
Mat-2.4108 Independent Research Project in Applied Mathematics

Simulation budget allocation with
incomplete preference information

Heikki Vesterinen

Aalto University School of Science

August 19, 2012

The document can be stored and made available to the public on the open

internet pages of Aalto University. All other rights are reserved.

i

Contents

1 Introduction 1

2 Ranking and selection 2

2.1 Pareto optimality . 2

2.2 Aggregation of performance measures with a multi-attribute

utility function . 3

2.3 Incompletely specified preferences 3

3 Simulation budget allocation with incomplete preference in-

formation 5

3.1 Correspondence of dominance and pairwise dominance relations 5

3.2 Multi-objective computing budget allocation procedure 8

3.3 MOCBA procedure with incomplete information 11

4 Numerical results 12

4.1 Test problem . 12

4.2 Performance of simplified MOCBA with incomplete information 12

4.3 Computing budget allocations 14

4.4 Considerations for improvement 15

5 Conclusions 19

References 21

1

1 Introduction

Ranking and selection (R&S) procedures aim to find the best system design

or a subset that contains the best system designs among all feasible designs as

efficiently as possible in terms of computing time [5]. Ranking of the designs is

based on the expected values of one or more performance measures, which are

estimated by simulation. Most of the existing R&S procedures are designed

for problems with a single performance measure, although many applications

in practice involve two or more measures (e.g. the problem studied in [6]).

Multiple performance measures can be aggregated to a single performance

measure with the help of multi-attribute utility theory and procedures for a

single performance measure can be thus applied, as done in [1, 9]. However, if

the decision maker (DM) is not able or willing to provide exact information

about his preferences, utilities cannot be expressed unambiguously. Then

procedures for a single performance measures are not applicable.

One branch of current research focuses on finding the set of Pareto de-

signs, i.e., the designs for which there is no other design that is at least as

good with respect to all performance measures and superior with respect to

at least one performance measure. Lee et al. [7] present a procedure called

the multi-objective optimal computing budget allocation (MOCBA) proce-

dure, which has been developed further and applied in practice in [2, 6, 8].

The MOCBA procedure is an extension of the optimal computing budget

allocation (OCBA) procedure presented by Chen et al. [3].

This paper presents a technique for incorporating incomplete prefer-

ence information into the MOCBA procedure. The technique utilizes multi-

attribute utility theory with incomplete preference information [11] for allo-

cating computing budget efficiently in a situation where incomplete prefer-

ence information is related to the weights of a multi-attribute utility func-

tion. The allocation of computing budget is optimized for finding the set

of pairwise non-dominated designs, instead of the Pareto set. Pairwise non-

dominated designs form a subset of the Pareto set. Thus, computing budget

can be concentrated to a smaller set of designs, which still contains the best

one according to the preference information.

2

2 Ranking and selection

Let us consider a ranking and selection problem over a finite set of alterna-

tives, referred to as designs. The best design or a subset containing the best

design is determined based on several possibly conflicting simulated perfor-

mance measures, i.e.,

max
i∈Θ

(E[Xi1], ..., E[XiH]), (1)

where Θ = {1, ...K} is the set of all designs, H is the number of performance

measures, Xi = (Xi1, ..., XiH) is a vector of random variables representing

the simulated performance measures of ith design. For simplicity, we denote

Jil as E[Xil].

2.1 Pareto optimality

In R&S problems with multiple performance measures, it is usually not pos-

sible to find a design which is the best one with respect to all performance

measures. Instead, we can search for non-dominated Pareto designs, which

are designs that are optimized to the extent that no improvement can be

made in any performance measure without making some other performance

measure worse. Formally, a design i is said to be dominated by design j, if

design j is not worse than design i with respect to any performance measure

and design j is better than design i with respect to at least one performance

measure.

