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1 Introduction

In some rare settings, the center of an object is easy to define. For example,
a center of a circle is easy to measure. In some cases, the order of the data is
also clear. For example, it is easy to order a set of real numbers. However,
most of the time the center of an object is very difficult to define, as there is
no universal definiton of center. Also the order of the data is often ill-defined.
Multivariate data is one of the most common settings, where the center and
the order of the data are not trivial.

The concept of depth was developed to address both of the aforementioned
issues in multivariate setting, by introducing a way to measure the centrality
of an observation with respect to a given set of data or an underlying dis-
tribution. The term depth was first used by J.W. Tukey in 1975 [5]. In the
same paper, Tukey introduced the concept of halfspace depth, which became
widely used in many procedures. In multivariate case, the halfspace depth
of point x ∈ Rd is the "minimal" probability of x belonging to any closed
halfspace. Since then, various propositions for multivariate depth has been
introduced, but even as of today, there is no standardized way to define the
depth for multivariate data.

In many fields, e.g. biology, pharmacy, economics etc., the data is often
generated by a stochastic function. Therefore it is often beneficial to consider
the data as functions. For example, if a progress of several similar phenomena
is observed at different points, and the sample sizes vary for each phenomena,
multivariate analysis is not applicable. One practical example of functional
data is the growth curves of a group of children.

If the center and ordering of multivariate data are difficult to define, for
functional data the tasks are even harder. Functional data can be considered
as an infinite dimensional multivariate data. However, compared to multi-
variate data, functional data has some additional properties, e.g. continuity
and partial observability. Therefore different methods are required to define
depth for functional data.

The earliest attempt to generalize median for functional data was conducted
already in 1987. However, it was only in the 00s, when the first actual
propositions for functional depth were published. During the last few years,
several constructions for functional depth have been proposed, but as in the
multivariate case, there is no standard way to define depth for functional
data. [6]

One reason for the various definitions of functional depth is the fact, that it
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is always not clear, what properties of a function should be considered when
defining the depth. Two of the main properties of a function are location and
shape. Then, which should be more deep: 1) a function with similar values
compared to other functions in the data set, but different shape, e.g. values
vary slightly, whereas other functions are constant or 2) a function, which
also gets constant values, but the values are notably different to the values
of other functions. However, there are some properties, which all functional
depth constructions should fulfill. Nieto-Reyes and Battey [4] defined a set
of six properties, which functional depth should satisfy.

In this study, one of the proposed functional depth constructions is selected,
and it is evaluated against the set of properties defined by Nieto-Reyes and
Battey [4]. In addition, a few simulations are conducted to examine the prac-
tical behaviour of the selected functional depth in various circumstances. The
selected functional depth is the band depth, introduced by López-Pintado
and Romo [3].

The rest of the study is constructed as follows. In Chapter 2, the functional
depth is explained, by using the definition of Nieto-Reyes and Battey [4]. In
Chapter 3, the band depth is introduced. The same chapter includes also the
proofs of the band depth satisfying or not satisfying the aforementioned set
of six properties. The proofs presented in Chaprer 3 follow closely to those
presented in [4]. The simulations are presented in Chapter 4, and Chapter 5
concludes the study with results and discussion.

2 Functional depth

In functional setting, one data point is a realisation of the random function
{X(v) : v ∈ V}, where V is a compact subset of Rd for d ≥ 1 [4].

Nieto-Reyes and Battey [4] defined a statistical functional depth through a
set of six properties, which functional depth functions should fulfill. Those
properties, i.e. P-1. to P-6., are presented below, but first, one preliminary
definition, also from [4], is presented.

