

Characterization of Equilibrium Paths in Discounted Stochastic Games

Kimmo Berg
Systems Analysis Laboratory
Aalto University, Finland

July 19, 2012

Outline of the presentation

- Motivation with repeated games
 - What can be studied with new methodology?
 - Compute and analyze equilibrium paths and payoffs
 - Visualize equilibrium payoffs
- Generalization to stochastic games
 - Extend the notion of elementary subpaths
 - Modifications to algorithms, graphs and measures

The setup

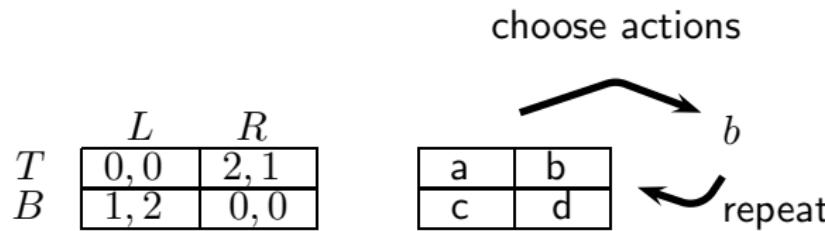
- Infinitely repeated stochastic game
- Perfect monitoring
- Pure strategies (no mixed, no correlation devices)
- Discounting (can be unequal discount factors)
- Finite number of states
- Time-independent transition probabilities
- Stage games with finitely many actions

How do repeated games work?

	<i>L</i>	<i>R</i>
<i>T</i>	0, 0	2, 1
<i>B</i>	1, 2	0, 0

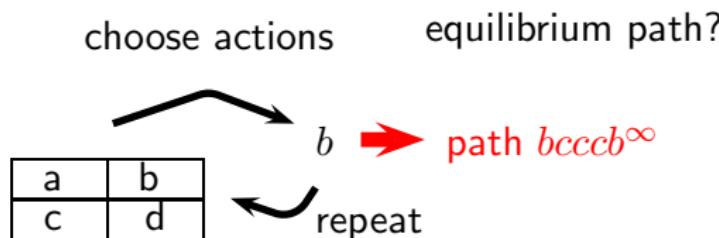
a	b
c	d

How do repeated games work?



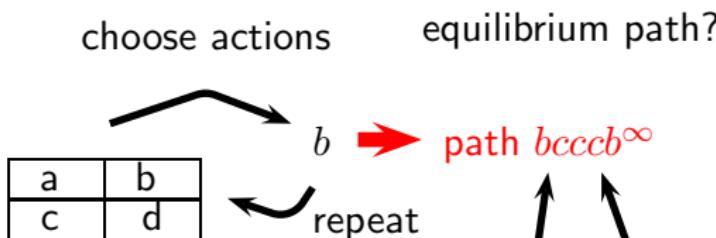
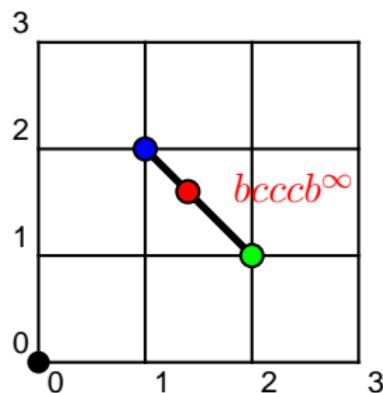
How do repeated games work?

	<i>T</i>	<i>L</i>	<i>R</i>
<i>T</i>	0, 0	2, 1	
<i>B</i>	1, 2	0, 0	



How do repeated games work?

	L	R
T	0, 0	2, 1
B	1, 2	0, 0



are there one-shot deviations?
 $\text{utility} \geq \text{deviation} + \text{punishment}$
 need the smallest payoffs!
 c^∞ for 1, b^∞ for 2

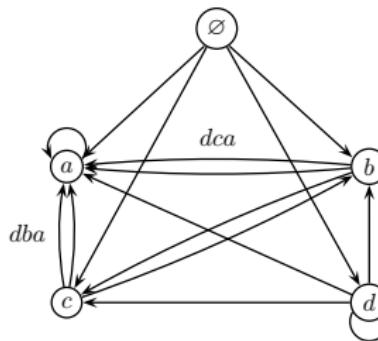
there are other eq. paths

The building blocks of SPE paths

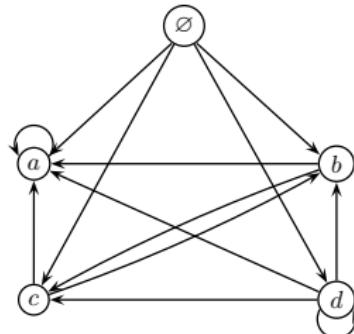
- Elementary subpaths generate recursively all equilibrium paths
- These paths are incentive compatible when followed by SPE paths that satisfy payoff requirements for the following actions