Definition 1. Design i is dominated by design j, i.e., i ≺ j if and only if,

∀l ∈ {1, .., H}, Jil ≤ Jjl and

∃l ∈ {1, .., H}, Jil < Jjl

If design i is not dominated by design j, we denote it as i ⊀ j. The

Pareto set is the set of all non-dominated designs in Θ, i.e.,

Sp = {i ∈ Θ | i ⊀ j, ∀j ∈ Θ}. (2)

3

2.2 Aggregation of performance measures with a multi-

attribute utility function

One approach to ranking and selection problems with multiple performance

measures is to aggregate the performance measures by a multi-attribute util-

ity (MAU) function [4]. Aggregating the performance measures converts the

R&S problem into one with a single performance measure. The ranking of the

designs is then determined based on the expected values of the MAU func-

tion, i.e., design i is preferred to design j if and only if E[u(Xi)] > E[u(Xi)].

The functional form of the MAU function u depends on the structure of

the set of attributes, i.e., the performance measures. The assumption that

the attributes are additive independent leads to an additive MAU function[4]

u(Xi) =

H
∑

l=1

wlul(Xil), (3)

where ul is a single-attribute utility function that describes DM’s preferences

of the lth attribute as a scalar value and wl is a weight representing the

relative importance of the lth attribute compared to the other attributes.

2.3 Incompletely specified preferences

A disadvantage of aggregating the performance measures with a MAU func-

tion is that the DM has to provide all information of the decision situation,

which may be too restricting requirement in practical applications. The

reason that the DM cannot provide exact information may be that he is

unwilling to provide the information or incapable to express his preferences.

The reason might be also that he has not made up his mind, i.e., DM’s

preferences are not structured enough or the preferences are unstable. To

overcome these difficulties methodologies have been established that allow

incompletely defined utility function, while still basing the analysis on the

subjective expected utility theory.[11]

A decision situation is called incomplete if either the MAU function or the

distributions of the performance measures of the designs cannot be expressed

4

unambiguously. In this paper, we consider a situation where the values of

the performance measures are determined by a simulation model and the

DM does not make any subjective assessments about their distributions.

Furthermore, the incomplete information is related to the weights of the

additive MAU function (3), whereas the single-attribute utility functions are

uniquely determined.

Instead of exact weights of the MAU function, a set of feasible weights

W is elicited from the DM. Thus, the designs do not have an exact expected

utility but a range of possible values for the expected utility. Several domi-

nance relations can be defined, which the ranking of the designs can be based

on. The pairwise dominance relation is defined as follows [11].

Definition 2. Design i is pairwise dominated by design j in W, i.e., i ≺p j

if and only if,

∀w ∈ W, E[u(Xi|w)] ≤ E[u(Xj|w)] and

∃w ∈ W, E[u(Xi|w)] < E[u(Xj|w)]

The pairwise dominance relation of designs i and j can be checked by

studying the difference of expected utilities

hij(w) = E[u(Xj|w)]−E[u(Xi|w)] =
H
∑

l=1

wl

(

E[ul(Xjl)]−E[ul(Xil)]
)

. (4)

The difference is a linear function with respect to the weights. If the set of

feasible weights W is defined by a set of linear equalities and inequalities,

the pairwise dominance can be checked by solving two LP problem: Find the

maximum and the minimum of the difference hij(w) subject to the linear

constraints, i.e, w ∈ W. Design j dominates design i if and only if the

minimum is at least zero and the maximum is greater than zero. Because we

are dealing with LP problems, it suffices to check only the extreme points of

the feasible weights, denoted as Wext = {w1, ...,wM}.[11]

5

3 Simulation budget allocation with incomplete

preference information

If the performance measures are not aggregated, one may try to determine

the set of Pareto designs first and then the pairwise non-dominated designs

among the Pareto set. However, a weakness of this approach is that there

are usually many designs in the Pareto set that are not even close to being

pairwise non-dominated according to the incomplete preference information.

Hence, computing budget is wasted to solve the Pareto status of such designs

accurately.

We present a technique, which allows us to take the advantage of in-

complete preference information already in the computing budget allocation

stage. The technique is based on studying the Pareto status of the utilities

of the designs at the extreme points of W, instead of the performance mea-

sures. It is applicable when the set of feasible weights is defined by linear

equalities and inequalities.

3.1 Correspondence of dominance and pairwise domi-

nance relations

Let us define the expected utility of ith design at extreme point wm of the

set of feasible weights W as

Uim = E[u(Xi|wm)] =

H
∑

l=1

wmlE[ul(Xil)], (5)

where wml is the weight of lth performance measure at the mth extreme point

of W.