Definition 2.1. Let (F,A, P ) be a probability space and E be the smallest
set in σ-algebra A such that P (E) = P (F). Then the convex hull of F with
respect to P is defined as

C(F, P ) := {x ∈ F : x(v) = αL(v) + (1− α)U(v) : v ∈ V , α ∈ [0, 1]},

where U := {sup
x∈E

x(v) : v ∈ V} and L := { inf
x∈E

x(v) : v ∈ V}.
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Definition 2.2. Let (F,A, P ) be a probability space. Let P be the space
of all probability measures on F. The mapping D(·, ·) : F × P → R is a
statistical functional depth if it satisfies properties P-1. to P-6, below.

P-1. Distance invariance. D(f(x), Pf(X)) = D(x, PX) for any x ∈ F and
f : F → F such that for any y ∈ F, d(f(x), f(y)) = af · d(x, y), with
af ∈ R\{0}. Here d(·, ·) denotes some metric on F.

P-2. Maximality at centre. For any P ∈ P with a unique centre of
symmetry θ ∈ F w.r.t. some notion of functional symmetry, D(θ, P ) =
supx∈FD(x, P ).

P-3. Strictly decreasing with respect to the deepest point. For any P ∈ P
such that D(z, P ) = supx∈FD(x, P ) exists, D(x, P ) < D(y, P ) < D(z, P )
holds for any x, y ∈ F such that min{d(y, z), d(y, x)} > 0 and
max{d(y, z), d(y, x)} < d(x, z).

P-4. Upper semi-continuity in x. D(x, P ) is upper semi-continuous as a
function of x, i.e., for all x ∈ F and for all ε > 0, there exists a δ > 0 such
that

sup
y:d(x,y)<δ

D(y, P ) ≤ D(x, P ) + ε (1)

P-5. Receptivity to convex hull width across the domain. D(f(x), Pf(X)) >
D(x, PX) for any x ∈ C(F, P ) with D(x, P ) < supy∈FD(y, P ) and f : F→
F such that f(y(v)) = α(v)y(v), with α(v) ∈ (0, 1) for all v ∈ Lδ and
α(v) = 1 for all v ∈ Lcδ, where

Lδ = argsup
H⊆V

{ sup
x,y∈C(F,P )

d(x(H), y(H)) < δ}

for any σ ∈ [infv∈Vd(L(v), U(v)), d(L,U)] such that λ(Lδ) > 0 and λ(Lcδ) >
0. Here λ denotes Lebesgue measure on V .

P-6. Continuity in P. For all x ∈ F, for all P ∈ P and for every ε > 0,
there exists a δ(ε) > 0 such that |D(x,Q)−D(x, P )| < ε P -almost surely
for all Q ∈ P with dP(Q,P ) < δ P -almost surely, where dP metricises the
topology of weak convergence.

Property P-1. states that the depth does not change after mapping from F
to F, that preserves, up to a scaling factor, the relative distances between
elements in the d metric. The property P-1. ensures, for example, that if the
same data is presented in different scales, or different units, the depths are
not affected.

Properties P-2. and P-3. together ensure the centre-outward ordering, which
is one of the features, depth functions were originally conceived for. Property
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P-2. itself is somewhat paradoxial, as there is no unique notion of symmetry
in function spaces and depth itself is meant to give meaning to the concept
of centre of symmetry. Therefore the deepest element according to the depth
function is also a valid definition of a centre of symmetry, which means
that any depth function fulfills property P-2. as long as supx∈FD(x, P ) =
maxx∈FD(x, P ). It is more insightful to consider some special case, with
particular P for which many notions of centre of symmetry coincide at θ.
Nieto-Reyes and Battey [4] used Gaussian process as such P . Thus, instead
of property P-2., the following property is considered.

P-2G. Maximality at Gaussian process mean. For P a zero-mean, station-
ary, almost surely continuous Gaussian process on V ,
D(θ, P ) = supx∈FD(x, P ) 6= infx∈FD(x, P ), where θ is the zero mean func-
tion.