$a b b a c d a a \dots$

- Equilibrium paths can be compactly represented by graph



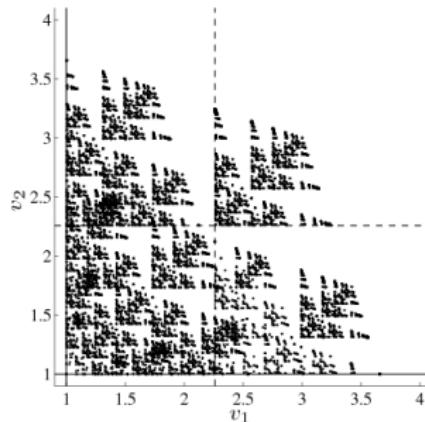
Analyzing equilibrium paths: number of paths



$$D = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

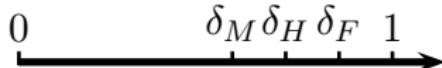
- One-length paths: a, b, c, d
- Two-length paths: $aa, ba, bc, ca, cb, da, db, dc, dd$
- The number of k -length paths is simply from D^k
- The principal eigenvalue $\rho(D)$ is the **asymptotic growth rate**
- It tells the size of the equilibrium set

Analyzing equilibrium payoffs: density

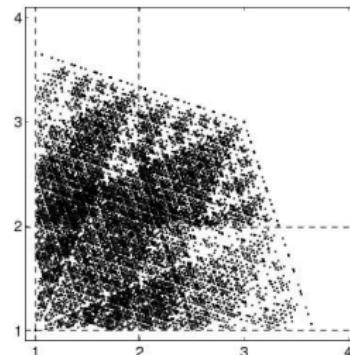


- Hausdorff dimension \dim_H measures **how set covers the space**
- Difficult to estimate exactly due to overlaps
- Affinity dimension $\dim_A = -\log \rho(D)/\log \delta$ with the graph
- Use topological pressure when unequal discount factors

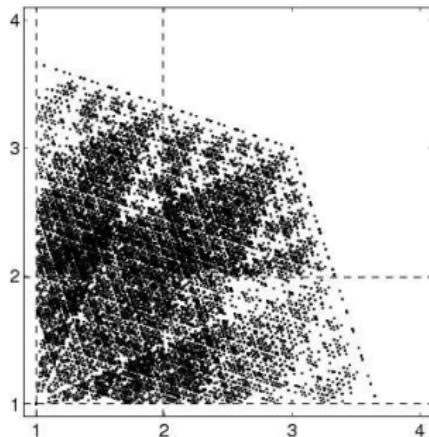
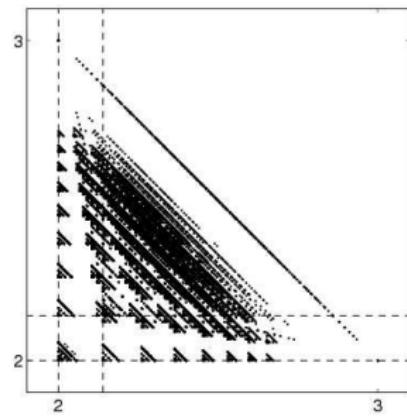
Three critical values for discount factors



- Folk theorem point δ_F
- Hausdorff point δ_H
- Minmax point δ_M

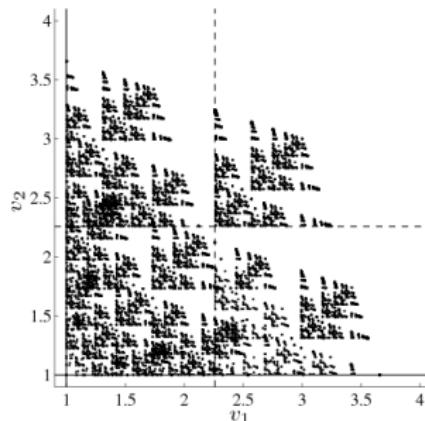


Folk theorem point



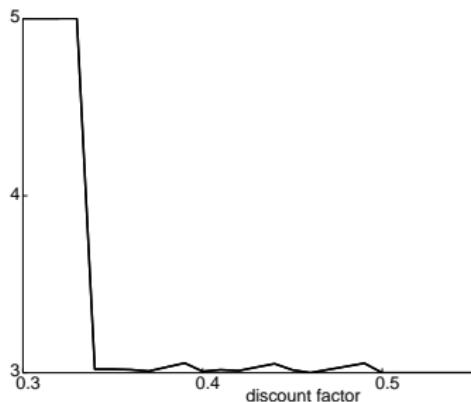
- Payoffs fill the feasible and individual rational points
- Depends on the game