Instead of maximizing the performance measures J1, J2, ..., JH we can

consider the expected utilities at the extreme points Wext as the new objec-

tives U1, U2, ..., UM . The new R&S problem is then

max
i∈Θ

(Ui1, ..., UiM), (6)

6

which has a nice property that its Pareto set is the set of pairwise non-

dominated designs of the original problem.

Theorem 1. Assume the utilities of designs are determined according to

equation (3) and the set of feasible weights is defined by a set of linear equal-

ities and inequalities. If design i is a non-dominated Pareto design of problem

(6), then i is pairwise non-dominated.

Proof. If i is a non-dominated in problem (6), then there is no j such that

∀m ∈ {1, ..,M}, Uim ≤ Ujm and

∃m ∈ {1, ..,M}, Uim < Ujm,

which is equivalent to

∀m ∈ {1, ..,M}, hij(wm) = E[u(Xj|wm)]− E[u(Xi|wm)] ≥ 0 and

∃m ∈ {1, ..,M}, hij(wm) = E[u(Xj|wm)]− E[u(Xi|wm)] > 0,

i.e., design i is pairwise non-dominated, as discussed in Section 2.3.

The principle is illustrated with an example in Figure 1. In this example,

there are three designs for which (J11, J12) = (1, 5), (J21, J22) = (4, 4) and

(J31, J32) = (5, 1) that are all non-dominated. The incomplete preference

information is that w1 ≥ 1

2
, thus the extreme points of feasible weights are

w1 = (1, 0) and w2 = (1
2
, 1

2
), and utility functions are identities, i.e., u1(x) =

u2(x) = x. In Figure 1a, the dots illustrate the designs and the dashed

lines are contours of the MAU function with extreme weights. In Figure

1b, the utilities of the designs are illustrated as functions of weight w1. If

the utility of one design is better than another with all feasible weights the

design pairwise dominates the other. Because the utilities are linear with

respect to the weights, it suffices to check only the extreme points of the

feasible weights, i.e., the end points of the lines. If a design is pairwise non-

dominated, it appears non-dominated in the coordinate system of the utilities

of the extreme weights, as seen in Figure 1c.

7

2

1

2

3
1

1 J
1

J

(a)

1w0.5 1

u

1

3

2

1

(b)

2 Pareto set

2

1

3

1

1 U

U

1

(c)

Figure 1: (a) Performance measures of three designs. (b) Utilities as a func-

tion of weight w1. (c) Utilities at the extreme points of feasiable weights of

the same three designs.

8

3.2 Multi-objective computing budget allocation proce-

dure

Multi-objective optimal computing budget allocation (MOCBA) procedure

is a method for allocating computing budget in order to select the correct

Pareto set with a high probability. The MOCBA procedure that is presented

in this paper is the same as in [2], with the exception that a maximization

problem is considered instead of a minimization problem, which results in

some changes in the formulas.

The construction of the observed Pareto set Sop is based on the means

of simulated performances, denoted as J̄il. A design is considered non-

dominated, i.e. i ∈ Sop, if condition (2) holds for the means of the designs.

There are two types of errors that can occur when determining the observed

Pareto set.

Type I error:

Type I error occurs when at least one of the designs in the observed

non-Pareto set S̄op = Θ\Sop is actually non-dominated. The probability

of type I error is denoted by

e1 = 1− P
[

⋂

i∈S̄op

Ec
i

]

, (7)

where Ec
i is the event that design i is dominated.

Type II error:

Type II error occurs when at least one of the designs in the observed

Pareto set Sop is actually dominated. The probability of type II error

is denoted by

e2 = 1− P
[

⋂

i∈Sop

Ei

]

, (8)

where Ei is the event that design i is non-dominated.

The following lemma provides upper bounds for both error types [2].

