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Abstract

This paper characterizes the subgame-perfect pure-strategy equilibrium paths
in discounted supergames with perfect monitoring. It is shown that all the
equilibrium paths are composed of fragments called elementary subpaths. This
characterization result is complemented with an algorithm for finding the ele-
mentary subpaths. By using these subpaths it is possible to generate equilibrium
paths and payoffs. When there are finitely many elementary subpaths, all the
equilibrium paths can be represented by a directed graph. These graphs can be
used in analyzing the complexity of equilibrium outcomes. In particular, it is
shown that the size and the density of the equilibrium set can be measured by
the asymptotic growth rate of equilibrium paths and the Hausdorff dimension
of the payoff set.

Keywords: game theory; repeated game, subgame-perfect equilibrium,
equilibrium path, graph, complexity

1. Introduction

Repeated games provide the most elementary setting for analyzing dynamic
interactions among self-interested agents. We consider the case where a stage
game is repeated infinitely many times, players discount the future payoffs,
observe perfectly each others’ actions, and use pure strategies. These games have
usually enormously rich sets of equilibrium strategies, which is generally thought
to imply that the outcomes are hard to predict. Contrary to this intuition, we
show that all the equilibrium paths are generated from a collection of subpaths.
By equilibrium paths we mean infinite sequences of players’ actions that are
induced by subgame-perfect equilibrium strategies.
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As shown in [1, 2], an equilibrium path is such that none of the players has
an incentive to deviate at any stage when the deviations lead to the paths that
provide the smallest equilibrium payoff for the deviator. This idea of most severe
punishments can also be utilized for characterizing the equilibrium payoffs with
a set-valued fixed point equation, see [3, 4] for the case of imperfect monitoring
and [10] for perfect monitoring. These results entail that in equilibrium the
players take actions that are incentive compatible given the future payoffs of
the strategy and the threat of receiving the smallest equilibrium payoffs after
deviations.

We derive a novel characterization for equilibrium paths from the players’
incentive compatibility conditions. Our main result is that all the equilibrium
paths are constructed from a collection of sequences of players’ actions, which
will be called the elementary subpaths. We emphasize that this result charac-
terizes all equilibrium paths simultaneously rather than gives a condition for
individual paths as done in [1, 2]. We also present an algorithm for producing
the elementary subpaths, and show that the equilibrium paths can be compactly
represented by a directed graph. The graph offers a simple way to produce equi-
librium paths and payoffs. Unlike in the literature on combinatorial games (for
a survey, see [14]), where graphs are commonly used to present the players’
available moves at different positions, we use graphs to describe equilibrium
behavior.

The graph presentation can be used in analyzing the complexity of equilib-
rium paths and payoffs. In particular, we propose the asymptotic growth rate of
the equilibrium paths as a measure for the complexity of equilibrium behavior.
This measure tells us the rate at which the number of finitely long equilibrium
paths grows when their length is increased. Since the paths of action profiles
are given by strategies, the growth rate reflects the size of the equilibrium set
and the increase of strategies producing the finitely long equilibrium paths.

Our approach to complexity of repeated game equilibria is new and differs
from the previous literature on strategic complexity, see [17] and [8] for surveys,
and on the complexity of finding winning strategies, see, e.g., [12]. We analyze
the complexity of all equilibrium outcomes without relying on the complexity
of individual strategies nor their computation. In particular, we can assess the
complexity of different repeated games in terms of the equilibrium behavior.

The graph enables us to analyze the complexity of equilibrium payoffs in
addition to paths. The payoff set can be identified as a particular fractal, whose
complexity can be measured by the Hausdorff dimension determined by the
graph; see [7] for more detailed analysis on the fractal properties. The phe-
nomenon that the payoff set behaves in a rather complex manner, as fractals
do, is not completely new, see [18] and [20]. We offer a more comprehensive view
to the structure of equilibria: when the discount factors vary, the elementary
subpaths change, which affects the graph that generates the payoffs.

The results of this paper can also be used in computing equilibrium payoffs;
in [6] the methodology is applied to 2×2 games. Related computational methods
have been developed in [9] and [16], who assume equal discount factors and
correlated strategies; see also [5]. The characterization of equilibrium paths
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enables finding the exact payoffs given by pure strategies regardless of whether
the discount factors are equal or not. Hence, our methods complement the
literature on the computation of supergame equilibria.

The paper is structured as follows. In Section 2 we show that the equilibrium
paths consist of elementary subpaths. Section 3 deals with the computation and
analysis of finite elementary sets. Illustrative examples of the main ideas and
the computational methods are presented in Section 4. Conclusions are given
in Section 5.

2. Equilibrium Paths and Subpaths

2.1. Notation and Definitions

We assume that there are n players, and N = {1, . . . , n} denotes the set
of players. The set of actions available for player i in the stage game is Ai.
Each player is assumed to have finitely many actions. The set of action profiles
is denoted by A = ×iAi. Moreover, a−i denotes the action profile of players
other than player i. The corresponding set of action profiles is A−i = ×j 6=iAj .
Function u : A 7→ R

n gives the vector of payoffs that the players receive in the
stage game when a given action profile is played, i.e., when a ∈ A is played,
player i receives payoff ui(a).

In the supergame the stage game is repeated infinitely many times, and the
players discount the future payoffs with discount factors δi, i ∈ N . We assume
perfect monitoring: all players observe the action profile played at the end of
each period. A history contains the path of action profiles that have previously
been played. The set of length k histories or paths is denoted by Ak = ×kA.
The empty path is ∅, i.e., A0 = {∅}. Infinitely long paths are denoted by A∞.
When referring to the set of paths beginning with a given action profile a we
use Ak(a) and A∞(a) for length k paths and infinitely long paths, respectively.
Moreover, A is the set of all paths, finite or infinite, and A(a) is the set of all
paths that start with a, i.e., union of Ak(a), k = 1, 2, . . . and A∞(a).

