σ), . . . , ak−1(σ)) for all k.

The average discounted payoff of player i corresponding to a strategy profile
σ is

Ui(σ) = (1− δi)
∞∑
k=0

δki ui(a
k(σ)). (1)
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A strategy profile σ is a subgame-perfect equilibrium (SPE) of the supergame
if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) for all i ∈ N, p ∈ Ak, k ≥ 0, and σ′

i ∈ Σi.

From now on, equilibrium refers to subgame-perfect equilibrium. This paper
focuses on SPE paths defined below.

Definition 1 A path p ∈ A∞ is a subgame-perfect equilibrium path if there
is an SPE strategy profile that induces it.

It was shown in Abreu (1988), see also Abreu et al. (1986, 1990), that it
is enough to study simple strategies when analyzing the set of equilibria. A
simple strategy consists of an equilibrium path that is played and a punishment
path for each player. The punishment paths are credible, i.e., they are the
equilibrium paths that give the player’s lowest equilibrium payoff. The players
follow the current path unless there is a unilateral deviation by some player.
In that case, the punishment path of the deviator becomes the path to be
played. Again, if someone deviates from this new path, then this new deviator’s
punishment path becomes the one to be followed. If more than one player
deviates from the current path, then the play remains on the given path.
Since we examine non-cooperative games and the equilibrium notion is Nash
equilibrium, the deviations by two or more players need not be considered.
Thus, it is enough to check that no player alone should deviate when the
deviation is followed by the punishment path of the player.

It should be noted that there are more complicated equilibrium strategies
than simple strategies and some paths can be sustained with milder punish-
ments, but Abreu’s result shows that any equilibrium outcome, no matter how
complicated, can also be implemented using simple strategies. Thus, there is
no loss of generality in restricting attention to the simple strategies, or simply
the paths that have no profitable unilateral deviations.

Let V be the compact set of SPE payoffs and v−i (δ) is the lowest SPE payoff
of player i when the players have the discount factor δ = (δ1, . . . , δn), if V is
non-empty. It should be noted that the set of equilibria may be empty in pure
strategies. For this reason, we assume that the stage game has at least one
Nash equilibrium in pure strategies, which implies that the set of equilibria is
non-empty in the supergame. The equilibrium conditions for the SPE paths are
given by the following one-shot deviation principle. A path p = a0(σ)a1(σ) · · ·
induced by a strategy σ is an SPE path if and only if

(1− δi)ui

(
ak(σ)

)
+ δiv

k
i ≥ max

ai∈Ai

[
(1− δi)ui

(
ai, a

k
−i(σ)

)
+ δiv

−
i (δ)

]
, (2)

for all i ∈ N , k ≥ 0, and where

vki = (1− δi)
∞∑
j=0

δji ui

(
ak+1+j(σ)

)
is the continuation payoff after ak(σ). The incentive compatibility (IC) con-
dition (2) means that any player i should prefer the payoff given by path p
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to any deviations at any stage that are followed by the punishment path with
the payoff v−i (δ). Note that we can assume without loss of generality that the
players deviate optimally and they receive the punishment payoffs after devia-
tions. If an equilibrium can be sustained with a milder punishment then it can
also be sustained with the optimal punishment. For example, the repetition
of the stage game Nash equilibrium has no profitable deviations and therefore
playing it does not require any punishment at all. Moreover, if a path has no
optimal deviations then it does not have any deviations at all; this is why we
have the maximum at the right-hand side of Eq. (2).

The definition of equilibrium is recursive in the sense that all equilibrium
paths depend on the punishment payoffs v−(δ) and the punishment paths
depend on each other. In general, the payoffs v−(δ) are not known, but with
perfect monitoring they are above the minimax values, v−i (δ) ≥ vi, where

vi = min
a−i∈A−i

max
ai∈Ai

ui(ai, a−i). (3)

The aim of this paper is to find the punishment paths and the correspond-
ing lowest equilibrium payoffs for different discount factors and analyze their
properties.