9

Lemma 1. Type I and Type II errors have the following upper bounds.

e1 ≤ ub1 = H|S̄op| −H
∑

i∈S̄op

P (J̃jil
i
ji

≥ J̃iliji
),

e2 ≤ ub2 = (K − 1)
∑

i∈Sop

P (J̃jil
i
ji

≥ J̃iliji
),

where J̃il is a random variable representing the lth performance measure of

ith design (J̃il ∼ N
(

J̄il,
σ2

il

Ni

)

, where σ2

il is the variance of lth performance

measure of ith design and Ni is the number of replications for design i.) and

ji = argmax
j∈Θ
j 6=i

H
∏

l=1

P (J̃jl ≥ J̃il)

liji = arg min
l∈{1,...,H}

P (J̃jl ≥ J̃il).

ji is the design that most likely dominates design i and liji is the objective

of ji that is least likely better than the corresponding objective of design i.

The objective of the computing budget allocation procedure is to maxi-

mize the probability that the determined Pareto set Sop is correct, denoted

as PCS. However, the probability PCS cannot be expressed with an explicit

equation, but we can still establish a lower bound for it [2].

Lemma 2. APCS-M is the lower bound for PCS, where

APCS−M = 1− ub1 − ub2

Instead of maximizing the probability of correct selection PCS we maxi-

mize the lower bound of PCS. We consider the following approximate multi-

objective computing budget allocation problem.

max
N1,...,NK

APCS−M (9)

s.t. N1 +N2 + ... +NK = T and Ni ≥ 0,

where Ni is the number of replications allocated for design i and T is the

total computing budget.

10

An allocation rule is derived in [2], which asymptotically maximizes the

APCS−M . The performance measures are assumed to be independently

distributed across different replications, different designs and different per-

formance measures of the same design. The derivation of the allocation rule

is based on applying the method of Lagrange multipliers to problem (9) and

assuming T → ∞. The allocation rule provides asymptotically optimal pro-

portions of computing budget for each design, denoted as αi. The allocation

quantities are then given by Ni = αiT . The following lemma is a simplified

version of the allocation rule.[2] (Note that the allocation rule is modified for

a maximization problem.)

Lemma 3. The asymptotic allocation rule can be approximated as follows.

For h,m ∈ SA,
αh

αm

=

(

σhlhjh
/δhjhlhjh

σmlmjm
/δmjmlmjm

)2

. (10)

For d ∈ SB, α2

d =
∑

h∈Θ∗

d

σ2

dlh
d

σ2

hlh
d

α2

h, (11)

where

δijl = J̄jl − J̄il, (12)

lij = arg min
l∈{1,...,H}

P (J̃jl ≥ J̃il) = arg min
l∈{1,...,H}

δijl|δijl|

σ2

il + σ2

jl

, (13)

ji = argmax
j∈Θ
j 6=i

H
∏

l=1

P (J̃jl ≥ J̃il) = argmax
j∈Θ
j 6=i

δijli
j
|δijli

j
|

σ2

ilij
+ σ2

jlij

, (14)

SA =

h|h ∈ S,
δ2
hjhl

h
jh

σ2

hlhjh

+ σ2

jhl
h
jh

< min
i∈Θh

δ2
ihli

h

σ2

ili
h

+ σ2

hli
h

, (15)

SB = S\SA, (16)

Θh = {i|i ∈ S, ji = h}, Θ∗
d = {h|h ∈ SA, jh = d}, (17)

11

where m in Eq. (10) is any fixed design in SA. The simplified allocation

rule classifies the designs into two sets SA and SB. The designs in SA play the

role of being dominated and the designs in SB play the role of dominating.

The computing budget allocation of a design depends on the role that it

plays.

3.3 MOCBA procedure with incomplete information

The set of pairwise non-dominated designs can be solved by considering the

utilities of the designs at the extreme points of W instead of the perfor-

mance measures, as described in Section 3.1. The utilities at the extreme

weights Uim are the new objectives that correspond to Jil in the MOCBA

procedure. We can simulate the performance measures of a design and eval-

uate the corresponding simulated value of utility u(Xi|wm). The mean of

simulated utilities, denoted as Ūim, is the estimate of the expected utility

Uim. The MOCBA procedure is then applied simply by replacing J̄il by Ūim

in the allocation rule formulas and taking into account that we now have M

objectives instead of H (Index m in Ūim corresponds to l in J̄il).