The length of path p is denoted by |p|. Furthermore, i(p) is the initial
and f(p) is the final element of p. If p is infinitely long, in brief an infinite
subpath, then f(p) = ∅. If p and p′ are two paths then pp′ is the path obtained
by juxtaposing the terms of p and p′. For p ∈ A, we let pj denote the path
that starts from the element j + 1 of p. Respectively, pk is the path of first
k elements of p. More specifically, when p = a0a1 · · · , we have p1 = a1a2 · · · ,
pk = a0 · · · ak−1, and pkj = aj · · · aj+k−1.

A strategy for player i in the supergame is a sequence of mappings σ0
i , σ

1
i , . . .

where σk
i : Ak 7→ Ai. The set of strategies for player i is Σi. The strategy profile

composed of σ1, . . . , σn is denoted by σ. Given a strategy profile σ and a path p,
the restriction of the strategy profile after p is σ|p. The outcome path induced
by σ is (a0(σ), a1(σ), . . .) ∈ A∞, where ak(σ) = σk(a0(σ) · · · ak−1(σ)) for all k.

The average discounted payoff for player i corresponding to a strategy profile
σ is

Ui(σ) = (1− δi)

∞
∑

k=0

δki ui(a
k(σ)). (1)
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Subgame perfection is defined in the usual way; σ is a subgame-perfect equilib-
rium (SPE) of the supergame if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) for all i ∈ N, p ∈ Ak, k ≥ 0, and σ′

i ∈ Σi.

This paper focuses on SPE paths and subpaths defined as below.

Definition 1. A path p ∈ A∞ is a subgame-perfect equilibrium path if there is
an SPE strategy profile that induces it.

Definition 2. A path p′ ∈ A(a) is an SPE subpath if there is an SPE path
p ∈ A∞(a) such that p|p

′| = p′.

We shall derive a characterization for equilibrium subpaths by assuming that
the set of subgame-perfect equilibrium payoffs is known. Eventually, it turns
out that all we need to know from the set of equilibrium payoffs are the players’
smallest payoffs. Hence, our approach is analogous with the way how the Euler
equation is derived for the optimal paths in dynamic programming.

In the following, V denotes the set of equilibrium payoffs. It is assumed
that V is non-empty, in which case it will also be a compact subset of R

n

[10]. The smallest equilibrium payoff for player i will be denoted by v−i (V ) =
min {vi : v ∈ V }. A pair (a, v) of an action profile a ∈ A and a continuation pay-
off v ∈ V is admissible with respect to V if it satisfies the incentive compatibility
condition

(1 − δi)ui(a) + δivi ≥ max
a′

i
∈Ai

[

(1 − δi)ui(a
′
i, a−i) + δiv

−
i (V )

]

∀i ∈ N. (2)

This constraint says that it is better for player i to take the action ai and get
the payoffs vi than to deviate and then obtain v−i (V ).

In the following, Ca(V ) denotes the set of payoffs for which the pair (a, v)
is admissible. Note that the vector of the smallest payoffs that make (a, v)
admissible can be found from the incentive compatibility condition. We let
con(a) denote this vector. It is the payoff vector in which the component coni(a),
i ∈ N , is the maximum of v−i (V ) and the solution vi of

(1− δi)ui(a) + δivi = max
a′

i
∈Ai

[

(1− δi)ui(a
′
i, a−i) + δiv

−
i (V )

]

.

Note that Ca(V ) = {v ∈ V : v ≥ con(a)}, where the inequality means that
vi ≥ coni(a) for all i ∈ N .

We define an affine mapping Ba : R
n 7→ R

n corresponding to an action
profile a ∈ A by setting

Ba(v) = (I − T )u(a) + Tv,

where I is n×n identity matrix and T is a n×n diagonal matrix with discount
factors δ1, . . . , δn on the diagonal. These mappings are contractions because the
discount factors are less than one.
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2.2. Elementary Subpaths

Let us consider the set of tail payoffs that are possible after an action profile
a when it begins a path p ∈ A(a). We also assume that p is an SPE subpath.
If p is infinite then it is an equilibrium path itself. First, we can observe that a
should be followed by a payoff that belongs to Ca(V ). As a is followed by p1,
we need to consider what are the payoffs that i(p1) generates from the set of
tail payoffs that are possible for i(p1) when it is followed by p2.

Let W (p) denote the set of continuation payoffs that are possible for a after
p ∈ A(a). To be more specific, when the first action profile is a, i.e., the first
element of p, then W (p) contains all the possible continuation payoffs that may
follow a. The set W (p) satisfies the recursion

W (p) = Ci(p)(V ) ∩Bi(p1)(W (p1)).

Namely, the continuation payoff for a should belong to Ca(V ) and it should
be generated by i(p1) from W (p1). Note that for W (p) we need W (p1) for
which we need W (p2), and so on. In particular, if |p| = ∞, the recursion is
infinite and W (p) becomes a singleton: the vector of average discounted payoffs
corresponding to p. To complete the definition of W (p) we set W (∅) = V and
B∅ = I. This is needed because p1 is an empty path when |p| = 1. In particular,
if |p| = k, then pk−1 = f(p) and |pk−1| = 1, which imply W (pk−1) = Cf(p)(V ).

