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In this work the formulation of DRIFTER is studied. It is a model-based
Bayesian method for estimation and removal of physiological noise, such
as cardiac- and respiration-induced effects, in functional magnetic res-
onance imaging (fMRI). The method is due to Särkkä, Solin and col-
leagues, and this study aims to broaden some aspects discussed in the
original article.

The background of the DRIFTER method is presented by providing
some insight in stochastic resonator models and modeling of quasi-
periodic signals. The method is based on first estimating frequency
trajectories of physiological noise components by using the interac-
tive multiple models (IMM) algorithm and reference signals. A ret-
rospective image-based state space formulation is used to estimate the
noise-induced components in the fMRI signal with Kalman filtering and
Rauch–Tung–Striebel smoothing. Separate estimates are gained for
cardiac- and respiration-induced noise components, the cleaned blood
oxygenation level dependent (BOLD) brain signal and a white measure-
ment noise estimate.

In this study, two aspects of using the DRIFTER method are studied
in more detail: the effect of slow sampling rates and signal aliasing, and
an example of estimation of frequencies without physiological reference
signals. A brief analysis of these questions is provided and the results
are discussed.
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v

Symbols and Abbreviations

Matrices are capitalized and vectors are in bold type. We do not generally
distinguish between probabilities and probability densities.

Operators and miscellaneous notation

1 : k 1, 2, . . . , k

p(x | y) Conditional probability density of x given y

xk|k−1 Conditional value of xk given values up to step k − 1

R The real numbers

N (µ, Σ) Gaussian distribution with mean µ and covariance Σ

I Identity matrix

AT Matrix transpose

diag(a) A diagonal matrix with elements of a on its diagonal

General notation

x System state

y Observation

k Time step

T Final time step

qk Zero-mean (Gaussian) Process noise

rk Zero-mean (Gaussian) Measurement noise

Qk Process noise covariance

Rk Measurement noise covariance

Abbreviations

RTS Rauch–Tung–Striebel (smoother)

MRI Magnetic Resonance Imaging

fMRI Functional MRI

EPI Echo Planar Imaging

InI Dynamical Inverse Imaging

BOLD Blood oxygenation level dependent

TR Repetition time, interval between subsequent scans (TR)

RMSE Root mean square error

SNR Signal-to-noise ratio
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1 Introduction

The field of functional human brain mapping is dominated by three

concurrent imaging methods: Positron Emission Tomography (PET)

uses short-half-life radiotracers and provides high spatial resolution by

measuring changes in blood flow. Electroencephalography (EEG) and mag-

netoencephalography (MEG) are based on recording of electrical/magnetic

activity along the scalp, which provides high temporal resolution, but are

subject to artefacts and noise. The third method is functional Magnetic

Resonance Imaging (fMRI) which has high spatial resolution but relatively

poor temporal resolution. (see, e.g., Huettel et al., 2004; Buxton, 2009)

In fMRI (Ogawa et al., 1990; Kwong et al., 1992), the field of functional

neuroimaging has recently primarily focused on a phenomenon called the

blood oxygenation level dependent (BOLD) effect. Neurons in the brain

require energy in form of glucose and oxygen to function. Hemoglobin

in blood carries O2 and when it loses it, the magnetic properties change

in a subtle way — the signal being stronger the more the blood becomes

oxygenated (Buxton, 2009). When an area in the brain becomes activated,

the blood flow however actually increases more than the neurons consume

energy, because the flow is haemodynamically regulated to give active neural

assemblies more energy. This produces the BOLD effect, which accounts for

a local increase in the T ∗2 contrast based functional MR signal during neural

activity (Buxton, 2009).

To fight the disadvantageous poor temporal resolution and high noise lev-

els in fMRI, more effective MRI hardware has been developed. As the spatio–

temporal resolution and signal-to-noise-ratio (SNR) of fMRI increases, ac-

curate treatment of various noise sources in measurements becomes more

and more important (as has been shown, e.g., by Hutton et al., 2011). The

interpretation and identification of these noises in the signal is important,

because not all noises can be modeled as white noise (Lund et al., 2006).

These non-white noise sources cannot be eliminated by improving the data

acquisition hardware, because they are not actual ‘noise’ as such but a part

of the measured phenomenon.

Physiological noise, most importantly neurovascular fluctuation together

with cardiac- and respiration-induced quasi-periodic oscillations can easily

account for up to one third of the signal variation already at a field of 3 T
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Introduction 2

(Krüger and Glover, 2001). At higher field strengths these phenomena are

even more dominant (Krüger and Glover, 2001; Triantafyllou et al., 2005;

Hutton et al., 2011).

This problem has been recognized and there exists several approaches

to elimination of cardiac and respiration related physiological noise from

fMRI measurements. Biswal et al. (1996) use notch filters (band-stop filters)

to eliminate the frequency bands corresponding to cardiac and respiratory

activity. This approach requires the fMRI data to be sampled at a high

frequency and cannot cope well with aliasing. This approach also assumes

stationarity of the signal, and it has troubles adapting to fluctuations in the

heart beat rate and changes in respiration cycles.

A popular approach is the Image-Based Method for Retrospective Cor-

rection of Physiological Motion Effects in fMRI, in short RETROICOR, due

to Glover et al. (2000). It is based on fitting low-order Fourier series to the

image data, where the periodical signals match the cardiac and respiratory

signal phases. These phases are estimated with the help of external refer-

ence signals by peak-detection and histogram-based methods. The use of

external references help to avoid the aliasing related problems in the notch

filter.

Other image-based physiological noise reduction approaches include

adaptive filtering (Deckers et al., 2006), Principal Component Analysis

(PCA) and Independent Component Analysis (ICA) (Thomas et al.,

2002), and IMPACT (Chuang and Chen, 2001). It is also possible to do

retrospective noise reduction in k-space (the scanner’s image-acquisition

Fourier domain) (Hu et al., 1995; Le and Hu, 1996; Frank et al., 2001) or

by utilizing the phase information (Cheng and Li, 2010).