Hausdorff point

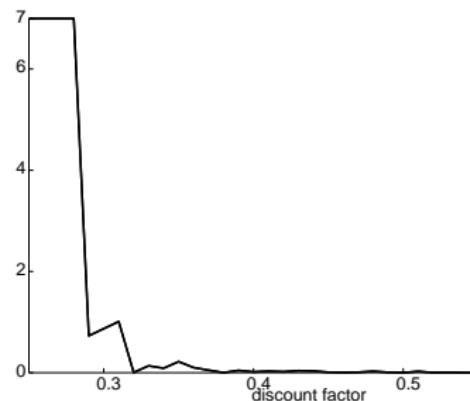


- Payoff set becomes full dimensional somewhere
- When $\dim_H = 2$ for two-player game
- When $\delta_i < 0.5$, $\dim_H = \dim_A$
- If random disturbances in payoffs, $\dim_H = \min(n, \dim_A)$ for all discount factors (Jordal et al. 2007)

Minmax point



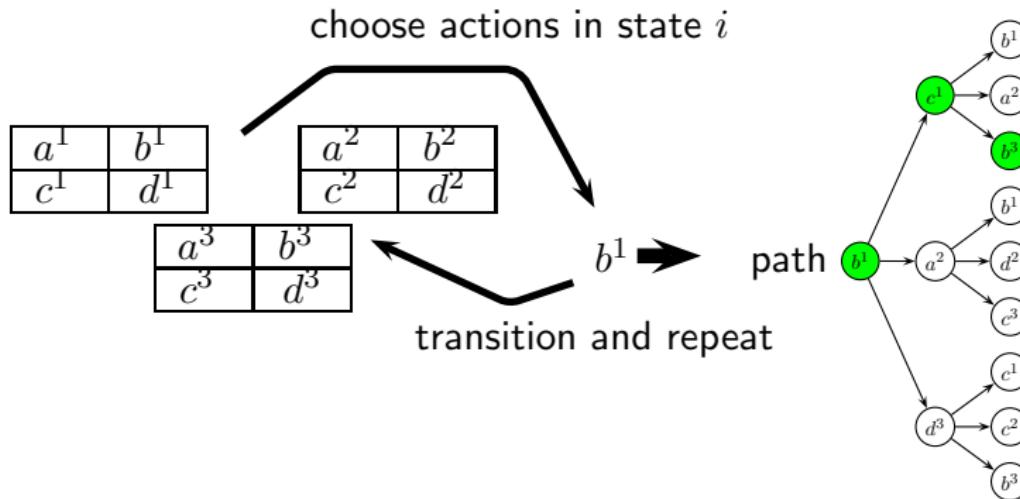
	<i>L</i>	<i>R</i>
<i>T</i>	5, 5	3, 4
<i>B</i>	4, 3	2, 2



	<i>L</i>	<i>M</i>	<i>H</i>
<i>L</i>	10, 10	3, 15	0, 7
<i>M</i>	15, 3	7, 7	-4, 5
<i>H</i>	7, 0	5, -4	-15, -15

- When (effective) minmax is reached
- Smallest payoffs are important for generating payoffs

How do stochastic games work?



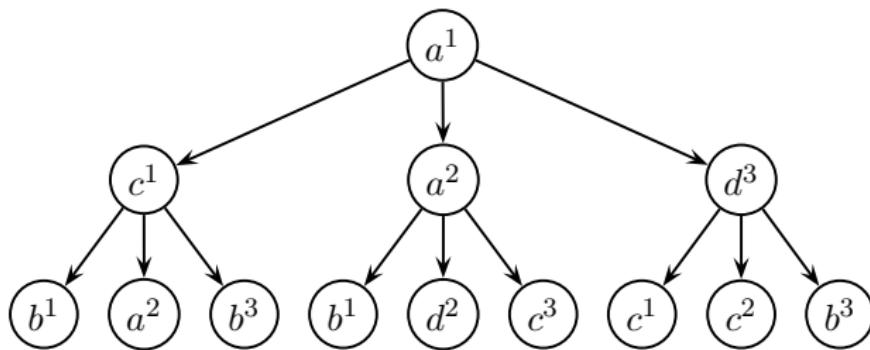
construct graph
 analyze paths and payoffs
 visualize payoffs

are there one-shot deviations?
 need smallest payoffs for all states
 and for all players