The following observations on W (p) will form the basis for our definition
of elementary subpaths. The first is that p is an SPE subpath if and only if
W (p) 6= ∅, i.e., the first element of p has a non-empty set of possible continuation
payoffs. The second, and more important observation is that if W (p1) 6= ∅ and

Bi(p1)(W (p1)) ⊆ Ci(p)(V ), (3)

then at the time when the first action profile a of p is played, any SPE subpath
starting with the final element of p, i.e., f(p), is a possible continuation for p. For
example, if abc is an SPE subpath such thatW (bc) 6= ∅ andBb(W (bc)) ⊆ Ca(V ),
then at the time when a is played and it is known that bc will follow, any SPE
subpath that begins with c is possible. However, at the time when b is played,
it may matter how the path abc continues after c is played. For instance, the
action profile b may require that it is followed by a path cc, which implies that
abc must be followed by another c. At the time when a is played, the second c
may not be required. Note also that if V ⊆ Ca(V ), i.e., V = Ca(V ), then a can
be followed by any SPE subpath.

The subpaths that satisfy (3) and have no shorter subpaths satisfying this
condition are elementary.

Definition 3. If p ∈ A(a) satisfies W (p1) 6= ∅, condition (3), and there is no
k < |p|, such that pk satisfies these conditions, i.e., pk is not an elementary
subpath, then p is an elementary subpath, and we denote p ∈ P |p|(a).

The requirement that none of the first k elements satisfy (3) means that
set P k does not contain paths that already belong to sets P 1, . . . , P k−1. For
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example, if abc is an elementary subpath, then abcd cannot be an elementary
subpath even though it may satisfy (3). Note that infinitely long subpaths can
be elementary. If p ∈ P∞(a), then sets Bi(p1)(W (pk1)), k = 1, 2, . . ., contain
payoff vectors that do not belong to Ca(V ).

Our main result is that all the SPE paths are characterized by elementary
subpaths, i.e., sets P k and P∞.

Proposition 1. A path p ∈ A∞(a) is an SPE path if and only if for all j ∈ N

either pkj ∈ P k(i(pkj )) for some k or pj ∈ P∞(i(pj)).

Proof. By the construction of P k’s, an SPE path p satisfies one of the two
conditions of the proposition.

Let us assume that for all j either pkj ∈ P k(i(pkj )) for some k, or pj ∈
P∞(i(pj)). In that case, for any j the payoff to player i is at least v−i (V )
when the players choose action profiles such that they stay on the subpath pkj
or pj . We first argue that in the case when there is k such that pkj ∈ P k(i(pkj )),

the threat of reverting to the path that yields v−i (V ) to the deviator i, keeps
the players on path p. In that case it does not matter for players at stage
j what happens after k periods as long as the continuation payoff after these
periods is in V and the penalty from deviations is v−i (V ). On the other hand,
if pj ∈ P∞(i(pj)) then the players do not have any incentive to deviate either.
This means that the path p is supported by the extremal penal code, i.e., there
is an SPE strategy that yields p as an outcome. 2

Example 1. Let us assume that there are four action profiles; A = {a, b, c, d}.
Moreover, let the sets P k(a), k = 1, 2, a ∈ A, be as in the table below. Now,
aa ∈ P 2(a) means that on any equilibrium path a should be followed by another
a, after which it does not matter what comes next as long as it is an equilibrium
path. However, since the only action profile that can follow a is a, we observe
that after the first a on an equilibrium path, the rest of the action profiles are
also a’s. On the other hand, b can be followed by two action profiles; ba and bc,
after which any equilibrium path starting with a or c, respectively, is possible.
For the action profile c the situation is symmetric to that of b. Finally, since
d ∈ P 1(d), it can be followed by any equilibrium path.

Table 1: An example of sets P 1(a) and P 2(a).

a b c d
P 1 ∅ ∅ ∅ {d}
P 2 {aa} {ba, bc} {ca, cb} ∅

The sets P k, k ≥ 1, and P∞ give us the subpaths that can follow a given
initial action profile. The result of Proposition 1 says that for each action
profile a on the equilibrium path there is a subpath belonging to P k(a) for some
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k or P∞(a). This means that the equilibrium paths follow a particular syntax
defined by the elementary subpaths. In the rest of the paper we shall focus on
the collections of elementary subpaths, which are called the elementary sets.

Definition 4. The collection of sets P k(a), k = 1, 2, . . ., and P∞(a), a ∈ A, is
the elementary set of the infinitely repeated game. For given discount factors
T this collection is denoted by S(T ). Moreover, Sk(T ) denotes the collection of
P j(a), j = 1, . . . , k, a ∈ A.

In the following sections particular attention will be paid to finite elementary
sets, since S(T ) may contain infinitely many subpaths in general. However,
the set Sk(T ) contains finitely many subpaths because P k are finite for all
k. Another observation on finiteness of elementary subpaths is an immediate
consequence of contractivity of Ba, a ∈ A. Let v(p) denote the vector of average
discounted payoffs corresponding to p. It follows from the contractivity that if
p ∈ A∞(a) and v(p1) > con(a), then there is k such that pk satisfies (3).
Moreover, if there is an equilibrium path p ∈ A∞(a) for which (3) fails to hold
for all pk, then vi(p1) = coni(a) for some i. The opposite is not true, i.e., we
may have vi(p1) = coni(a) for some i ∈ N at the same time when (3) holds
for all pk. More generally, we have the following result which tells that the
possible infiniteness of S(T ) is due to subpaths close to the boundary where
vi(p1) = coni(a) for some i.