Recently Särkkä et al. (2012) proposed a new Bayesian method for phys-

iological noise modeling and removal. The method is named DRIFTER

and it allows accurate dynamical tracking of the variations in the cardiac

and respiratory frequencies by using Interacting Multiple Models (IMM),

Kalman filter (KF) and Rauch–Tung–Striebel (RTS) smoother algorithms

(Bar-Shalom et al., 2001; Grewal and Andrews, 2001).

In this study we will go through the formulation of DRIFTER in detail

with emphasis on how it can be implemented in practice. The method is flex-

ible and the frequency trajectories can be either estimated from reference sig-

nals (e.g. by using pulse meters and respiratory belts, as in RETROICOR),
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Introduction 3

Figure 1: Illustration of the idea in DRIFTER where the frequencies of the
external cardiac and respiratory signals are estimated and then the respiration-
and cardiac-induced noises are separated from the raw voxel (volumetric pixel)
signal.

or if the time resolution allows, directly from the fMRI signal (e.g., from

the spatially averaged fMRI signal). The estimated frequency trajectory is

used for accurate model based separation of the fMRI signal into activa-

tion, physiological noise and white noise components using Kalman filter

and RTS smoother algorithms. This separation is done for each voxel (vol-

umetric pixel) in the image. The basic idea of the method is to build a

stochastic model for each component of the signal: the BOLD signal is a

relatively slowly varying signal, cardiac and respiration are stochastic res-

onators with multiple harmonics, and the rest of the signal is assumed to be

white noise. The basic idea of the method is presented in Figure 1, where

the components are visualized on the far right.

The mathematical models and algorithms are presented in Section 2,

starting from concepts in optimal estimation and extending the perusal

to stochastic resonator models and how to implement the inference. In

Section 3 we address the questions related to sampling rates and signal

aliasing and provide an example of estimating the signal frequencies directly

from the fMRI data without reference signals. These two questions have

a practical impact on the usability of the method, because whole-brain

fMRI data typically has sampling rates of approximately two seconds and

physiological signals are often not included in routine clinical fMRI studies.
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2 Materials and Methods

In this section we present the DRIFTER method as a composition of means

to model the signal components in fMRI data, methods to estimate the

frequency time series and track the values of these components, and an

effective implementation scheme of all this into a Kalman filter compatible

manner. The theory follows the same structure as Särkkä et al. (2012).

Kalman filters, Rauch–Tung–Striebel Smoothers and Interactive multi-

ple model (IMM) algorithms are gone through in brief in Section 2.1. For

modeling the quasi-periodic noise components in the fMRI data, an IMM

scheme for the frequency estimation is presented in Sections 2.2–2.3. In Sec-

tion 2.4 we split the fMRI signal into components that fit into the Kalman

filtering state space form, and where the periodic noises can be tracked using

the frequency estimates. Finally this is combined into an effective Kalman

filtering formulation.

2.1 Optimal Estimation

The term optimal estimation refers to the methods used to estimate the un-

derlying state of a time-varying system of which there exist only indirectly

observed noisy measurements. In many cases Kalman filter and Rauch–

Tung–Striebel smoother (see, e.g., Grewal and Andrews, 2001; Särkkä, 2006;

Solin, 2010) algorithms are the ones referred to with optimal estimation.

These two algorithms can be used for computing the exact Bayesian poste-

rior filtering distributions of the state in discrete-time linear Gaussian state

space models of the form

x(tk+1) = Ak x(tk) + qk

y(tk) = Hk x(tk) + rk,
(1)

where x(tk) ∈ Rn is the state at time tk, where k = 0, 1, 2, . . ., y(tk) ∈ Rd is

the measurement at time tk, qk ∼ N (0,Qk) is the Gaussian process noise,

and rk ∼ N (0,Σk) is the Gaussian measurement noise. Matrix Ak is the

state transition matrix and Hk is the measurement model matrix.

Continuous-time models of equivalent linear kind can be handled by

first discretizing the dynamics (see, e.g., Grewal and Andrews, 2001) of the
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Materials and Methods 5

model.
dx(t)

dt
= F x(t) + L e(t), (2)

where e(t) is a white noise process with a given spectral density matrix

Qc. If we assume that the sampling period is ∆t, and we define tk = k∆t,

then the (weak) solution (Øksendal, 2003) to this continuous-time stochastic

differential equation can be expressed as

x(tk+1) = exp(∆tF) x(tk) +

∫ tk+1

tk

exp((tk+1 − s) F) L e(s) ds. (3)

The second integral above is just a Gaussian random variable with covariance

Qk =

∫ ∆t

0
exp((∆t− τ) F) L Qc LT exp((∆t− τ) F)T dτ. (4)

Thus, if we define Ak = exp(∆tF), the model becomes equivalent to the

discrete model in Equations (1).

The Kalman filter (Kalman, 1960) is a closed-form solution to the linear

discrete-time filtering problem in Equation (1). As the Kalman filter is

conditional to all measurements up to time step k, the recursive filtering

algorithm can be seen as a two-step process that first includes calculating

the marginal distribution of the next step using the known system dynamics.

After this the information is updated using new observations.

Similarly as the discrete-time linear Kalman filter gives a closed-form

filtering solution, the discrete-time Rauch–Tung–Striebel (RTS) smoother

(Rauch et al., 1965) gives a closed-form solution to the linear smooth-

ing problem, which is conditional to all the measurements y(tk), where

k ∈ {1, . . . , T} is a fixed interval. The Kalman filtering and Rauch–Tung–

Striebel smoothing equations are presented and discussed in detail in Sec-

tion 2.5.