3 Monotonicity of Equilibria

In this section, we examine the monotonicity of equilibrium paths and payoffs.
Let us define the incentive compatibility with respect to a set of continuation
payoffs W . Let W ∈ Rn be a non-empty, compact set and the punishment
payoffs in the set are denoted by

v−i (W ) = min{wi, w ∈ W}.

For player i ∈ N , the best possible deviation from an action profile a ∈ A is
to play the pure action that gives

di(a) = max
ai∈Ai

ui(ai, a−i).

Now, we say that a pair (a,w) of an action profile a ∈ A and a continuation
payoff w ∈ W is admissible with respect to W if it satisfies the incentive
compatibility conditions:

(1− δi)ui(a) + δiwi ≥ (1− δi)di(a) + δiv
−
i (W ),

for all i ∈ N . Let Ca(W ) denote the set of admissible continuation payoffs in
W after action profile a:

Ca(W ) = {w ∈ W such that (a,w) is admissible}.

Let us define a mapping B : Rn 7→ Rn

Bδ(W ) =
∪

(a,w)∈A×W

(I − T )u(a) + Tw, (4)
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where (a,w) is admissible with respect to W , I is an n × n identity matrix,
and T is a diagonal matrix with δ1, . . . , δn on the diagonal.

Now, we are ready to present the fixed-point characterization of equilibrium
payoffs (Abreu et al., 1986, 1990, Cronshaw and Luenberger, 1994, Mailath and
Samuelson, 2006, Berg and Kitti, 2014).

Theorem 1 The payoff set V is the largest fixed point of B:

W = Bδ(W ) =
∪
a∈A

∪
w∈Ca(W )

(I − T )u(a) + Tw.

It can also be shown that the payoff set V is compact. Note that the mapping
B goes through all the action profiles a ∈ A and all the possible continuations
payoffs w that can follow a, i.e., the set Ca(W ). See Berg and Schoenmakers
(2014) for the corresponding characterization in randomized strategies in a
model where the players only observe the realized pure actions. There are
many algorithms that use the iteration of B in computing approximations of
the set of equilibrium payoffs (Cronshaw, 1997, Judd et al., 2003, Burkov and
Chaib-draa, 2010, Salcedo and Sultanum, 2012, Abreu and Sannikov, 2014).

Let V (δ) denote the payoff set for a discount factor δ. It can be shown that
the set of equilibrium payoffs is monotone in the discount factor when the set
is convex (Abreu et al., 1990, Mailath and Samuelson, 2006).

Theorem 2 Suppose V (δ1) is convex, then V (δ1) ⊆ V (δ2) for δ2 ≥ δ1.

Proof If W is self-generating for δ2, i.e., W ⊆ Bδ2(W ), then W ⊆ V (δ2) by
Theorem 1 since V (δ2) is the largest fixed-point of Bδ2 . Thus, it is enough to
show that for all v ∈ V (δ1) implies that v ∈ Bδ2(V (δ1)). Let δ2 = δ1+ϵ, where
ϵi ≥ 0 for all i ∈ N .

Since v ∈ V (δ1), there is an admissible pair (a,w1) of an action profile
a ∈ A and a continuation payoff w1 ∈ V (δ1) such that v = (I−T1)u(a)+T1w

1.
We need to show that there is an admissible pair (a,w2) with a continuation
payoff w2 ∈ V (δ1) such that v = (I − T2)u(a) + T2w

2. Note that the payoff
v is between u(a) and w1 as a convex combination; and the same is true for
u(a) and w2.

Now, we show that w2 is between v and w1, which implies that w2 ∈ V (δ1)
since v ∈ V (δ1), w

1 ∈ V (δ1) and V (δ1) is a convex set. We solve w2 from the
equations for v:

(I − T1)u(a) + T1w
1 = (I − T2)u(a) + T2w

2

⇒ (T1 + E)w2 = T1w
1 + ϵu(a),

where E is a diagonal matrix with ϵ1, . . . , ϵn on the diagonal. Thus, w2 is a
convex combination of w1 and u(a). Since v is between u(a) and both w1 and
w2, this means that w2 is between w1 and v.