In the derivation of the allocation rule, it is assumed that the different

performance measures of the same design are independent. Unfortunately,

the utilities (Ui1, ..., UiM) corresponding to the performance measures are

not independent. The utilities Uim of the same design depend on the same

independently distributed random variables (Xi1, ..., XiH), which implies that

the utilities are correlated. The more accurate the preference information is,

the closer wm are to each other and the more correlated the utilities are.

If there is no preference information at all, then M = H and ∀m : Uim =

Jim, which means that the computing budget allocation procedure is the

normal MOCBA procedure. In case of exact preference information, the

set of feasible weights consists of a single weight and the computing budget

allocation procedure is the same as the OCBA procedure.

12

4 Numerical results

We study the performance of the simplified version of the MOCBA procedure

(presented in Lemma 3) in determining the pairwise non-dominated designs

of a test problem. The procedure is compared to equal computing budget

allocation to determine how much the probability of the correct selection of

pairwise non-dominated designs improves. We also study how the procedure

allocates the computing budget.

4.1 Test problem

Let us consider a R&S problem with two performance measures, in which

the expected performances of fifteen designs are located on the four arches of

circles, as illustrated in Figure 2 on the left. The standard deviation of the

simulated performance measures of each design is 0.5 for both performance

measures. The utility functions of both performance measures are identities,

i.e., u1(x) = u2(x) = x. The set of feasible weights of the test problem is

chosen so that the set of pairwise non-dominated designs consists of designs

3 and 4 as clearly as possible. The extreme weights are w1 = (0.5, 0.5) and

w2 = (0.634, 0.366). The utilities of the designs at the extreme weights are

illustrated in Figure 2 on the right.

4.2 Performance of simplified MOCBA with incomplete

information

The performance of the simplified MOCBA procedure is compared to the

equal computing budget allocation by solving the test problem described

in Section 4.1 with both methods. The probability of correct selection of

pairwise non-dominated designs is estimated by simulating the computing

budget allocation procedure 1000 times and calculating the number of cases

where correct selection was made.

The simplified MOCBA procedure is applied iteratively with different

computing budgets. After each iteration the allocation quantities are evalu-

13

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

1

2

3

4

5
67

8

9

10
11

12

13
14

15

J1

J
2

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1
2 34

5

6

7
8

9
10

111213

14

15

U1

U
2

Figure 2: Performance measures of designs on the left. Utilities of extreme

weights on the right. Pairwise non-dominated designs are denoted by filled

circles.

ated with new means and variances of the performance measures. Initially,

the performance measures of the designs are simulated with 20 replications,

totaling 300 replications altogether. Then the computing budget is increased

with increments of 100 replications, which are allocated according to the

allocation rule with the limitation that no design gets more than 40 replica-

tions. If the whole computing budget of the iteration step is not used due to

the 40 replication per design limit, new iterations with updated means and

variances are carried out with the leftover computing budget until the whole

computing budget of 100 replications is used.

New allocations in some iterations may be such that some designs are

supposed to get less replications than they already have. Then the total

number of suggested new replications for the rest of the designs exceeds the

total computing budget of the iteration. If this happens, the computing bud-

get of the iteration is decreased so that the total number of new replications

suggested by the allocation rule equals the real computing budget.

The estimated probabilities of correct selection are illustrated in Figure

14

3. The success probability of the simplified MOCBA procedure was 93.6%

with a 10000 replication total computing budget. It outperforms the equal

allocation in small computing budgets, but surprisingly the equal allocation

is better with larger computing budgets. With the equal allocation, the

probability of correct selection approaches 100 percent. This does not seem

to be the case with the simplified MOCBA procedure. In some cases, some

of the critical designs do not get replications at all, no matter how large the

computing budget is.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Computing budget

S
uc

ce
ss

 p
er

ce
nt

ag
e

Equal allocation

Simplified MOCBA with incomplete information

Figure 3: Success probability of correct selection for equal allocation and

simplified MOCBA procedure with incomplete information.

4.3 Computing budget allocations

We next study how the simplified MOCBA procedure allocates the comput-

ing budget among the designs, when it is applied with incomplete information

to determine the pairwise non-dominated designs. The average computing

budget allocation of the final iteration round is calculated over 1000 simula-

tions, which is illustrated in Figure 4.