The state space model can be extended by including an additional latent

variable into the formulation. The Interacting Multiple Models (IMM) algo-

rithm (Bar-Shalom et al., 2001) is a method that can be used for computing

posterior distributions of models, where the model matrices depend on an

additional latent variable θk such that

x(tk+1) = Ak(θk) x(tk) + qk

y(tk) = Hk(θk) x(tk) + rk.
(5)
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Materials and Methods 6

This variable takes values in a finite set θk ∈ Ω = {θ(1), . . . , θ(S)} and it

is assumed that we can model its dynamics using a Markov chain with a

transition matrix Π, where the transition probabilities are given by

P(θ
(i)
k | θ

(j)
k−1) = Πi,j . (6)

The IMM algorithm provides efficient means for computing an S-component

Gaussian mixture approximation to the joint posterior distribution of the

latent variables and states.

Kalman filters are restricted to model systems with known dynamical

and measurement models. The IMM method is just one possibility to deal

with this restriction. In practice, in the IMM formulation multiple models —

typically matching discrete prior assumptions of different model possibilities

— are run in parallel, and the most probable of them is chosen. Typical

applications include tracking of manoeuvring targets, or simplification of

non-linear dynamics into a few separate cases.

2.2 Modeling Periodic Signals

Various kind of noise is present in BOLD fMRI data, and these can be di-

vided into scanner hardware related thermal noise and scanner signal drift-

ing, head movement artefacts, and physiological noise. However physiolog-

ical noise has the pleasant property that cardiac- and respiration-induced

noises follow the same periodic structure as the actual beating of the heart

and breathing cycles. This structure makes it possible to track these physi-

ological noise components in the fMRI data on a voxel level.

A band-limited zero-mean periodic signal with period frequency f can

be approximated to an arbitrary precision with a truncated Fourier series

c(t) =

N∑
n=1

an cos(2π n f t) + bn sin(2π n f t), (7)

where an and bn are the Fourier coefficients. The frequency f of the base

sinusoidal is often referred to as the fundamental frequency of the signal.

The rest of the components in the superposition are referred to as the

harmonic components. The harmonics have frequencies that are multiples of

the fundamental frequency, n f . To model any arbitrary signal, the number
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Materials and Methods 7

of harmonics would need to be infinite. However, in the case of real-world

noise, a finite N gives a qualified approximation.

We are interested in modeling of signals which are almost periodic, that

is, quasi-periodic. The strongest source of aperiodicity in the signals is

caused by time variance of the base frequency, which means that the fre-

quency is actually a function of time f(t).

The most simple approach to modeling signals with a changing frequency

would be to simply plug in the frequency function f(t) into Equation (7).

However, this would not be a wise choice. This model is very sensitive to

changes in frequency. For example, when t is large, even a tiny change in

the frequency causes a large change in signal c(t). Discontinuities in the

frequency would also cause the signal c(t) to be discontinuous.

The RETROICOR method (Glover et al., 2000) solves this problem by

estimating the phase φc(t) of the signal instead of the frequency. That is

φc(t) =

∫ t

0
2π f(t) dt.

This method deals effectively with the problems regarding time-varying fre-

quencies. However, there is another problem: the Fourier-like coefficients an

and bn are assumed to be constant in time, which implies that the amplitude

of the phenomenon is assumed to be constant. This is a quite unrealistic

assumption in real data, as was demonstrated by Särkkä et al. (2012).

The approach that is used in DRIFTER is based on the observation

that the Fourier series (7) can also be represented in an alternative form by

modeling the signal as an oscillator

d2cn(t)

dt2
= −(2π n f)2 cn(t), (8)

that has the solution

cn(t) = an cos(2π n f t) + bn sin(2π n f t), (9)

where the constants an and bn are set by the initial conditions of the differen-

tial equation. The Fourier series (7) is thus equivalent to the representation

c(t) =
N∑

n=1

cn, (10)
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Materials and Methods 8

where the initial conditions of the oscillators implicitly define the Fourier

coefficients. We can now replace the constant frequency with a time series

f(t) of frequencies, which leads to the following differential equation model

for the nth harmonic

d2cn(t)

dt2
= − (2π n f(t))2 cn(t). (11)

Unlike the extended Fourier series (10), this signal has the pleasant property

that it is continuous even when frequency has discontinuities.

Another source of aperiodicity of the signal are small changes in the

shape of the signal, which correspond to changes in amplitudes and phases

in the harmonics. These changes can be modeled by adding a white noise

component en(t) with spectral density qn to the differential equation of each

harmonic component

d2cn(t)

dt2
= − (2π n f(t))2 cn(t) + en(t). (12)

The full quasi-periodic signal then has the representation

c(t) =

N∑
n=1

cn. (13)

Figure 2 shows an oscillator with one harmonic. The amplitude is subject to

change at 10 s, the frequency at 20 s, and the model changes to a stochastic

oscillator at 30 s. This demonstrates the robustness of the approach, and

the outcome of this model seems very intuitive.

The model can also be represented in canonical state space form by

defining the state and vector of noises respectively as

x =
[
c1

dc1
dt c2

dc2
dt · · · cN

dcN
dt

]T
e =

[
e1 e2 · · · eN

]T
.

(14)

Furthermore, we want to preserve the norm of the discretized signal even

if the frequency of the oscillatory components change. Therefore we violate

the requirement that we want the solution to be of form (12) and formulate
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Figure 2: Decomposition of a quasi-periodic signal c(t) into sinusoidal compo-
nents c1(t) and c2(t). The effect of an amplitude change, a change in frequency
and adding a stochastic part to the equation, are all demonstrated.

the state space dynamics as in Särkkä et al. (2012). If we now define

G(f) =

 0 2π f

−2π f 0

 (15a)

Fo(f) =


G(f)

G(2 f)

. . .