Equilibrium conditions

- IC conditions are similar: no one-shot deviations
- Punishment paths are state dependent
- Paths that have the smallest payoffs in the state

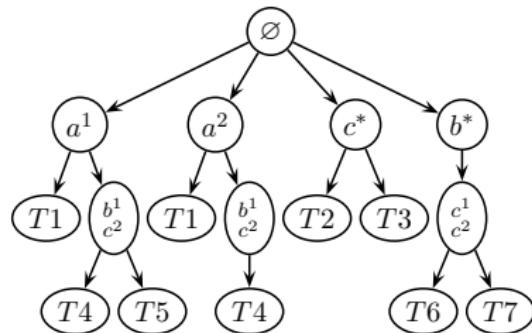
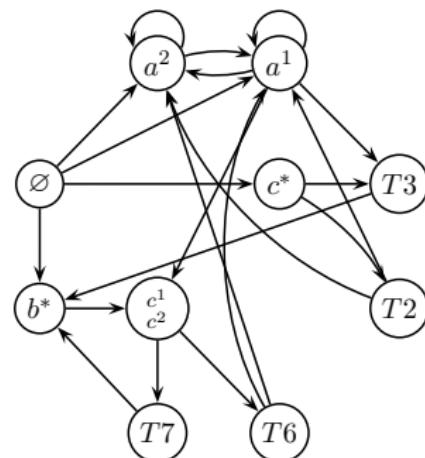
Elementary subpaths in stochastic games



- Elementary subpaths are IC when followed by SPE paths that satisfy payoff requirements for the following actions
- Direct extension from repeated games

Graph of equilibrium paths

- Can be constructed from elementary subpaths
- Algorithm makes a tree and converts it to a graph



Characterization results

Proposition

Path $p \in A^\infty$ is SPE path if and only if for all $i \in \mathbb{N}$, $1 \leq j \leq m^{i-1}$, either the k -length start of $\text{sub}(p^{i,j})$ is k -length elementary tree or $\text{sub}(p^{i,j})$ is infinitely long elementary tree.

Proposition

If there are finitely many elementary trees, finitely or infinitely long, then all SPE paths can be represented with a graph

Analysis of equilibria

- Equilibria can be easily analyzed with the graph:
asymptotic growth rate and fractal dimensions
- It is possible to incorporate probabilities to the measures
- Many different ways to measure the complexity