Finally, let us check the admissibility of (a,w2) with δ2. Since the left-
hand side of the incentive compatibility condition is the same for both pairs,
it remains to show that the right-hand side, i.e., v−i (V (δ)), is non-increasing
in δ. Since v−i (V (δ1)) ∈ Vi(δ1), the above implies that v−(V (δ2)) ≤ v−(V (δ1))
and thus V (δ1) ⊆ V (δ2). ⊓⊔
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It is easy to see that the payoff set may not be monotone when it is not
convex, i.e., when the discount factors are small and the payoff set is discrete;
see Fig. 1. The non-monotonicity is also demonstrated in Section 5.1, where
the punishment payoffs increase when the players become more patient.

Theorem 2 implies that the payoff set is convex and monotone in the dis-
count factor when the correlated strategies are available, which convexifies the
payoff set (Abreu et al., 1990, Mailath and Samuelson, 2006). Let co(W ) denote
the convex hull of set W and V C is the payoff set with public correlation.

Proposition 1 The payoff set V C is the largest fixed point of co(B):

W = co
(
Bδ(W )

)
.

Thus, V C(δ) is convex and monotone in δ.

Let us return back to pure strategies. The following shows that the convex,
self-generating sets are monotone in the discount factor if the punishment
payoffs do not increase.

Proposition 2 Suppose W ⊆ V (δ1) is convex, W ⊆ Bδ1(W ) and v−(V (δ1)) ≥
v−(V (δ2)), then W ⊆ V (δ2) for δ2 ≥ δ1.

Proof Again, it is enough to show that W is self-generating for δ2, i.e., W ⊆
Bδ2(W ). The proof is similar to Theorem 2. The continuation payoff w2 be-
longs to W since it is convex and (a,w2) is admissible since the punishment
payoff is non-increasing. ⊓⊔

When the discount factors are small, the payoff set consists of discrete
number of points, as illustrated in Fig. 1, and the payoff set is neither con-
vex nor monotone. Yamamoto (2010) presents a game where the payoff set is
neither convex nor monotone no matter how large the discount factor is. This
result suggest that there is a class of games that do not become dense for high
levels of patience, and characterizing this class is an interesting research ques-
tion. However, the set of equilibrium paths typically increases and the payoff
set becomes more dense when the players become more patient. For example,
Berg and Kärki (2014b) examine the lowest discount factor values when the
payoff set covers all the reasonable payoffs in the symmetric 2×2 games under
pure, randomized and correlated strategies, and this also gives a bound when
the payoff set becomes convex and monotone. We give the result for the pris-
oner’s dilemma; see Berg and Kärki (2014b), Berg and Schoenmakers (2014),
Stahl (1991) for more details. Let V ∗(δ) =

{
v ∈ V †| vi ≥ v−i (V (δ)) ∀i ∈ N

}
be the set consisting of the feasible and individually rational payoffs in the
discounted game, where V † = co (v ∈ Rn : ∃a ∈ A s.t. v = u(a)) is the set of
feasible payoffs in the undiscounted game.

Proposition 3 In a symmetric prisoner’s dilemma
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a, a (a) b, c (b)
c, b (c) d, d (d)

with c > a > d > b, the payoff set V (δ) is convex and monotone in δ and
covers all the feasible and individually rational payoffs when δ ≥ δP (δM or
δC), where P , M and C refer to pure, randomized and correlated strategies:

δP = δM =
c− b

a+ c− b− d
> max

[
c− a

c− d
,
d− b

a− b

]
= δC ,

when b+ c < 2a, and otherwise

δP =
2(c− d)

b+ 3c− 4d
> δM =

c− b

2(c− d)
>

d− b

c− d
= δC .

Proof Let the letters a to d denote the action profiles, as shown by the game
matrix; b refers to the action profile that gives the payoff (b, c). By Theorems
1 and 2, it is enough to find the smallest discount factor when Bδ(V ∗(δ))
covers all the payoffs in V ∗(δ). Note that the punishment payoff is a constant;
v−i (δ) = d for all δ. In pure strategies, the last payoff to be filled by Bδ(V ∗(δ))
depends on the shape of V ∗(δ). In the quadrilateral shape, when b + c < 2a,
the last point is on the efficient boundary between the payoffs u(a) and u(b)
(or symmetrically u(c)). Thus, the required value of the discount factor, δP =

c−b
a+c−b−d , is solved when the sets Bδ

a(V
∗(δ)) and Bδ

b (V
∗(δ)) intersect, where

Bδ
a(W ) =

∪
w∈Ca(W )(I − T )u(a) + Tw. Since these payoffs are obtained by

playing pure strategies, the limit is the same in randomized strategies, i.e.,
δP = δM .