G(N f)

 (15b)

where Fo(f) can as well be denoted by ‘blockdiag (G(f),G(2 f), . . . ,G(N f))’,

the stochastic state space model for the quasi-periodic signal can be written

as follows

dx(t)

dt
= Fo(f(t)) x(t) + L e(t)

c(t) = H x(t),

(16)
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where the matrix L has elements L2n,n = 1 for n = 1, . . . , N , and all other

are zero, and H = [1 0 1 0 · · · 1 0]. When the frequency trajectory f(t)

is known, the model above is a time-varying linear state space model which

is directly compatible for Kalman filters. With unknown f(t) we can use

adaptive Kalman filters for inferring the state and frequency trajectories as

will be shown in the next section.

2.3 Tracking of Frequency in Reference Signals

In modeling the periodic noise components, it is essential to have good ap-

proximations of the time-depending frequencies of the signals. Most methods

for removing physiological noise in fMRI use reference signal data to track

the frequencies, or equivalently the phases of the signals. We assume that we

have some reference sensor, which measures the cardiac cycle (e.g. an ECG

sensor or pulse oximeter). Equivalently we assume that also the respiration

cycles are monitored, typically with the help of a respiratory belt that is put

around the subject’s chest or abdomen.

These signals can be used in different ways. For example, the formu-

lation of RETROICOR in Glover et al. (2000) presents separate methods

for estimating the phase of a cardiac or respiration reference signal. The

cardiac phase is estimated using a peak-detection method and comparing

the R–R-times in the signal. This is not an effective way to deal with the

more unpredictable respiratory signal, and thus a histogram-based method

is used for this in RETROICOR.

In DRIFTER an IMM approach (adaptive Kalman filtering) is used for

both the respiration and cardiac activity. The cardiac signal can now be

modeled with the quasi-periodic signal model described in the previous

section. Typically the references — especially the respiration reference signal

— are not zero mean signals, but there are level changes in the signals over

time. To account for this possible drifting of the reference signal, we include

a time-varying bias b(t), and model it using a Wiener velocity model (see,

e.g, Särkkä, 2006)
d2b(t)

dt2
= eb(t), (17)

where eb(t) is a white noise process with spectral density qb. Note that

this actually corresponds to the zero-frequency stochastic oscillator, but we

could similarly use any other model for the bias term.
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Materials and Methods 11

If we define the joint state consisting of the bias and a quasi-periodic

signal with Nc harmonics as

xc =
[
b db

dt c1
dc1
dt · · · cNc

dcNc
dt

]T
, (18)

then the measured reference cardiac signal yc, which is sampled at times tk

can be modeled as

dxc(t)

dt
= Fc(fc(t)) xc + Lc ec

yc(tk) = Hc xc(tk) + vc,

(19)

where where vc ∼ N (0, σ2
c ) is Gaussian measurement noise (residual noise)

with zero mean and variance σ2, which accounts for the physical noise,

uncertainties and the differences between the model and the reality. Above,

the matrices are defined as

Gb =

0 1

0 0


Fc(f) = blockdiag(Gb,G(f),G(2 f), . . . ,G(Nc f)),

(20)

and G(n f) is defined as in Equation (15a). The Nc + 1 dimensional white

noise process ec consists of the bias noise process and the oscillator noise

processes, and the matrices Lc and Hc are defined in analogous manner as

in Equations (16).

If we assume that the frequency fc(t) is constant between the measure-

ments, say, has value fc(tk) on the interval t ∈ [tk, tk+1), then we can use

the discretization procedure presented in Section 2.1 to convert the dynamic

model into the form

xc(tk+1) = Ac(fc(tk)) xc(tk) + qc, (21)

where qc ∼ N (0,Qc(fc(tk))). Because the frequency trajectory fc(t) is

unknown, we model it as a stochastic process as well. We assume that the

frequency is constant between the measurements and that it can only take

values from a given discrete set fc ∈ {f (1)
c , . . . , f

(Mc)
c }. If we model the time

behavior of the discrete set of frequencies as a Markov chain, we obtain the
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Materials and Methods 12

Figure 3: Examples of reference cardiac and respiration signals, their spec-
trograms and the estimated frequency trajectories. The fluctuations in the
respiratory signal are considerable, because the test subject was instructed to
breathe heavily during the scan.

following switching linear state space model:

P(f (i)
c | f (j)

c ) = Πc
i,j

xc(tk+1) = Ac(fc(tk)) xc(tk) + qc

yc(tk) = Hc xc(tk) + vc,

(22)

where Πc is the transition matrix of the discrete frequency Markov chain

and qc ∼ N (0,Qc(fc(tk))), vc ∼ N (0, σ2
c ). Comparing to the Section 2.1 it

is easy to see that this model is of the form that can be treated with the

IMM algorithm.

The respiratory reference signal and its frequency trajectory fr(t) can be

modeled in a completely analogous manner as the cardiac signal. Obviously,

the discrete set of frequencies f
(i)
r needs to be different and the spectral

densities qr, vr of the noises need to be adjusted.

Although here we have used a fairly simple set of modes consisting of

cardiac or respiratory signals in different frequencies, it would also be possi-

ble to model and include other types of modes to the switching model. We

could, for example, detect extra or missing heart beats, arrhythmia, breath

holding or various other conditions and pass them to the fMRI estimation

stage along with the frequencies. (Särkkä et al., 2012)

Figure 3 shows examples of cardiac and respiration reference signals and

their spectrograms. The presence of multiple harmonics can be clearly seen
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in both of the images. The frequencies of the cardiac and respiration change

quite rapidly in time and thus it is crucial to explicitly account for the time

variance in the frequencies.

2.4 Modeling the Components of a BOLD Signal

The fMRI data is a four-dimensional signal with three spatial dimensions

and one temporal dimension, where we have separate time series for each

voxel in three-dimensional space. In the most simple variant of DRIFTER

we do not assume anything about the spatial structure of the signal, but all

the voxel time series are treated independently. Different types of spatial

priors could be applied at this stage to the model.