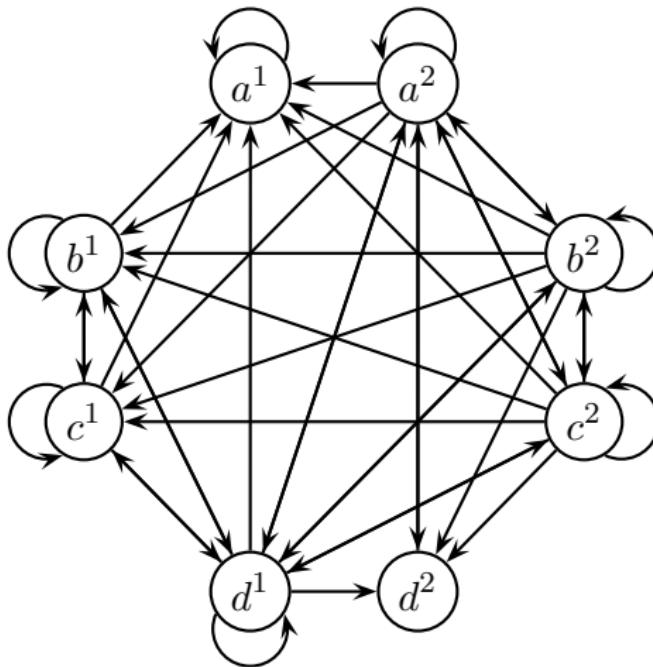
Example of two prisoner's dilemmas

		L	R
		T	4,4 #
state 1	T	4,4 #	0,5 #
	B	5,0 #	1,1

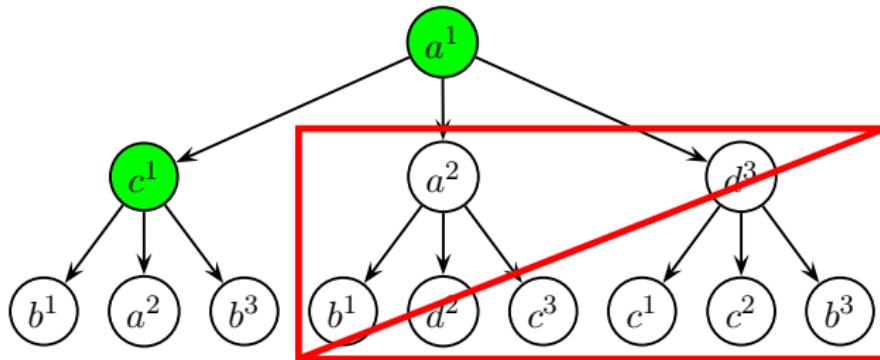
		L	R
		T	0,0
state 2	T	0,0	-4,1
	B	1,-4	-3,-3 #

- $\delta = 0.45$, $q(1|1, a - c) = q(2|2, d) = 1$ and $q(1|1, d) = q(2|2, a - c) = 0.5$
- # = state stays the same, otherwise randomize
- Some elementary subpaths: b^* , c^* , state 1: a_*^a , d_*^a , d_*^d , where * denotes any action, state 2: a_*^a , a_a^* and d_a^*

Example of two prisoner's dilemmas 2

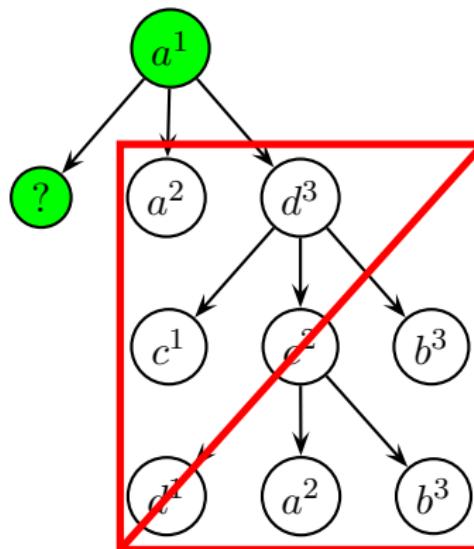


Regeneration effect



- When state 1 is realized, players need not worry about commitments in states 2 and 3
- All unrealized commitments can be forgotten

Regeneration effect 2



- Any elementary subpath in state 1 is possible if it is realized

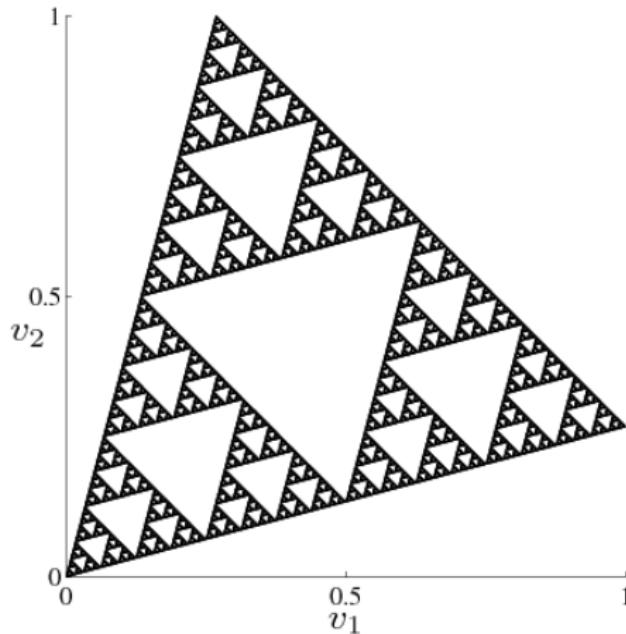
Conclusion

- New methods to compute and analyze equilibria
- SPE paths are characterized by elementary trees
- Useful graph presentation and measures for paths and payoffs
- Regeneration effect for commitments

References

- Berg, Kitti. Equilibrium paths in discounted supergames. Manuscript
- Berg, Kitti. Computing equilibria in discounted 2×2 supergames. Computational Economics, to appear
- Berg, Kitti. Fractal geometry of equilibrium payoffs in discounted supergames. Manuscript
- Jordan, Pollicott, Simon. Hausdorff dimension for randomly perturbed self affine attractors. Communications in mathematical physics 270: 519-544
- Kitti. Subgame perfect equilibria in discounted stochastic games. Manuscript

That's all folks...



Thank you!