The upper-semicontinuity in x (property P-4.) is required for depth to be
able to reveal the features of the underlying distribution. Property P-5. can
be used to decrease the importance of a particular subset of the domain
L ⊂ V , where all functions exhibit little variability and most likely overlap
significantly. The property might be desirable, because in such subsets, even
small noise or measurement error can cause significat changes in the order
of the functions. If the importance of those subsets can be decreased when
calculating depth, the effects of small measurement errors and noise are mit-
igated as well. The most important implication of property P-6. is, that
the depth calculated from empirical distibution converges almost surely to
its corresponding population distribution.

3 Band depth

Band depth is one of the proposed functional depth functions. It was intro-
duced by López-Pintado and Romo [3]. The band depth has the same under-
lying idea as simplical depth [2] in multivariate case. That is, the depth of a
point x is determined by the probability of x belonging to a random simplex,
constructed from random j-tuple X1, ..., Xj.

The band depth is defined in the space of continuous functions on V , i.e. C(V).
Therefore, from now on, if not otherwise stated, we use (F, d) = (C(V), ‖·‖∞),
where ‖ · ‖∞ is the supremum norm.

The random simplex in functional space is [4]

Sj(P ) = {y ∈ F : y(v) = α1X1(v)+. . .+αjXj(v) : (αk)
j
k=1 ∈ ∆j∀v ∈ V , (Xk)

j
k=1 ∼ P}
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where j ≥ 2 and ∆j ⊂ Rj−1 is the unit j-simplex. The band depth is then
defined as [3]

DJ(x, P ) =
J∑
j=2

PSj
(x ∈ Sj(P )), (2)

where PSj
is the probability measure over all random simplices Sj.

The corresponding sample analogue is obtained by replacing probability dis-
tribution P by sampling distribution Pn. In n samples, there n choose j
different j-combinations, which means there are as many distinct j-simplices
on F. The sample analogue is thus

DJ(x, Pn) =
J∑
j=2

(
n

j

)−1 ∑
1≤i1<...<ij≤n

I{x ∈ Bij} (3)

where I{A} ∈ {0, 1} is one if and only if A is true,

Bij = {y ∈ F : y(v) = α1Xi1(v) + . . . αjXij(v) : (αk)
j
k=1 ∈ ∆j,∀v ∈ V}

and {(i1, ..., ij) : i = 1, ..., n} is the set of all j-tuples from X1, ..., Xn.

The band Bij is illustrated in Figure 1, where the band of two functions and
one function, belonging to the band are presented.

Figure 1: Illustration of the band formed by two functions: X1 and X2. A
third function, belonging to the band, is marked by a red line.

Next, the band depth is evaluated against the six properties from definiton
2.2. All the proofs folllow the outline provided in [4], but some parts are
clarified for making them easier to follow.
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First, property P-1., i.e. distance invariance is considered. In the space of
continuous functions, the set of functions satisfying d(f(x), f(y)) = af ·d(x, y)
for any x, y ∈ F is

Af = {f : f(x(v)) = a(v)x(v) + b(v), |a(v)| = af > 0,∀v ∈ V}.

Since y(v) = α1X1(v) + . . . + αjXj(v) is equivalent to a(v)y(v) + b(v) =
α1(a(v)X1(v) + b(v)) + . . .+αj(a(v)Xj(v) + b(v)) (because

∑j
i=1 αi = 1), the

probabilities PSj
(x ∈ Sj(PX)) and PSj

(f(x) ∈ Sj(Pf(X))) are the same, when
f ∈ Af . Thus, DJ(x, PX) = DJ(f(x), Pf(X)), so property P-1. is satisfied.

Instead of property P-2., property P-2G. is considered for the reasons de-
scribed in the previous chapter. Thus, P is now assumed to be a zero-mean,
stationary, almost surely continuous Gaussian process on V . From the defi-
nition of the band depth we get

sup
x∈F

DJ(x, P ) ≤
J∑
j=2

sup
x∈F

PSj
(x ∈ Sj(P )).