We assume that the measured signal consists of (i) a cardiac-induced

signal with known base frequency fc(t) from the analysis described in the

previous section, but unknown amplitudes and phases of the harmonics, (ii)

a respiration-induced signal with known base frequency fr(t) as earlier, but

unknown amplitudes and phases of the harmonics, and (iii) a brain signal

(cleaned BOLD signal) that accounts for the fluctuation of the signal caused

for example by haemodynamical responses. The rest of the voxel time series,

that does not fit into these three categories, is assumed to be white noise.

The model is as follows:

1. The cardiac-induced signal is modeled as a zero mean periodic signal

with a given frequency trajectory fc(t) as estimated from the reference

signal. The model is of the form

dxc(t)

dt
= Fc(fc(t)) xc(t) + Lc ec(t), (23)

where

Fc(f) = blockdiag(G(f),G(2 f), . . . ,G(Nc f)), (24)

and G(·) is defined as in Equation (15a) and Nc is the number of

modeled harmonics in the cardiac signal.

2. The respiration-induced signal is modeled as a zero mean periodic

signal with the given frequency trajectory fr(t):

dxr(t)

dt
= Fr(fr(t)) xr(t) + Lr er(t), (25)
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where

Fr(f) = blockdiag(G(f),G(2 f), . . . ,G(Nr f)). (26)

3. The brain signal (BOLD signal) is assumed to be smooth and thus it

is modeled using a simple Wiener velocity model

dxb(t)

dt
=

0 1

0 0

xb(t) + Lb eb(t). (27)

We define the full state of the signal in a single voxel as a combination of

all the above states

x =


xc

xr

xb

 . (28)

This state is different in each spatial location r, that is, has the form x(t, r).

The full differential equation for the dynamics of the state and the corre-

sponding measurements can be expressed as

∂x(t, r)

∂t
= F x(t, r) + L e(t, r)

y(tk, r) = H x(tk, r) + vf (r),

(29)

where vf is a zero mean Gaussian sequence with variance σ2, which is

independent in each voxel location r, models the measurement noise in fMRI

images. The white noises e(t, r) are assumed to be independent in each voxel

and have a joint spectral density Qc, which is independent of the position r.

The continuous-time model is defined by the sparse block diagonal

matrices F ∈ R2N×2N , L ∈ R2N×N , Qc ∈ RN×N , and H ∈ R2N ,

where N = Nc + Nr + 1. These matrices take the forms F(fc, fr) =

blockdiag(Fc(fc),Fr(fr),Fb), L = blockdiag([0 1]T, . . ., [0 1]T, . . ., [0 1]T),

Qc = diag(qc/1, qc/2, . . ., qr/1, qr/2, . . ., qb) and H = [1 0 . . . 1 0 . . . 1 0].

The discretization procedure presented in Section 2.1 now results in the

model of the form

x(tk+1, r) = Ak x(tk, r) + qk(r)

y(tk, r) = H x(tk, r) + vf (r).
(30)
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where qk(r) ∼ N (0,Qk). This discrete-time state space equation can now

be used in the Kalman filtering formulation.

2.5 Kalman Filter and RTS Smoother Implementation

The four-dimensional fMRI signal y(tk) ∈ Rnx×ny×nz , where k = 1, . . . , nt,

can be handled independently in each voxel. As described in the previous

subsection, we now assume each voxel measurement is a superposition of all

the components in the model, x(t) = (xc(t),xr(t),xb(t)).

The actual state cannot be observed and is thus unknown to us. We

define the process to be a realisation of a prior distribution and determine

the trajectory subject to observations provided by the fMRI data. To put

this under a standard Kalman filter compatible formulation, the probability

distribution is assumed to be approximately a multivariate Gaussian normal

distribution. This means that the state x(tk, r) ∼ N (m(tk, r),P(tk, r)) is

governed by the mean m(tk, r) and covariance P(tk, r) of the distribution

at each time step tk in each voxel position r.

The Kalman filtering equations (Grewal and Andrews, 2001) for this

model can be written in the form of a prediction step

m−(tk+1, r) = Ak m(tk, r)

P−(tk+1, r) = Ak P(tk, r) AT
k + Qk.

(31)

and a subsequent update step

Sk+1(r) = H P−(tk+1, r) HT + σ2

Kk+1(r) = P−(tk+1, r) HT S−1
k+1(r)

m(tk+1, r) = m−(tk+1, r) + Kk+1(r) [y(tk, r)−H m−(tk+1, r)]

P(tk+1, r) = P−(tk+1, r)−Kk+1(r)Sk+1(r) KT
k+1(r).

(32)

However, the evaluation of the filtering (and smoothing) equations can be

made efficient by assuming that the initial covariance of the signals is in-

dependent of the voxel position r such that P(t0, r) = P(t0). This is a

reasonable assumption which lets us formulate the Kalman filter equations

in a parallel manner. The terms P, S, and K become independent of the po-

sition r. Thus we only need to compute the following once per measurement

time:
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For a practical implementation, we can define the mean m(tk) =

[m(tk, r1) m(tk, r2) . . . m(tk, rNxyz)] ∈ R2N×Nxyz , where N = Nc +Nr + 1

and Nxyz = nx · ny · nz, whereas the covariance dimensions are conveniently

P(tk) ∈ R2N×2N . Similarly as for the state mean we combine the voxel

measurements into a vector y(tk) = [y(tk, r1) y(tk, r2) . . . y(tk, rNxyz)] ∈
R1×Nxyz .