Proposition 2. For any ε > 0 there is k such that plj ∈ P l(i(pj)) for some

l ≤ k when p ∈ A∞(a), a ∈ A, and

vi(p1) ≥ coni(a) + ε for all i ∈ N. (4)

Proof. Because A is finite and Ba, a ∈ A, are contractions, for any ρ > 0 there
is k such that the diameter of the set that is obtained by taking the image of V
under a sequence Ba0 , . . . , Bak−1 , aj ∈ A for all j = 0, . . . , k − 1, has diameter
less than ρ. In particular, the diameter of the set Bi(p1)(W (pk1)) is less than ρ
for any p. Now, ρ can be chosen such that for any a ∈ A and p ∈ A∞(a) for
which (4) holds we have

Bi(p1)

(

W (pk1)
)

⊆ {v ∈ V : (3) holds},

which concludes the proof. 2

Let us now consider the comparative statics of S(T ) with respect to T . Let
T1 and T2 be two matrices corresponding to two different sets of discount factors.
We denote T1 ≪ T2 if the discount factors on the diagonal corresponding to T2

are at least those of T1. With a slight abuse of notation, we denote p ∈ S(T )
when either p ∈ P k(a) or p ∈ P∞(a) for some a ∈ A and k ≥ 0.

We first show a result, which is of importance itself. It tells that if the
punishment payoffs remain the same for two set of discount factors T1 and T2

such that T1 ≪ T2, then any equilibrium path for T1 is also an equilibrium path
when the discount factors are increased to T2. The payoffs corresponding to T1

and T2 are V (T1) and V (T2), respectively.
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Lemma 1. If T1 ≪ T2 and v−(V (T1)) = v−(V (T2)), then a path p ∈ A∞ that

is an SPEP for T1 is an SPEP for T2.

Proof. To suppress the notation let uk denote the vector of payoffs in pe-
riod k ≥ 0, i.e., uk = u(ak), and dk denote the vector of deviation payoffs
maxai∈Ai

ui(ai, a
k
−i). Moreover, v− stands for the vector v−(V (Ti)), i = 1, 2.

Because uk, k = 0, 1, . . ., is a payoff stream corresponding to an equilibrium
path, the incentive compatibility condition (2) implies that for all k ≥ 0 we have

(I − T1)u
k + T1



(I − T1)

∞
∑

j=0

T j
1u

k+j+1



 ≥ (I − T1)d
k + T1v

−.

By rearranging and observing that (I − T1)
−1v− =

∑∞
j=0 T

j
1 v

− we get

Sk
1 = uk − dk + T1

∞
∑

j=0

T j
1

(

uk+j+1 − v−
)

≥ 0 for all k = 0, 1, . . . .

Similar expression as for Sk
1 can be derived for Sk

2 . For this expression we do
not need the incentive compatibility condition. Indeed, the purpose is to show
that Sk

2 ≥ 0, k ≥ 0, which means that the incentive compatibility condition
holds for T2 along the SPEP path for T1.

It can be seen that Sk
i satisfies the recursion

Sk
i = uk − dk + Ti

(

dk+1 − v− + Sk+1
i

)

, for all k ≥ 0 and i = 1, 2. (5)

Observe that the term uk − dk is a vector with non-positive components, which
implies that the components of dk+1 − v− + Sk+1

1 , k ≥ 0, are non-negative,
because Sk

1 ≥ 0, k ≥ 0, by the incentive compatibility.
Let us assume that for the firstK+1 periods, i.e., for periods k = 0, 1, . . . ,K,

the discount factors are given by T2 and after that they are given by T1. It holds
that T2 = T1 + ε, where ε stands for the diagonal matrix T2 − T1 ≫ 0.

The recursion (5) gives

SK
2 = uK − dK + T1

(

dK+1 − v− + SK+1
1

)

+ ε
(

dK+1 − v− + SK+1
1

)

= SK
1 + ε

(

dK+1 − v− + SK+1
1

)

Recall that the components of the vector dK+1 − v− + SK+1
1 are non-negative.

Hence, we get SK
2 ≥ SK

1 ≥ 0. It can now be seen from the recursion (5) that
Sj
2 ≥ Sj

1 ≥ 0 for all j ≤ K. Letting K go to infinity we obtain the incentive
compatibility condition for all k ≥ 0, when the discount factors are given by T2.
Hence, the result follows. 2

We can now consider the comparative statics of elementary subpaths.

Proposition 3. If T1 ≪ T2 and v−(V (T1)) = v−(V (T2)), then p ∈ S(T1)
implies that there is k ≤ |p| such that pk ∈ S(T2).
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Proof. In the following P k(a;Ti) denotes the set of length k elementary sub-
paths corresponding to Ti, C

j
a(V (Ti)) is the set of continuation payoffs for Ti,

vi(pk) is the payoff vector corresponding to pk and Ti, and W i(pk) is the set of
possible continuations after pk for a given Ti.

Lemma 1 shows that an equilibrium path for T1 remains an equilibrium
path for T2. It follows that if we take p ∈ P l(a;T1), then any equilibrium path
for T1 that follows pk, k ≤ l, is an equilibrium path for T2. More formally, if
we take a continuation payoff v1(f(p)) ∈ C1

f(p)(V (T1)), then this continuation

payoff corresponds to an equilibrium path. Let v2(f(p)) denote the payoffs of
this path for discount factors given by T2. Because any equilibrium path for T1

is an equilibrium path for T2 we have v2(f(p)) ∈ C2
f(p)(V (T2)). By induction

argument, v1(pk) ∈ W 1(pk) implies that v2(pk) ∈ W 2(pk) for all k ≤ l.
If we have an equilibrium path for T1 that starts with a ∈ A, i.e., there is

v1(p) ∈ C1
a(V (T1)) such that (a, v1(p)) is admissible, then (a, v2(p)) is admissible

for T2, i.e., v
2(p) ∈ C2

a(V (T2)). Again this follows from Lemma 1. Hence, if
v1(p1) ∈ C1

a(V (T1)), i.e., (3) holds, we also have v2(p1) ∈ C2
a(V (T2)). This

means that either p ∈ P l(a;T2) or there is k ≤ l such that pk ∈ P k(a;T2). If
p ∈ P∞(a;T1) then p is an SPE path for T1, and therefore it is an SPE path
also for T2. Again, either p ∈ P∞(a;T2) or there is k such that pk ∈ P k(a;T2).
2

When the discount factors increase, all the subpaths that satisfy (3) still
satisfy this condition if the smallest equilibrium payoffs do not change. Note
that the number of elementary subpaths and their lengths do not directly reflect
the number of equilibrium paths. For example, if abcd, abdc ∈ S(T1) it may
happen that ab ∈ S(T2) for T2 ≫ T1, i.e., corresponding to two elementary
subpaths starting with ab there is only one when the discount factors increase.
Consequently, ab may be followed by other subpaths than cd or dc.