In the triangle shape, the last point to be filled in pure strategies is in the
middle of the set V ∗(δ) and the discount factor is solved when the sets Bb, Bc

and Bd intersect. In randomized strategies, it is enough that the sets Bb and
Bc intersect. This is a necessary condition since the efficient payoffs between
u(b) and u(c) are only obtained by playing the pure strategies b and c, but it is
also sufficient as then the payoffs inside the set V ∗(δ) are filled. In correlated
strategies, it is enough that the sets Ba and Bb cover the corner points of
V ∗(δ). The exact calculations are done in Berg and Kärki (2014b), Berg and
Schoenmakers (2014).

Although, the convexity is typically required for the monotonicity of pay-
offs, it is not required for the monotonicity of paths, which is a more robust
property of equilibria. A sufficient condition for the monotonicity of paths
is that the punishment payoffs do not increase (Berg and Kitti, 2012). It is
shown in Section 5.2 that the equilibrium paths may not be monotone when
the punishment payoffs increase.

Theorem 3 Suppose a path p ∈ A∞ is an SPE path for δ1 and v−(δ1) ≥
v−(δ2), then p is an SPE path for δ2 ≥ δ1.
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Proof Let uk denote the payoffs in stage k on path p, i.e., uk = u(ak) when the
action profile ak is played on stage k. Also, let dk = d(ak) denote the deviation
payoffs, and T1 and T2 are the diagonal matrices corresponding the discount
factors δ1 and δ2, respectively. Now, we can rewrite the incentive compatibility
conditions for δ1:

(I − T1)u
k + T1

(I − T1)
∞∑
j=0

T j
1u

k+j+1

 ≥ (I − T1)d
k + T1v

−(V (δ1)),

for all k ≥ 0. Let us rearrange the equation and multiply from left by (I−T1)
−1:

Sk
1

.
= uk − dk + T1

∞∑
j=0

T j
1

(
uk+j+1 − v−(V (δ1))

)
≥ 0 for all k = 0, 1, . . . .

Similar expression can be derived for Sk
2 with T2, and the purpose of the

proof is to show that Sk
2 ≥ 0 for all k ≥ 0, which means that the incentive

compatibility conditions hold for T2 along the path p.

We can solve the recursion which Sk
i satisfies:

Sk
i = uk − dk + Ti

(
dk+1 − v−(V (δi)) + Sk+1

i

)
, for all k ≥ 0 and i = 1, 2.

Note that the first part uk−dk is a vector with non-positive components, which
implies that the components of the second part dk+1−v−(V (δ1))+Sk+1

1 , k ≥ 0,
must be non-negative, since Sk

1 ≥ 0 due to incentive compatibility.

Let δ2 = δ1 + ϵ and E is the diagonal matrix corresponding ϵ ≥ 0. We can
simplify the expression for δ2:

Sk
2 ≥ uk − dk + (T1 + E)

(
dk+1 − v−(V (δ1)) + Sk+1

2

)
= Sk

1 + E
(
dk+1 − v−(V (δ1)) + Sk+1

1

)
+ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
,

where the first inequality follows from the fact that v−(V (δ1)) ≥ v−(V (δ2)).
Now, we can write

Sk
2 − Sk

1 ≥ E
(
dk+1 − v−(V (δ1)) + Sk+1

1

)
+ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
≥ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
,

where the inequality follows from the earlier observed non-negativity of dk+1−
v−(V (δ1)) + Sk+1

1 . Now, we can use this recursion:

Sk
2 − Sk

1 ≥ E

∞∑
j=0

(T1 + E)kZk,

where Zk = dk+1 − v−(V (δ1)) + Sk+1
1 ≥ 0. Thus, Sk

2 ≥ Sk
1 ≥ 0. ⊓⊔
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Another useful property of the incentive compatibility conditions is that
they are monotone in the punishment payoffs. This means that the set of IC
paths with a higher punishment value is always a subset of the IC paths with
a lower punishment value. This is an important result as it implies that the
punishment paths and payoffs can be found with an iterative method. The idea
is to compute the incentive compatible paths with the punishment payoffs that
are lower than the actual ones, e.g., the minimax payoffs. These lower bound
punishment payoffs can be increased systematically until the exact punishment
payoffs are found, as the following results suggest.