Thus the prediction step becomes simply

m−(tk+1) = Ak m(tk)

P−(tk+1) = Ak P(tk) AT
k + Qk

(33)

and the subsequent update step

Sk+1 = H P−(tk+1) HT + σ2 I

Kk+1 = P−(tk+1) HT S−1
k+1

m(tk+1) = m−(tk+1) + Kk+1 [y(tk)−H m−(tk+1)]

P(tk+1) = P−(tk+1)−Kk+1 Sk+1 KT
k+1.

(34)

The Rauch–Tung–Striebel smoother covariance and gain are also inde-

pendent of the position. This makes it possible to write the backward sweep

of the smoother in a similar manner to the filtering equations

m−(tk+1) = Ak m(tk)

P−(tk+1) = Ak P(tk) AT
k + Qk

Ck+1 = P(tk) AT
k [P−(tk+1)]−1

ms(tk) = m(tk) + Ck+1 [ms(tk+1)−m−(tk+1)]

Ps(tk) = P(tk) + Ck+1 [Ps(tk+1)−P−(tk+1)] CT
k+1.

(35)

The values for m−(tk+1, r) and P−(tk+1) were already calculated during the

‘forward sweep’ by the filtering equations (33–34).
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3 Results

Särkkä et al. (2012) present many aspects of the DRIFTER method both

using simulated and empirical fMRI data. The implementation in the article

was published online as the ‘DRIFTER toolbox’ for Matlab1, which follows

the formulation that was presented in the article and coincides with the pre-

vious section. The results in the article show that in most cases DRIFTER

performs well in identifying the oscillatory components and outperforms the

competing RETROICOR method.

However, some questions were left open to discussion in Särkkä et al.

(2012). These were, for example, the efficiency of the IMM implementation

in identifying frequency trajectories without reference signals. This is of

practical importance, because in clinical practice these are often not recorded

on regular basis, and typically no such recordings exist for previous datasets.

Another question regarding DRIFTER is the efficiency of the method in

slowly sampled fMRI data with TRs ranging up to several seconds. These

two questions are addressed in this section by providing some illustrative

simulation study results.

3.1 Sampling Rates and Signal Aliasing

As the repetition times in MR studies often are significantly slower

than 100 ms which was mainly used in the proof-of-concept examples in

Särkkä et al. (2012), the effects of sampling rate and signal aliasing are

of important nature. According to the sampling theorem by Nyquist and

Shannon (see, e.g., Oppenheim et al., 1999), a signal sampled at a frequency

of fs can be reconstructed only if the original signal is band-limited to

contain only frequencies at and below the Nyquist frequency fs/2. Higher

frequency components become aliased into lower frequency components,

and they cannot be observed with certainty.

However, if the signal consists of a finite number of sinusoids, then the

recovery of the original signal is sometimes possible even when the signal

has frequencies above the Nyquist limit (see Candès and Wakin, 2008).

Fortunately the periodic physiological noise components in this study fall

1The DRIFTER toolbox by Arno Solin and Simo Särkkä is available for download on
http://becs.aalto.fi/en/research/bayes/drifter/ (version 2012-04-25 used).
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Figure 4: A simulated trajectory of a stochastic oscillator. The oscillating
signal is shown in the upper figure and the signal spectrogram and the actual
frequency trajectory in the lower figure.

into this category, and they can be identified if their frequencies are known

beforehand. Obviously, the quality of the estimates decreases drastically as

the Nyquist limit is reached, and some frequencies might cause problems,

such as multiples of the Nyquist frequency. The reference signals, which are

used for determining the frequencies of cardiac and respiratory signals, need

to have at least one harmonic below the Nyquist frequency or otherwise it

is difficult to estimate its frequency unambiguously.

We use simulated data, where we consider only one stochastic oscillator

with no harmonics. The data is simulated using the same models that was

presented in the previous section. The frequency trajectories are drawn

randomly such that the random walk (Winener process) wk = wk−1 +

N (0, tk − tk−1) defines a trajectory that is transformed into a frequency

time series f(tk) = 1
2 + 1

1+exp(0.1wk) (in Hertz). Now the frequency f(t) is

constrained to the interval 0.5–1.5 Hz.

Figure 4 shows an example signal that has been simulated using the

randomly drawn frequency trajectory. The stochastic oscillator signal shows

changes in amplitudes and the effect of changing frequency. The lower figure

shows the actual frequency trajectory together with the spectrogram of the
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Figure 5: The average RMSE results per TR. The standard deviation is
visualized with error bars.

simulated data.

We use the following parameters in our simulation: Each simulated tra-

jectory is of length 100 s, with discrete time interval lengths (i.e. TR) of

∆t = {0.01, 0.05, 0.1, 0.2, . . . , 1, 1.2, . . . , 2.4}. We define Qc = 0.01, and zero-

mean Gaussian measurement noise with variance σ2 = 0.012 is added to the

simulated data. We simulate N = 100 periodic signals. The DRIFTER

method is applied to the data and the estimated signal is compared against

the true signal. The root mean squared error (RMSE) is reported for differ-

ent TRs. The code implementation used in this study can be found attached

as Appendix A at the end of this report.

The results in Figure 5 show that the method works best on fast-sampled

data, and gradually the error increases as the TR grows. Rather unsurpris-

ingly the error is larger around those sampling frequencies that are multiples

of the Nyquist frequency of the average oscillator.

3.2 Estimation of Frequencies Without References

Even if no reference signals are available, it is often possible to estimate the

frequencies of the cardiac and respiratory signals from the fMRI data. In

practice, this is only possible when the sampling frequency is high enough

such that at least the fundamental frequency is above the Nyquist limit.

Thus the absolute minimum for sampling frequency would be a bit below
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(a) Moderate fluctuations (b) Strong fluctuations

Figure 6: Example spectrograms of spatially averaged fMRI data. IMM
based frequency trajectories are shown both for estimates based on the mean
time series (white) and external data (black).

3 Hz (TR ∼300 ms), assuming a cardiac frequency around 60–80 bpm. This

limit can, however, be pushed by taking the timings of individual slices into

account (e.g., as in Frank et al., 2001).