3. Computation and Analysis of Elementary Sets

We first present an algorithm for finding the subpaths that can be elemen-
tary. This process may produce subpaths that contain non-equilibrium parts.
The second algorithm removes these subpaths and forms a compact graph pre-
sentation for the equilibrium paths. The graph is useful for producing the equi-
librium paths and payoffs, and in analyzing the complexity of equilibrium out-
comes.

3.1. Algorithm for Finding the Elementary Subpaths

First, we introduce a recursive way of computing the payoff requirements.
To illustrate the main idea let us consider a subpath abc. The vector of the
smallest payoffs con(ab) that the players should get after ab to make the first
element a incentive compatible are found by solving

(I − T )u(b) + T con(ab) = con(a).
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If it happens that coni(a) would be below v−i (V ) then we simply set coni(a) =
v−i (a). Given that con(ab) is known, we can now find the smallest payoff that
is required after abc to make a incentive compatible as the first action profile.
This continuation payoff con(abc) is found by solving

(I − T )u(c) + T con(abc) = con(ab).

Again we set the continuation to v−i (V ) if it would be below that value. If
con(abc) ≤ con(c), then any equilibrium path starting from c is a possible con-
tinuation for abc at the time when a is played. Recall that the same idea was
formulated in condition (3).

In general, we can define con(p) for any p ∈ Ak, k ≥ 2, as above. When
con(pk−1) is known and p = pk−1ak, we set

coni(p) = max
{[

coni(p
k−1)− (1− δi)ui(a

k)
]

/δi, v
−
i (V )

}

.

Now, con(p) is simply the continuation payoff vector that is required after f(p)
to make the first action profile of p incentive compatible. The following observa-
tions are immediate. Note that the first observation relates the smallest payoffs
con(p) to condition (3).

Remark 1. Let p ∈ Ak and v̄i = max{vi : v ∈ V }, i ∈ N .

i) Condition (3) holds for p ∈ Ak with f(p) = a if and only if W (p) 6= ∅ and
con(p) ≤ con(a).

ii) If coni(p) > v̄i for p ∈ Ak and some i ∈ N , then p is not an elementary
subpath.

Notice that to detect whether a subpath is elementary or not does not require
knowing the whole payoff set. The above properties are efficiently utilized in the
following algorithm that computes the elementary subpaths. The algorithm first
generates sets P̂ k that may contain subpaths that have non-equilibrium parts,
and the removal of these subpaths is explained in Section 3.2. The algorithm
will be demonstrated in Section 4.

1. For all a ∈ A include a ∈ P̂ 1(a) if coni(a) ≤ v−i (V ) for all i ∈ N . If,
v−i (V ) ≤ coni(a) ≤ v̄i for all i ∈ N , and the first inequality is strict for
some i ∈ N , then include a in P 1

∗ (a). Set k = 2, and go to Step 2.

2. For each a, b ∈ A, p ∈ P k−1
∗ (a), find con(q), where q = pb.

a) If con(q) ≤ con(b) and

qj ∈ P k−j
∗ (i(qj)) or q

l
j ∈ P̂ l(i(qj)), ∀j = 1, . . . , k − 1, (6)

for some 1 ≤ l ≤ k − j, then include q in P̂ k(a).
b) Otherwise, if coni(q) ≤ v̄i for all i ∈ N and q satisfies Eq. (6), then

include q in P k
∗ (a).

If P k
∗ (a) = ∅ for all a ∈ A stop. Otherwise, increase k by one and repeat

Step 2.
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3. Remove the subpaths with non-equilibrium parts from P̂ k and obtain the
elementary sets P k. This is explained in Section 3.2.

The set P k
∗ (a) contains the subpaths that are possibly part of elementary

subpaths. The test in step 2.b) tells whether it is possible that q = pb is part of
an elementary subpath. First, the required continuations should not exceed the
upper bounds v̄i, i ∈ N . Second, all parts of the subpath must satisfy condition
(3). This means that for each j = 1, . . . , k−1, there is either a shorter elementary
subpath starting with i(qj) or there is possibly some elementary subpath starting

with i(qj), i.e., subpath in P j
∗ (i(qj)). If all P

k
∗ become empty sets the algorithm

can be terminated as there cannot be any more elementary subpaths that have
not yet been found. Moreover, in that case the elementary set is finite.

Remark 2. If there is k such that P k
∗ (a) = ∅ for all a ∈ A, then S(T ) contains

finitely many subpaths.

Note that the algorithm can be terminated while there still are elements in
P k
∗ , in which case we get an approximation for the elementary set. When the

algorithm is terminated prematurely like this, some of the elementary subpaths
have not been found, and we get a subset of the equilibrium paths. We can
identify the missing subpaths and they give payoffs close to the boundary pay-
offs in some of the players’ incentive compatibility conditions, as Proposition 2
suggests. We can also form an “upper bound” for the elementary set by includ-
ing the remaining P k

∗ into P̂ k. In this case, there may be subpaths that are not
incentive compatible.