The simplices in the definition of band depth are defined through separate
random draws from distribution P , which has mean θ = E[X], and since
P is continuous, PSj

is a continuous distribution over simplices. Therefore
it is clear, that the x, which maximizes the probability of x belonging to
a random j-simplex, is x = θ. That yields to supx∈FDJ(x, P ) = DJ(θ, P ),
meaning the band depth satisfies the property P-2G.

The band depth do not satisfy the property P-3., as can be seen from the fol-
lowing counterexample. Let P ∈ P be a discrete distribution with P ({x1}) =
P ({x2}) = 1/2, where x1 and x2 are both constant functions, with x1(v) = −c
for all c ∈ V and x2(v) = c for all c ∈ V , where c ∈ {c ∈ R : c > 0}. Let
j = J = 2. Then PSj

is also discrete, with PSj
(Sj,1) = PSj

(Sj,2) = 1/4 and
PSj

(Sj,3) = 1/2, where Sj,1 = {x1}, Sj,2 = {x2} and Sj,3 = {[x1(v), x2(v)] :
v ∈ V}. Then the band depth DJ(z, P ) has two global maxima; one at
z = x1 and another at z = x2, both with DJ(z, P ) = 3/4. Now we can set
z = x1 without loss of generality. Then, any functions x, y ∈ F = C(V),
that are between x1 and x2, i.e. for which |x(v)| < c and |x(v)| < c for all
v ∈ V , and satisfy max{d(y, z), d(y, x)} < d(x, z), have band depth value of
DJ(x, P ) = DJ(y, P ) = 1/2, which violates the property P-3.

Regarding the property P-4., the case DJ(y, P ) ≤ DJ(x, P ) is trivial. Let us
consider the case DJ(y, P ) > DJ(x, P ). The condition in property P-4. can
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be expressed as

sup
y:d(x,y)<δ

J∑
j=2

PSj
(y ∈ Sj(P ))−

J∑
j=2

PSj
(x ∈ Sj(P )) ≤ ε

For the left hand side of the inequality

sup
y:d(x,y)<δ

J∑
j=2

PSj
(y ∈ Sj(P ))−

J∑
j=2

PSj
(x ∈ Sj(P ))

≤
J∑
j=2

[ sup
y:d(x,y)<δ

PSj
(y ∈ Sj(P ))− PSj

(x ∈ Sj(P ))]

≤ sup
y:d(x,y)<δ

PSj
(y ∈ Sj(P ) ∩ x 6∈ Sj(P )− inf

y:d(x,y)<δ
PSj

(y 6∈ Sj(P ) ∩ x ∈ Sj(P )

≤ sup
y:d(x,y)<δ

PSj
(y ∈ Sj(P ) ∩ x 6∈ Sj(P )

For
sup

y:d(x,y)<δ

PSj
(y ∈ Sj(P ) ∩ x 6∈ Sj(P ) ≤ ε

to hold, we can take δ < sup{η > 0 : P (x 6∈ Sj(P ) ∩ minv∈V(|x(v) −
Lj(v)|, |x(v) − Uj(v)|) < η) ≤ ε}, which ensures that the property P-4.
is satisfied. Here Lj(v) := miny∈Xj

y(v) and Uj(v) := maxy∈Xj
y(v), where

Xj = (X1, ..., Xj) and X1, ..., Xj ∼ P .

Property P-5. is another one, which band depth fails to satisfy. Again, this
can be proofed by a counterexample. Let P be discrete, with probabilities
P [xi] = 1/3 for i = 1, 2, 3 and x1(v) > 0, x2(v) = 0 and x3(v) < 0 for all
v ∈ V , where x1 and x2 are non-constant functions. When function f is as
defined in property P-5., also f(x1)(v) > 0, f(x2)(v) = 0 and f(x3)(v) < 0
for all v ∈ V . When j ∈ {2, 3}, the transformation just shrinks the convex
hull of any simplex in region Lδ, but the probabilities of transformed points
belonging to the transformed random simplices remain the same as before
the transformation. Thus, DJ(x, PX) = DJ(f(X), Pf(X), which violates the
property P-5.