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

500

1000

1500

2000

2500

3000

3500

Design

N
um

be
r

of
 r

ep
lic

at
io

ns

Figure 4: Average computing budget allocation

96.2 percent of the total computing budget is allocated to designs 2, 3, 4

and 5, while not a single additional replication after the 20 initial replications

is allocated for designs 12, 13, 14 and 15 in any of the 1000 simulations. Most

replications are allocated to the pairwise non-dominated designs 3 and 4 and

to designs 2 and 5 that are close to being pairwise non-dominated. A very

small proportion of the total computing budget is allocated for designs 1,

6 and 7, although they are Pareto designs. Our technique concentrates the

computing budget to those designs that the DM is interested in, whereas

the normal MOCBA procedure without preference information would have

allocated considerably more computing budget for designs 1, 6 and 7.

4.4 Considerations for improvement

The computing budget allocations of unsuccessful simulations, are examined

to find out why the simplified MOCBA determines the set of pairwise domi-

nated designs incorrectly relatively often with extensive computing budgets.

16

Table 1: Computing budgets of ten unsuccessful simulations.

Designs

1 2 3 4 5 6

1 20 20 4841 20 4895 24

2 80 4617 26 4572 465 60

3 20 4596 20 4620 544 20

4 20 4871 23 4844 32 30

5 20 4877 20 4861 20 22

6 60 141 4765 27 4768 59

7 20 4540 21 4554 665 20

8 20 4808 20 4847 105 20

9 20 4173 40 4120 1447 20

10 160 4767 34 4818 21 20

The computing budgets of designs 1-6 in ten unsuccessful simulations are

listed in Table 1. In each of the simulations, either design 3 or 4 has a

very low number of allocated replications. The design with few replications

is misclassified in each of the simulations and usually some of the pairwise

dominated designs are also misclassified. When studied with a larger number

of simulations than the sample of ten simulations presented here, it seemed

that design 3 tends to be misclassified more often than design 4, which might

be the reason why less replications are allocated for design 3 than for design

2 on average.

Sometimes the simplified MOCBA procedure suggested exactly zero al-

location quantity αi for either of the non-dominated designs. Further ex-

amination revealed that it is possible in the MOCBA framework that some

design i belongs to Sb, the set of designs that play the role of dominating

other designs, but Θ∗
i is empty, meaning that there is no design for which it

is the most likely dominator. In that case αi equals zero, because there is no

terms in the right side of Eq. (11). However, this only accounts for roughly

17

half of the misclassifications.

In the other half of the unsuccessful simulations the suggested alloca-

tion quantity αi of the misclassified design was very low but not zero. It is

supposed that this happens when, for example, design 3 is far enough from

being in the set of pairwise non-dominated after the initial replications. Then

designs 2 and 4 have equal expected utility with weights w2 and supposedly

the whole computing budget is used for finding out if design 2 is pairwise

non-dominated. The issue may be addressed by setting a minimum for the

amount of new replications for each design in each iteration, which would

guarantee that as the total computing budget and the number of iterations

increase also the number of allocated replications for each design increases

and the means of the performance measures will approach their expected

values. It should be also studied if the “full” version of MOCBA procedure

(presented in [2]) performs better than the simplified version.

To find out the impact of the correlation of the utilities, the following test

is done. The MOCBA procedure is compared to equal allocation in another

test problem, where the expected performances were at the same coordinates

as the utilities in the original test problem (See the diagram on the right in

Figure 2) and the standard deviations of the performances were the same as

the standard deviations of the utilities in the original problem, i.e., they are

calculated as

Var(Uim) = Var(wm1Xi1 + wm2Xi2) = w2

m1Var(Xi1) + w2

m2Var(Xi2), (18)

which results in variances 0.125 and 0.134 for the utilities at w1 and w2

respectively. This is the same problem as the original test problem with the

exception that the performance measures of the same design are uncorrelated.

The estimated probabilities of correct selection for this test problem are

illustrated in Figure 5. The equal computing budget allocation performs

equally well in both problems, while the simplified MOCBA procedure per-

forms significantly better in this problem than in the original problem, which

implies that the correlations of the performances have an impact on the per-

formance of the simplified MOCBA procedure.