Note that the algorithm uses the smallest and the highest equilibrium payoffs
v− and v̄ in computation, and these are typically not known in advance. The
highest payoff is not a problem, and it can be replaced by the highest stage
game payoff. This value affects how fast the algorithm finds the non-elementary
subpaths and thus how fast the algorithm converges. The smallest payoffs are
easily known for many games, but for others we have a separate algorithm for
finding these payoffs. However, this issue is not covered in this paper. In general,
the minmax payoffs can be used as a starting point, since they give the lower
bounds to the smallest equilibrium payoffs.

3.2. Graph Presentation

The algorithm above may produce subpaths, whose incentive compatibility
relies on sets P k

∗ , and these sets may not form any elementary subpaths in the
end when the algorithm is terminated. This means that the subpaths in P̂ k may
contain non-equilibrium parts. However, removing these subpaths from the sets
P̂ k can be done using the subpaths that we have already found, and with the
same effort as forming a graph for all equilibrium paths when there are finitely
many subpaths. The algorithm is presented below.

1. Form a tree of the subpaths in the sets P̂ k. The root node is the empty
history ∅.
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2. Transform the tree into a graph. Each node in the tree corresponds to a
node in the graph. Form the arcs between the nodes by going through
them and determine the destinations for each one.
(a) The destinations of an inner node in the tree, i.e., node with children,

are its children. Set an arc to each destination node.
(b) The destinations of a leaf node, i.e., node with no children, which is

connected to the root node ∅ are all the child nodes of ∅.
(c) For the other leaf nodes, i.e., for subpaths p ∈ P̂ k, find the smallest

i ≥ 1 such that pi is found in the tree. If pi is found and it is an inner
node, then we remove node p and connect p|p|−1 to the node pi. If pi
is not found and the longest common path with the tree is an inner
node, then a part of p cannot appear on an equilibrium path and the
node is removed from the graph.

3. Insert arcs and nodes for infinitely long subpaths. For each of these sub-
paths find largest i such that pi is a node. Insert an arc with the label pi

from this node to a dummy node corresponding to the path.

Example 2. Let us assume that the subpaths in P̂ k are c, aa, ab, bb, bab and
bac; the corresponding tree is shown in the left of Figure 1. We note that subpath
bac contains a non-equilibrium part, since there are no elementary subpaths that
start with ac. Thus, subpath bac cannot be part of an equilibrium path, and we
see how the node is removed from the graph in the algorithm. The graph that
generates all the equilibrium paths is basically formed by going through the sets
P̂ k. According to Step 2.(b), node c connects to nodes a, b and c. According to
Step 2.(c), node aa connects to a and node ab to b, since p1 = a and p1 = b are
in the tree. Thus, we loop a to itself and connect node a to b. Similarly, node bb
connects to b and b loops to itself. For bab, we search p1 = ab in the tree and it
is a leaf node. Thus, we search p2 = b and since it is an inner node in the tree,
we connect node ba to p2 = b. For bac, we search p1 = ac but it is not found.
The longest common path with ac in the tree is an inner node a, and node bac
is removed from the graph. The resulting graph is shown in the right of Figure
1. The last action in the node label gives the action profile that is played when
the node is visited. For example, a is played in node ba.

It is straightforward to get the equilibrium paths and payoffs from the graph.
The only trick is to combine the finite paths with the infinite cycles from the
graph; see Section 3.3 in [6]. This is the way to generate infinite sequences from
the graph. Moreover, the graph construction leads directly to the result that
the finite elementary sets can be represented by a graph, and the payoff set can
be identified as a particular fractal set, i.e., graph directed self-affine set [19].

Proposition 4. When S(T ) contains finitely many subpaths, then all SPE paths

can be represented by a graph.

Corollary 1. The SPE paths given by Sk(T ) can be presented as a graph.

Corollary 2. When S(T ) contains finitely many subpaths, the payoff set V (T )
is a graph directed self-affine set.
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c b

ba
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bb

∅

c b

a ba

(a) Tree (b) Graph

Figure 1: An example of elementary subpaths as a tree and a graph.

3.3. Complexity of Equilibrium Outcomes

The complexity of equilibrium paths and payoffs can be analyzed with the
graph. The graph can be represented by its m×m adjacency matrix D, where
m is the number of nodes in the graph, and Dij = 1 if there is an arc from node
i to j and otherwise Dij = 0. The eigenvalues and eigenvectors can be used in
counting the number of walks in a graph [11], where a walk means any sequence

of nodes using the arcs of the graph. The element d
(k)
ij of the matrix Dk is equal

to the number of walks of length k from node i to j. Here, we are interested in
the walks originating from the root node, which is given index 1 and the rest of
the nodes are indexed with j = 2, . . . ,m. The number of k length equilibrium
paths is

y(k) =
m
∑

j=2

Dk
1j .

Asymptotically, the number of equilibrium paths satisfies

y(k) ≈ y0ρ
k(D), (7)

where y0 is a constant and ρ(D) is the largest eigenvalue of D; see, e.g., Theorem
2.2.2 in [11]. Hence, ρ(D) is the asymptotic growth rate. This measure tells how
large the set of equilibrium paths is, and it can be used for comparing different
games.

It is also possible to measure the complexity of the payoff set using the graph.
One of the fractal measures is the Hausdorff dimension, which tells intuitively
how the equilibrium payoffs fill the space. The Hausdorff dimension s can be
estimated from the graph by solving1[19]

ρ(δsD) = 1,

1The exact dimension can be defined when so called open set condition holds, which means
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assuming that the players have a common discount factor δ. The Hausdorff
dimension corresponds to the value s for which the largest eigenvalue of matrix
δsD is one. Thus, we can analyze the payoff set with the eigenvalues of the
weighted adjacency matrix. In [7] it is shown how to estimate the Hausdorff
dimension when the players have different discount factors.