Proposition 4 Suppose a path p is incentive compatible with the punishment
payoffs z1, then p is incentive compatible with the punishment payoffs z2 ≤ z1.

Proposition 5 Let W be the set of payoffs that the incentive compatible paths
yield when the punishment payoffs are z ≤ v−(δ). Suppose that v−i (W ) > zi
for some i ∈ N , then v−i (δ) ≥ v−i (W ). Otherwise, we have v−(δ) = z.

Proof Assume that v−i (δ) < v−i (W ). This means that there is an incentive
compatible path p−i with the punishment payoffs v−(δ) which gives the payoff
v−i (δ). Proposition 4 implies that p−i is incentive compatible with z and thus
v−i (W ) ≤ v−i (δ), which is a contradiction. ⊓⊔

4 Computational Method

We present a simple method for finding the punishment payoffs based on
Proposition 5. The method first sets the punishment values to the minimax val-
ues and increases these values until the optimal punishment payoffs are found.
For each punishment value, the incentive compatible paths are computed and
then the path that gives the player’s smallest payoff is found for each player.
If these smallest payoffs coincide with the current punishment values, then we
have found the optimal punishment paths and payoffs. Otherwise, the current
punishment values are too low and they can be increased up to the values
found. This process is presented in Algorithm 1.

The Step 1 of Algorithm 1 relies on the fact that the IC paths can be
computed for the given punishment values zi. The method of Berg and Kitti
(2012, 2013) can be used but it has problems when the number of IC paths
is large, i.e., when the discount factors are high or the game is large. How-
ever, it should be noted that not all IC paths need to be computed but only
the ones that potentially produce the lowest equilibrium payoffs. Especially,
if some feasible punishment paths are found, then all paths that have payoffs
above these values for all players can be neglected. These issues related to
improving the algorithm are not discussed in this paper but rather left for
future research. See Berg and Kärki (2014a) for a better algorithm using the
branch and bound method. It should be noted that all the punishment paths
found in this paper are optimal and computed with the presented method,
unless otherwise indicated, since the numerical examples have finitely many
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Algorithm 1: Find paths with lowest equilibrium payoffs
input : payoffs ui, minimax values vi, discount factors δi.

output: paths pi that give the punishment payoffs v−i (δ).

begin
Initialize the lower bounds zi = vi.
while punishment paths not found do

1. Find incentive compatible paths with punishments zi.
2. Find the lowest payoffs mi and paths pi from the IC paths.
if mi > zi for some i ∈ N then

Update zi = mi.
else

Punishment paths and payoffs found.

elementary subpaths. If there are too many subpaths, we restrict their maxi-
mum length and in this case the method only produces feasible upper bounds
for the punishment payoffs.

When the IC paths are found, the lowest payoffs for each player in Step
2 can be found in O(mn) time (Madani et al., 2010, Papadimitriou and Tsit-
siklis, 1987), where n is the number of nodes and m is the number of edges
in the finite graph of IC paths. The task is essentially the same as finding
the optimal strategies for discounted, infinite-horizon, deterministic Markov
decision processes (DMDPs). Thus, this part of the algorithm can be solved
efficiently.

This also means that the highest equilibrium payoffs can be found effi-
ciently. Moreover, it is possible to find the maximum of any weighted sum of
players’ utilities with the method if the players have the same discount factors.
There might be an efficient algorithm for the case of unequal discount factors,
but the author is not aware of such method. The reason to solve the weighted
sum problem is the fact that these solutions are Pareto efficient. However,
there may be Pareto solutions that cannot be found as a weighted sum of
players’ utilities, and finding the whole Pareto frontier may be in general a
difficult task.