With short-enough TR, the average over all the voxels in the fMRI

slices can be used to construct an artificial reference signal. This time

series should contain oscillating components representing both the cardiac-

and respiration-induced noises, because the cardiac and respiratory effects

tends to be quite coherent throughout the brain (Glover et al., 2000). By

using data from only a few well-chosen voxels, the effect of the oscillatory

components can be made even clearer. Regions around arterial voxels tend

to show the cardiac pulsation more clearly, whereas for example voxels in

the eyes show the respiration-related oscillations.

As a brief example, Figure 6 presents two spectrograms of such spatially

averaged time series data corresponding to moderate and strong fluctuations

in physiological noise. Here the results are based on actual fMRI data

(datasets labelled 1 and 12) from Särkkä et al. (2012). The visualizations

feature frequency trajectories estimated both with and without references

which are in black and white, respectively.
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4 Discussion and Conclusions

In this study we have gone through the formulation of the image-based

Bayesian method for retrospective elimination of periodical physiological

noise in fMRI, DRIFTER. A stochastic state-space model for modeling the

signal components was constructed as a composition of stochastic oscilla-

tors and a slowly moving Wiener velocity model. An interacting multiple

model (IMM), an adaptive Kalman filtering approach, tracked the oscilla-

tion frequencies in reference signals of physiological noise. These frequency

estimates of respiration- and cardiac-induced noises were passed to Kalman

filter and Rauch–Tung–Striebel smoother algorithms which carried out the

Bayesian inference step.

DRIFTER is a robust and efficient algorithm for estimation and removal

of physiological noise in fMRI data. Yet there are questions that may hin-

der the spreading to a wider audience. Most notably: (i) the method is

model-based, (ii) the method requires pre-defined parameters to run, (iii)

the method requires reference signals, and (iv) the proof-of-concept demon-

strations has focused on fast-sampled fMRI data. All of these characteristic

features were discussed in Särkkä et al. (2012) in a rather theoretical fashion.

However, to provide a more user-friendly point-of-view the following

observations can be made: As for (i), the modeling can be restricted to the

oscillatory structure of the noises alone, as the measurement noise estimate

can be added back to the slowly-moving cleaned BOLD estimate. This

restrains the risk of destroying relevant data. Yet, the study design has to be

planned so that the stimulus responses do not mix up with the physiological

oscillations (as discussed, e.g., by Krüger and Glover, 2001; Huettel et al.,

2004).

To address point (ii), the predefined parameter values are rather robust.

The model is not sensitive to the parameter values as long as larger values are

favoured in order to avoid too ‘stiff’ models (see discussion in Särkkä et al.,

2012), which makes it easy to try out the method without having to con-

centrate on choosing suitable parameters. Fortunately the parameters have

clear physical interpretations, and it is rather straight-forward to combine

the method with some parameter estimation methods (see, e.g., Särkkä and

Nummenmaa, 2009).
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In this study, the points (iii) and (iv) were looked into by providing two

brief examples. Avoiding the use of external reference signals is possible if

the TR is fast enough, as was demonstrated in Figure 6 with both moderately

and strongly fluctuating physiological effects in the data. In frequency

identification without references, image averaging seems efficient especially

in the case of respiratory signals, because of its spatially homogeneous nature

(Glover et al., 2000), but for the cardiac it might be beneficial to only use the

areas that are known to have stronger cardiac signal contribution (see, Dagli

et al., 1999; Glover et al., 2000). However, tracking a strongly fluctuating

signal can be tricky and subject to uncertainty, as was seen in Figure 6b.

One alternative to increase the temporal resolution of this approach is to

use the slice-timing information in multi-slice EPI data, which provides fast-

sampled data even in the case of long TR. As shown by Frank et al. (2001), it

is possible reconstruct the physiological signals by treating individual slices

as separate time-ordered observations.

In most current fMRI studies the sampling rate is restricted to approx-

imately two seconds. This restriction is enforced by the slice acquisition

techniques and the need for around 30 slices for spatial whole-brain cover-

age in the data. Even with this slow sampling rates the variabilities associ-

ated with physiological sources of motion are present but become distributed

throughout the fMRI time series. Provided we have good estimates for the

frequency trajectories of the quasi-periodic noise components, it is possible

to estimate their contribution to the signal using DRIFTER. The demon-

strative results in Figure 5 suggest that DRIFTER can be exploited even

with slow-TR data. However, care must be taken in choosing the TR, as

aliasing becomes especially troublesome at multiples of the base frequency

of the signal.

To conclude, the DRIFTER method shows prominent possibilities and it

will hopefully gain users worldwide. Admittedly it has its weaknesses which

stem from its strengths: robustness, adaptivity and modeling signal struc-

ture. In this work it has been shown that the most obvious weaknesses can

be circumvented without rocket science, by careful study design (repetition

times and reference signal recordings) and checking the estimation outcome

with common sense.
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Appendices

Appendix A:

Simulation Code

The following code requires the DRIFTER toolbox (version 2012-04-25 used

in this work) which is available for download on the web page http://becs.

aalto.fi/en/research/bayes/drifter/ and distributed under the GNU

General Public License.

Listing 1: The full simulation ‘runSimulation.m’ code for Mathworks Matlab
(tested in Matlab 2010b).

1 function runSimulation
%% runSimulation − Test the performance of DRIFTER
%
% Description:

5 % This code runs the simulation study in the report section
% '3.1 Sampling Rates and Aliasing'. We use simulated data, where we
% consider only one stochastic oscillator with no harmonics. The
% data is simulated using the stochastic oscillator setup presented
% in the study.