Example 3. Let us examine the graph of Figure 1. The adjacency matrix is

D =













0 1 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 1 0













(8)

with the largest eigenvalue ϕ = (1 +
√
5)/2 ≈ 1.618, which is the golden ra-

tio. The asymptotic growth rate of equilibrium paths is ρ(D) = ϕ. When the
discount factor is δ = 1/2, the Hausdorff dimension is s = log2 ϕ ≈ 0.694.

4. Numerical Examples

4.1. Prisoner’s Dilemma Game

In this section we demonstrate how the algorithm finds the elementary sub-
paths, how the graph is constructed, and how to analyze the equilibria with
the graph. We examine a prisoner’s dilemma game with a common discount
factor δ = 1/2 and the stage game payoffs as below. The payoff sets of repeated
prisoner’s dilemma have previously been studied in [21], [22], and [18]. Here, we
show the exact paths that can be played in the game and analyze what happens
when the discount factor increases.

L R
T 3, 3 0, 4
B 4, 0 1, 1

We denote the action profiles from left to right and top to bottom as a,b,c,
and d; for example (T,R) is b. The punishment path is the infinite repetition of
d, which is denoted by d∞. The corresponding payoffs are v−i (V ) = 1, i = 1, 2.

Let us find the elementary set for this game. For this purpose finite paths
are classified into elementary and non-elementary sets, and those which belong
to P k

∗ . We neglect the sets P̂ k and use P k instead, since in this example there
are no subpaths with non-equilibrium parts. In Step 1 of algorithm in Section
3.1, we calculate con(p) for one length paths p. For example, con(d) = (1, 1),
and d is an elementary subpath since coni(d) ≤ v−i (V ), i = 1, 2. For paths a,
b and c, we have v−(V ) ≤ con(p) ≤ v̄ and P 1

∗ = {a, b, c}. Table 2 gives the

that the payoffs that are mapped in the graph do not overlap. This condition holds when the
discount factor is less than 1/2. In general, there are techniques for estimating lower and
upper bounds for the dimension [13].
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payoff requirements for one and two length paths. The elementary subpaths
are denoted by +, the non-elementary by −, and those that belong to P k

∗ (a),
k = 1, 2, a ∈ A, by ∗.

Table 2: Finding elementary subpaths with |p| ≤ 2.

path con(path) path con(path) path con(path)
a (2, 2)∗ b (2, 1)∗ c (1, 2)∗

aa (1, 1)+ ba (1, 1)+ ca (1, 1)+

ab (4, 1)− bb (4, 1)− cb (2, 1)+

ac (1, 4)− bc (1, 2)+ cc (1, 4)−

ad (3, 3)∗ bd (3, 1)∗ cd (1, 3)∗

In the first run of Step 2, we examine con(pb) for all b ∈ A and p ∈ P 1
∗ , and

these are the two length paths in Table 2. For instance, for con(ab) we need
con(a) = (2, 2) and u(b) = (0, 4), and we get

con1(ab) = max

{[

2−
(

1− 1

2

)

· 0
]/

1

2
, v−1 (V )

}

= max {4, 1} = 4,

con2(ab) = max

{[

2−
(

1− 1

2

)

· 4
]/

1

2
, v−2 (V )

}

= max {0, 1} = 1.

We find that aa, ba, bc, ca and cb are elementary, but since ad, bd, and cd belong
to P 2

∗ , we have not yet found all the elementary subpaths. We can immediately
observe that ad is incentive compatible only when it is followed by an infinite
repetition of a, i.e., P∞(a) = {ada∞}, since no other action profile gives the
required payoff (3, 3). Thus, we do not consider other subpaths starting with
ad, and it is removed from the set P 2

∗ , which is a minor deviation from the
algorithm.2 Moreover, we only need to examine paths beginning with b or c,
since the game is symmetric. Let us consider the three and four length paths
beginning with cd. For example, cdb belongs to P 3

∗ (c) because coni(cdb) ≤ 3,
for all i ∈ N , d ∈ P 1(d) and b ∈ P 1

∗ (b).
Now, we can see that the only possible paths starting with cd are cda and

cdb. The only continuation to cda is aa, since the only elementary subpaths
starting with a are aa and ad, and ad gives lower payoff than the required (1, 3).
Thus, P∞(c) = {cda∞} and we do not need to consider other subpaths starting
with cda. From length four paths, we can observe that P 4(c) = {cdba} and
P∞(c) = {cdbda∞, cda∞}. As earlier, cdbd can only be followed by a∞ and no
other subpaths starting with cdbd need to be considered. Hence, there are no
longer paths to be searched for and we have found the elementary set.

The tree of elementary subpaths is presented in Figure 2. The destinations
of leaf nodes are indicated next to them. Using the graph algorithm without

2This kind of removal of subpaths from P k
∗

could be included in the method. To simplify
the exposition, we have excluded it from the algorithm presented in Section 3.1.
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Table 3: Finding elementary subpaths with 3 ≤ |p| ≤ 4.

path con(path) path con(path)
cda (1, 3)∗ cdba (1, 1)+

cdb (2, 2)∗ cdbb (4, 1)−

cdc (1, 6)− cdbc (1, 4)−

cdd (1, 5)− cdbd (3, 3)∗

Step 3, we get the directed graph composed of solid arcs in Figure 2. Each node
denotes what is played when the node is visited.

∅

a aa

b

ba

bc

bd bdc bdca

c

ca

cb

cd cdb cdba

a

a

c

a
a

b
a

a, b, c, d

d

∅

a b

d c

a∗

dc

d

b

d

d

c

d

b

(a) Tree (b) Graph

Figure 2: Tree of finite elementary subpaths and a graph of all equilibrium paths.