5 Numerical Examples

The following examples demonstrate that the punishment payoff may increase
when the players’ discount factors increase. This fact is utilized in the second
example such that the non-monotonicity of equilibrium paths is observed. The
third example shows that this property can be more easily seen when the
players have unequal discount factors.

5.1 Oligopoly Game

Let us examine the following quantity-setting duopoly game of Abreu (1988):
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L M H
L 10, 10 (a) 3, 15 (b) 0, 7 (c)
M 15, 3 (d) 7, 7 (e) −4, 5 (f)
H 7, 0 (g) 5,−4 (h) −15,−15 (i)

The firms may choose three output levels: low (L), medium (M) or high (H).
The nine action profiles (L,L), (L,M), (L,H), . . . are denoted by letters a to
i, and the stage game’s Nash equilibrium is e, i.e., (M,M), giving payoff 7.
The minimax payoff is vi = 0, and thus for all discount factors it holds that
0 ≤ v−i (δ) ≤ 7, i = 1, 2.

Let (ab)∞ = ababab . . . denote that the path ab is played infinitely many
times. Abreu (1988) examines the game when δ = 4/7 and finds that the
punishment paths are fb∞ for player 1 and symmetrically hd∞ for player 2.
These paths give payoff −4 to the punished player in the first period and then
payoff 3 in the following periods. The average discounted payoff is exactly the
minimax value v−i (δ) = vi = 0. Player 1 has no profitable one-shot deviations
from the path fb∞, since the deviation on the first period leads to path cfb∞

giving (average discounted) payoff 0, and on the next periods the deviation
leads to the path efb∞ giving payoff 3, which is exactly the same as the
continuation punishment path b∞ with payoff 3. Also, player 2 should not
deviate since the payoff 5(1 − δ) + 15δ ≈ 10.7 is higher than the payoff 3 of
the deviation path ehd∞. See the top part of Table 1 for the payoffs on the
deviation and the continuation paths. Note also that the punishment paths
are not unique with this discount factor and the paths c∞ and g∞ give the
same zero payoff without any profitable deviations.

Table 1: The deviation and continuation payoffs for different paths.

path player stage dev. path dev. payoff path payoff
fb∞ 1 1 cfb∞ 0 fb∞ 0
fb∞ 1 2 efb∞ 3 b∞ 3
fb∞ 2 1 ehd∞ 3 fb∞ 10 5

7

f(db)∞ 1 1 cf(db)∞ 90741
430000

≈ 0.21 f(db)∞ 3129
4300

≈ 0.73

f(db)∞ 1 3 ef(db)∞ 5 77841
430000

≈ 5.18 (bd)∞ 5 30
43

≈ 5.70

f(db)∞ 2 1 eh(bd)∞ 5 77841
430000

≈ 5.18 f(db)∞ 5 87
430

≈ 5.20

f(db)∞ 2 2 eh(bd)∞ 5 77841
430000

≈ 5.18 (db)∞ 5 30
43

≈ 5.70

The punishment payoffs for discount factors 0.25, 0.26, . . ., 0.53 are shown
in Figure 2. These can be computed with the method presented in Section
4. The punishment paths are optimal for δ ≤ 0.38 as the set of elementary
subpaths is finite. For δ ≥ 0.39, the shown values are only upper bounds
as the maximum length of the elementary subpaths had to be bounded for
computational reasons; the subpaths were computed up to length 6. For these
values, the method of Berg and Kärki (2014a) produces fast upper bound
estimates in the range of 10−6.
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Fig. 2: The punishment payoffs for dif-
ferent discount factors.
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Fig. 3: The payoffs (x) and continuation
payoff requirements (·) for δ = 0.38.

When δ < 2/7, the only SPE path is e∞, i.e., the repetition of the Nash
equilibrium. When δ = 2/7, it is possible to play combinations of the elemen-
tary subpaths e, bd, db, fd and hb; all the equilibrium paths consists of these
subpaths (Berg and Kitti, 2012, 2013). The punishment payoff for δ = 0.29 is
3129/4300 ≈ 0.728 and it is given by the path f(db)∞ for player 1 and sym-
metrically h(bd)∞ for player 2. The bottom part of Table 1 shows that there
are no one-shot deviations from these paths.