10 %
% The frequency trajectories are drawn randomly such that the
% random walk (Winener process) defines a trajectory that is
% transformed into a frequency time series f (in Hertz). The drifter
% method is applied to the data after the simulated signal has been

15 % transformed to downsampled observations (defined by dts). The mean
% squred error results are then captured and visualized.
%
% Running this code requires the DRIFTER toolbox that is available
% for download on http://becs.aalto.fi/en/research/bayes/drifter/

20 %
% Copyright 2012 Arno Solin

%% Simulate M draws

25 % Add path to the DRIFTER toolbox
addpath /path/to/the/DRIFTER/toolbox/

% Number of random draws
M = 100;

30

% Different time discretizations (TR) to consider
dts = [0.01 0.05 0.1:0.1:1 1.2:.2:2.4];

% Allocate space for results
35 MSE = zeros(M,numel(dts));

C = zeros(M,numel(dts));

% Open parallel pools to run the code in
matlabpool open

40

% Run in parallel
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parfor i=1:M
[MSE(i,:),C(i,:)] = simulate and estimate(dts,100);

end
45

%% Visualize results

figure(1); clf; hold on
50

% Plot error bars and data points
errorbar(dts,mean(sqrt(MSE),1),std(sqrt(MSE),[],1), ...

'Color','k','LineWidth',2)
plot(dts,mean(sqrt(MSE),1),'sk')

55 %bplot(dts,mean(sqrt(MSE),1),3,'−',[0 0 0;1 .5 .5])

% Set labels and title
title('\bf Root Mean Squared Error VS TR','FontSize',12);
xlabel('TR [seconds]'); ylabel('RMSE')

60

% Modify appearence
xlim([−.1 2.5]); ylim([−.05 2]); set(gca,'YTick',0:.25:4)
box on; grid on; set(gcf,'Color','w')

65 % Set paper size
set(gcf,'PaperUnits','centimeters');
set(gcf,'PaperSize',[14 10])
set(gcf,'PaperPosition',[0.25 2.5 14 10])

70 % Save figure
saveas(gcf,'results.eps','epsc')

end

75

function [MSE,C] = simulate and estimate(dts,Tend)
%% simulate and estimate − Estimate results for one draw
%
% Syntax:

80 % [MSE,C] = simulate and estimate(dts,Tend)
%
% In:
% dts − Time discrteizations (in seconds)
% Tend − End time (in seconds)

85 %
% Out:
% MSE − Mean squared error for each dt
% C − Standard deviation estimate from the filtering estimate
%

90 % Description:
% A realization of a frequency trajectory in the band 0.5−1.5 Hz is
% simulated and then the function 'simulate periodic data' is called
% to simulate realizations of stochastic oscillatory signals with
% given parameters. Noise is added to simulate noisy observations

95 % and then the DRIFTER method is run with the simuated data. The MSE
% for each dt/TR is captured and returned.
%
% See also:
% drifter, simulate periodic data

100 %
% Copyright 2012 Arno Solin

%% Simulate periodic data
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105 % Parameters
N = Tend/dts(1);
T = dts(1)*(0:N−1);
Qc = 0.01;
x0 = [0;1];

110

% Set up frequency trajectory
f = 0.1*cumsum(randn(1,N)); % random walk
f = 1./(1+exp(f)); % transformed
f = 0.5+1*f; % in range (Hz)

115

% Simulate full periodic data
x = simulate periodic data(N,dts(1),f,Qc,x0);

120 %% Run analysis

% Allocate space for results
MSE = zeros(1,numel(dts));
C = zeros(1,numel(dts));

125

% Figure
figure(1); clf

% Loop
130 for i=1:numel(dts)

% Indices
ind = 1:int16(dts(i)/dts(1)):N;

135 % Set up DRIFTER
clear data models
data.data = x(1,ind)+0.01*randn(1,numel(ind));
data.dt = dts(i);
data.qr = 1e−9;

140 data.sd = 0.01;
data.scalefactor = 1;
data.mean = 0;
models{1}.frequency = f(ind)*60;
models{1}.dt = dts(i);

145 models{1}.qr = Qc;

% Run DRIFTER
[data,models,˜,SPP] = drifter(data,models);

150 % Calculate MSE
MSE(i) = mean((x(1,ind)'−squeeze(models{1}.estimate)).ˆ2);

% Take care of the covariance
C(i) = mean(sqrt(squeeze(SPP(1,1,:))));

155

end

end

160

function [x] = simulate periodic data(N,dt,f,Qc,x0)
%% simulate and estimate − Estimate results for one draw
%
% Syntax:

165 % simulate periodic data(N,dt,f,Qc,x0)
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%
% In:
% N − Number of steps to simulate
% dt − Time discrteization step length (in seconds)

170 % f − A vector of requencies in Hz
% Qc − Spectral denisty of the dynamic noise term
% x0 − Initial state
%
% Out:

175 % x − 2xN−vector of simulated states
%
% Description:
% Simulate a stochastic oscillator with a given frequency trajectory.
% The model is set up as a continuous−time state space model, or a

180 % stochastic differential equation. Runnig this code requires the
% 'lti disc' function that is available i.e. in the DRIFTER toolbox.
%
% See also:
% lti disc

185 %
% Copyright 2012 Arno Solin

%% Simulate a stochastic oscillator

190 % Allocate space for results
x = zeros(2,N);

% Initial state
if nargin < 5 | | isempty(x0)

195 x(:,1) = randn(2,1);
else

x(:,1) = x0;
end

200 % The rest of the states
for k=2:N

% Dynamic model
F = [ 0 2*pi*f(k);

205 −2*pi*f(k) 0];

L = [0;1];

% Discretize
210 [A,Q] = lti disc(F,L,Qc,dt);

% Determine if stochastic oscillator or deterministic
if Qc<eps

x(:,k) = A*x(:,k−1);
215 else

x(:,k) = A*x(:,k−1) + chol(Q)'*randn(2,1);
end

end
220

end
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