To get all the SPE paths of the game, we add nodes and arcs corresponding
to the infinitely long elementary subpaths to the graph:

P∞ = {ada∞, bda∞, cda∞, bdcda∞, cdbda∞} .
We need another node to distinguish whether d is played after a, b, or c or not.
For example, if ad is played then a∞ must follow and ad cannot be played any
more. We denote this extra node as a∗, and by adding the new nodes and arcs
we get the graph of Figure 2 in which the dashed arcs are also included.

An approximation of the payoff set is shown in the left of Figure 3. The
payoff set consists of similar patterns in different scales, which shows the fractal
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nature. The set is constructed by combining finite paths from the graph to the
infinite cycles starting from the final nodes of the paths. The dashed and solid
lines represent the payoff requirements of the right-hand side of the incentive
compatibility condition (2) for the first and second columns of the game, re-
spectively. We can see that there are payoff points on these lines, and these
correspond to the paths in P∞, such as ada∞, bda∞ and cda∞. This is the role
of the infinitely long elementary subpaths; some part of the path gives exactly
the payoff requirement.

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

a
∞

ba
∞

ca
∞

ada
∞

cda
∞

bda
∞

v1

v
2

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

v1

v
2

Figure 3: The payoff sets for δ = 0.5 and δ = 0.58.

The payoff set is sparse and the Hausdorff dimension is zero. The largest
eigenvalue of the adjacency matrix is one, and the number of k length paths
increases subexponentially in k. In fact, the value of δ = 1/2 is exactly the
limit when the Hausdorff dimension changes from zero and the growth rate
becomes exponential. For example, when δ = 0.51, a subpath adaaaa becomes
elementary, and it is possible to play d repeatedly as long as at least four a’s
are played after it. In this case, the dimension is s ≈ 0.42 and the growth rate
is ρ ≈ 1.32.

When the discount factor increases, there will be more and more equilibrium
and elementary subpaths, and the graph grows larger. When δ = 0.58 the graph
has over one hundred nodes and the payoff set is shown in Figure 3. The payoff
set is much more complex, the estimate of the Hausdorff dimension is s ≈ 1.37
and the paths increase at rate ρ ≈ 2.09. With higher discount factor values, the
sets P k

∗ do not become empty for reasonable k since there are always elementary
subpaths in the proximity of the payoff requirement values as the payoff set
becomes dense.
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4.2. Sierpinski Game

In this example we demonstrate an interesting feature of equilibrium payoffs,
which is captured by the Hausdorff dimension. The payoff set becomes more
complex when the discount factor is increased, even though the elementary set
remains the same. We call the following Sierpinski game because the payoff
set will be the celebrated Sierpinski triangle. The payoffs are given below and
δ = 1/2. We also denote a = (T, L), b = (C,M), and c = (B,R).

L M R
T 2−

√
3, 1 −1,−1 −1,−1

C −1,−1 1, 2−
√
3 −1,−1

B −1,−1 −1,−1 0, 0

In this game there are three pure-strategy Nash equilibria that are the cor-
ner points of the payoff set, which is illustrated in Figure 4. The equilibrium
paths are all combinations of these three points, and the graph consists of all
transitions between the three nodes. Here, the dummy node ∅ is omitted as
redundant. The payoff set is the Sierpinski triangle, whose Hausdorff dimension
is s = log 3/ log 2 ≈ 1.585. The dimension tells that the set does not quite fill
the two dimensional space but it is more complex than one dimensional set.

0 0.5 1
0

0.5

1

v1

v
2

a b

c

(a) Payoff set—the Sierpinski triangle (b) Graph

Figure 4: Sierpinski triangle as the payoff set and the graph presentation of SPE paths.

When the discount factor is increased a little from δ = 1/2, the elementary
set does not change. However, the payoff set becomes more complex. Eventually,
the payoff set fills the triangle defined by the three Nash equilibria. This happens
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when δ > 2/3, and then the Hausdorff dimension becomes two. This happens
even if the set of elementary subpaths remains the same when the discount factor
increases. For example, we can replace minus ones by a small enough number to
guarantee that there will be no more equilibrium paths when δ increases. This
observation gives an important insight into the folk theorem [15]. One reason
for the fact that any feasible payoff above min-max levels can be achieved as an
equilibrium outcome is that the payoffs are less contracted under the mappings
Ba, a ∈ A, when the discount factor increases. Moreover, the payoff set may
enlarge even when the set of equilibrium paths and strategies remains the same.

5. Conclusion

Our main result is that the equilibrium paths are composed of sequences of
players’ action profiles which we call the elementary subpaths. The result holds
for all equilibrium paths corresponding to pure strategies in discounted repeated
games with infinite time horizon. The elementary subpaths are of particular
interest because they can be used in analyzing the complexity of equilibrium
outcomes for different games, and in constructing all equilibrium paths and the
corresponding payoffs [6].

The characterization result for equilibrium paths is complemented with an
algorithm for finding the elementary subpaths, i.e., the elementary set. When
there are finitely many elementary subpaths the algorithm produces all of them
after finitely many steps. In general, the elementary subpaths which are not
found when the algorithm is terminated prematurely, are the ones which give
payoffs close to the boundary payoffs in some of the players’ incentive compat-
ibility conditions. Even when the algorithm is terminated prematurely, we can
form an approximation for the elementary set and identify the missing subpaths
to a certain degree.

The final step of the algorithm transforms the elementary subpaths into a
directed graph, which is a compact representation of the equilibrium paths.
The graph can be used in generating equilibrium outcomes and analyzing their
complexity. We provide two complexity measures: the asymptotic growth rate
and the Hausdorff dimension. The asymptotic growth rate measures how fast
the number of paths increases as they become longer. The larger the rate, the
faster the number of possible finitely long equilibrium paths grows as the stage
game is repeated. The Hausdorff dimension, on the other hand, measures how
the payoff set fills the space, and hence serves as a measure for the complexity
of equilibrium payoff set.
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