The punishment paths and all the SPE paths remain the same between
the discount factors 0.29 and 0.31. However, the punishment payoff increases
in this region, since the discounting puts more weight to the later payoffs 15
and 3 compared to the first period payoff −4. Thus, the punishment payoff is
not monotone with respect to the discount factor.

In general, the path that gives the punishment payoff can be very simple
or extremely complicated. When δ ≥ 8/15, it is possible to play c∞ and the
punishment payoff is then v−i (δ) = vi = 0. On the other hand, the unique
punishment path of player 1 is feheeeeebeededbdbea∞ with an approximate
payoff 3 ·10−10 when δ = 0.38. Figure 3 shows the payoffs and the continuation
payoff requirements of this path for each stage. For example, the first action
profile f requires that the continuation payoff must be 6.53 and the continua-
tion payoff given by the path eheeeeebeededbdbea∞ gives payoff 5 ·10−10 above
this value; we can see that the dot and the cross coincide at stage 1. On the
other stages, the dots are below the crosses, which means that the incentive
compatibility conditions are not binding and the continuation payoffs are well
above the continuation payoff requirements.

In summary, we can note the following properties of the punishment paths
and payoffs: 1) the payoff on the punishment path may go up and down when
the punishment path is played; the only fact is that the first stage payoff is
the smallest by definition, 2) the incentive compatibility condition is (almost)
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binding on the first round, i.e., the continuation payoff is close to the require-
ment, whereas there need to be no relation on the other rounds, and 3) the
punishment path may be long and non-stationary. Actually, the last obser-
vation raises the question whether the players can determine and implement
these long paths, or should some simplicity be assumed in the equilibrium
behavior.

5.2 Non-monotonicity of Equilibrium Paths

Let us examine the following game:

Q W E R
Q 5, 5 (a) 3, 4 (b) −10,−10 −10,−10
W 4, 3 (c) 2, 2 (d) −10,−10 −10,−10
E −10,−10 −10,−10 x, x (e) −10, y (f)
R −10,−10 −10,−10 y,−10 (g) 5, 5 (h)

where payoffs y > x > 3 = vi. Let us denote the action profiles (Q,Q), (Q,W ),
(W,Q) and (W,W ) by a to d, and (E,E), (E,R), (R,E) and (R,R) by e to
h. The first two columns and rows are set up such that it is possible to punish
player 1 (2) by path b∞ (c∞) with payoff v−i (δ) = vi = 3 if δ ≥ 1/2. However,
the punishment payoff is above 3 and increases from δ = 0.34 to δ = 0.35. Now,
values x and y are chosen such that the increase in the punishment payoffs
makes a difference to the incentive compatibility of the other paths.

Let x = 3.03 and y = 3.04. The punishment payoff is approximately 3.0003
with path (daaaeaea)∞ when δ = 0.34. With this punishment, it is possible to
play e∞ with payoff 3.03, since the deviation from e gives payoff 3.04(1− δ)+
3.0003δ ≈ 3.027 < 3.03. Path e∞ is not, however, an SPE path when δ = 0.35.
The punishment path is (daaa)∞ with approximate payoff 3.02 when δ = 0.35.
Now, there is a profitable deviation from e∞, since 3.04(1−δ)+3.02δ ≈ 3.033 >
3.03. Thus, the set of equilibrium paths is not monotone with respect to the
discount factor.