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

Computing budget

S
uc

ce
ss

 p
er

ce
nt

ag
e

Equal allocation

Simplified MOCBA

Figure 5: Success probability of correct selection for equal allocation and

MOCBA procedure in the test problem with uncorrelated performances.

19

5 Conclusions

In this paper, we presented a technique for incorporating incomplete prefer-

ence information into the optimal computing budget allocation framework.

Our technique is applicable, when the preferences of a DM are expressed

with an additive MAU function and the incomplete information is related

to the weights of the MAU function such that the set of feasible weights is

determined by linear equalities and inequalities. The technique allows us

to utilize existing multi-objective computing budget allocation procedures,

which are designed for determining the Pareto set, for finding the set of

pairwise non-dominated designs.

The technique was tested with the simplified MOCBA procedure for

finding two pairwise non-dominated designs among fifteen designs. The re-

sults were not completely satisfactory as our technique was outperformed by

equal allocation with extensive computing budgets, though it was better with

smaller computing budgets. However, this issue is not related to our tech-

nique for incorporating incomplete information into the computing budget

allocation procedure, but to the simplified MOCBA procedure. The simpli-

fied MOCBA procedure is prone to fail in the early stage of the iterative

budget allocation, in which case no additional replications are allocated to

some potentially non-dominated designs, no matter how large the computing

budget is.

If the performance measures of a given design are correlated, the sim-

plified MOCBA procedure succeeds with smaller probability. Our technique

requires solving the Pareto set, in which the objectives of any given design

are highly correlated. The more exact the incomplete information is the

more correlated the utilities are. Hence, a computing budget allocation pro-

cedure that can deal with correlated performance measures is necessary for

our techinque to perform well.

In further research our technique should be tested with other computing

budget allocation procedures that are less distracted by the correlations of

the performance measures. One of the promising methods is the indifference

zone method presented in [8]. It does not take into account the correlations

20

of the performance measures, but it is generally more robust. Also the per-

formance of the “full” MOCBA procedure should be studied with correlated

performance measures.

21

References

[1] J. C. Butler, D. J. Morrice and P. W. Mullarkey. A Multiple Util-

ity Theory Approach to Ranking and Selection. Management Science,

47(6):800-816, 2001

[2] C. H. Chen and L. H. Lee. Stochastic Simulation Optimization: An Op-

timal Computing Budget Allocation, World Scientific Publishing, Singa-

pore, 2010

[3] C. H. Chen, E. Yücesan and S. E. Chick. Simulation budget allocation

for further enhancing the efficiency of ordinal optimization. Discrete

Event Dynamics: Theory and Applications, 10:251-270, 2000

[4] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Prefer-

ences and Value Tradeoffs. Wiley, 1976

[5] S.-H. Kim, B. L. Nelson. Recent advances in ranking and selection. In

Proceedings of the 2007 Winter Simulation Conference, pages 162-172,

Piscataway, NJ, 2007. Institute of Electrical and Electronics Engineers

Inc.

[6] L. H. Lee, E. P. Chew, S. Teng and Y. Chen. Multi-objective simulation-

based evolutionary algorithm for an aircraft spare parts allocation prob-

lem. European Journal of Operational Research, 189:476-491, 2008

[7] L. H. Lee, E. P. Chew, S. Teng and D. Goldsman. Optimal Computing

Budget Allocation for Multi-objective simulation models, In Proceedings

of the 2004 Winter Simulation Conference

[8] S. Teng, L. H. Lee and E. P. Chew. Integration of indifference-zone

with multi-objective computing budget allocation. European Journal of

Operational Research, 203(2):419-429, 2010

[9] D. J. Morrice and J. C. Butler. Ranking and selection with multiple

"targets". In Proceedings of the 2006 Winter Simulation Conference

22

[10] S. Teng, L. H. Lee and E. P. Chew. Multi-objective ordinal optimization

for simulation optimization problems. Autonomica, 43:1884-1895, 2007

[11] M. Weber. Decision making with incomplete information. European

Journal of Operational Research, 28(1):44-57, 1987