5.3 Unequal Discount Factors

Consider the following three-player game (Fudenberg and Maskin, 1986, Guéron
et al., 2011, Chen and Takahashi, 2012):

L R
T 1, 1, 1 (a) 0, 0, 0 (b)
B 0, 0, 0 (c) 0, 0, 0 (d)

C

L R
T 0, 0, 0 (d) 0, 0, 0 (c)
B 0, 0, 0 (b) 1, 1, 1 (a)

D

which has essentially four action profiles: a with payoff 1 and b/c/d with payoff
0 where player 2/1/3 may deviate to a. The minimax payoff is vi = 0, i =
1, 2, 3. In pure strategies, it is clear that a∞ with payoff 1 is the only SPE
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outcome when the players have the same discount factor. This is because the
NEU condition is violated and the punishers have no incentive to punish the
deviators as they simultaneously punish themselves. On the other hand, it was
shown by Guéron et al. (2011), Chen and Takahashi (2012) that the players
can receive payoffs arbitrarily close to zero when the players have different
discount factors.

Now, let us try to find some equilibria in pure strategies with a payoff
less than one, when the players have different time preferences. The punish-
ments rely on the differences in the discount factors and for example δ =
(0.15, 0.65, 0.95) will serve our purpose. The path d13a∞ for players 1 and 2
and the path (ba)∞ for player 3 are the optimal punishment paths. These
give very close to zero payoffs to players 1 and 2 and approximate payoff 0.49
to player 3; see Table 2 for the payoffs. Players 1 and 2 cannot deviate from
path d13a∞ and player 3 has no incentive (0.5133 > 0.5128). Also, player 3
cannot deviate from path (ba)∞ and player 2 enjoys this path with payoff
0.394 compared to a deviation followed by the path d13a∞ with payoff 0.352.
This example shows that the players may receive payoffs less than one in this
game when they have different discount factors, use pure strategies and have
no public correlating devices. Thus, it shows that the equilibrium paths are
not monotone because all the discount factors can be increased to the same
value and then path a∞ is the only equilibrium.

Table 2: The players’ approximate payoffs from different paths.

path player 1 player 2 player 3

d13a∞ 1.9 · 10−11 3.7 · 10−3 0.5133
a(ba)∞ 0.870 0.606 0.5128
(ba)∞ 0.130 0.394 0.487
ad13a∞ 0.85 0.352 0.538

6 Conclusion

This paper examines the monotonicity of pure-strategy subgame-perfect equi-
libria with respect to the discount factor in infinitely repeated games with
perfect monitoring. It is shown that the equilibrium paths are monotone if the
punishment payoffs do not increase. The monotonicity means that a certain
sequence of action profiles remain equilibrium when the players become more
patient. Thus, the players do not need to alter their actions, but the change
in the discount factors may affect their payoffs. This paper constructs an ex-
ample where the punishment payoffs increase, which introduces a violation in
the incentive compatibility conditions and this shows the non-monotonicity of
equilibrium paths.
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The monotonicity of paths is a more robust property and different from
the monotonicity of payoffs, which has been observed in the literature. The
monotonicity of payoffs is caused by the discreteness of the payoff set and
the discounted payoff criterion. It may be that the set of equilibrium paths
remains exactly the same but the payoff set is not monotone, as the payoffs
may shift a little. The monotonicity of payoffs is guaranteed by the convexity
of the payoff set, which may be difficult to satisfy. On the contrary, it is much
easier to satisfy the condition that the punishment payoffs do not increase. For
example, many of the 2×2 games have a constant punishment payoff, whereas
the convexity is guaranteed only when the discount factors are high (Berg and
Kärki, 2014b).

This paper emphasizes the importance of the punishment paths and pay-
offs. They support the whole set of equilibria and tell what happens if the
players deviate from the path of play. This paper provides an algorithm for
finding the punishment paths when the set of incentive compatible paths is
not too large, i.e., when the discount factors are small enough. It is found
that the punishment paths may be long, non-stationary and difficult to find
for a class of games. It seems that finding the punishment paths corresponds
to solving a discrete optimization problem over the pure-strategy paths and
this means that there is no special characterization or equation from which
the punishment paths could be solved.

One interesting idea for future research is to generalize the punishment
paths to stochastic games. The concept of elementary subpaths has been ex-
tended to stochastic games in Berg (2012), but the algorithm for computing
equilibria or punishment paths has not been implemented yet. Essentially,
the difference is that the punishment paths are state dependent in stochastic
games. Finally, an open question is how general the non-monotonicity is in
economically meaningful games. It seems that it is rare and more of a mathe-
matical curiosity.
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