The band depth does not satisfy the property P-6. for all F, but do satisfy,
when F is restricted to the space of equicontinuous functions on V ⊂ R.
Since dP(P,Q) in P-6. metrices the weak topology, dP(P,Q) < δ → 0 can
be written as Xδ ; Y as δ → 0, where ; denotes weak convergence and
Xδ : Ω→ F and Y : Ω→ F are random variables, such that for any A ∈ A,
P (A) = P(X−1δ (A)) and Q(A) = P(Y −1(A)), where P is a probability on the
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underlying sample space Ω. The Portmanteau theorem (e.g. Th. 11.3.3, [1])
states that the probability measures VN and V satisfy VN ; V if and only
if Ef(VN)→ Ef(V ) for all bounded Lipschitz functions f . Let Xδ,1, ..., Xδ,J

to be i.i.d. realizations of random variable Xδ and Y1, ..., YJ to be i.i.d.
realizations of random variable Y .

As Xδ ; Y , also
∑j

k=1 αkXδ,k ; [
∑

k 6=l αkXδ,k] + αlYl, for any l ∈ {1, ..., j},
where j ∈ {2, ..., J} and for any (α1, ..., αj) ∈ ∆j. Then, by the Portmanteau
theorem, there exist a δ < δl such that

|E[f(

j∑
k=1

αkXδ,k)]− E[f([
∑
k 6=l

αkXδ,k] + αlYl)]| < δ/j.

Hence

|E[f(

j∑
k=1

αkXδ,k)]− E[f(

j∑
k=1

αkYk)]|

≤
j∑
l=1

|E[f(

j∑
k=1

αkXδ,k)]− E[f([
∑
k 6=l

αkXδ,k] + αlYl)]| < δ

for all δ < min{δl :∈ {1, ..., j}}. Let us define ZX(δ),j(α) :=
∑j

k=1 αkXδ,k and
ZY,j(α) :=

∑j
k=1 αkYk. Then, by the Portmanteau theorem, it follows that

ZX(δ),j(α) ; ZY,j(α), for any j ∈ {2, ..., J} and any α ∈ ∆j. Thereby, for
every finite subset α1, ...,αl, where αk ∈ ∆j for each k ∈ {1, ..., l}, holds
(ZX(δ),j(α1), ..., ZX(δ),j(αl)) ; (ZY,j(α1), ..., ZY,j(αl)).

Theorem 1.5.4 of van der Vaart and Wellner [7] state that for an arbitrary
Xα : Ωα → L∞(T ), Xα converges weakly to a tight limit if and only if Xα is
asymptotically tight and the marginals (Xα(t1), ..., Xα(tl)) converge weakly
to a limit for every finite subset t1, ..., tl of T . It also states, that if Xα is
asymptotically tight, and its marginals converge weakly to the marginals of
a stochastic process X, i.e. (X(ti), ..., X(tl)), then there is version of X such
that Xα ; X. Here (ZX(δ),j(α1), ..., ZX(δ),j(αl)) is a finite set of arbitrary
marginals of the stochastic process ZX(δ),j := {ZX(δ),j(α) : α ∈ ∆j}, which is
the map ZX(δ),j : Ωj → F(∆j) = C(V ,∆j) ⊂ L∞(V ×∆j), where L∞(V ×∆j)
is the space of bounded functions from (V × ∆j) to R. In the same way,
(ZY,j(α1), ..., ZY,j(αl)) is an arbitrary finite set of marginals of the stochastic
process ZY,j := {ZY,j(α) : α ∈ ∆j}. Therefore, by the aforementioned
definition, ZX(δ),j ; ZY,j for every j ∈ {2, ..., J}, if ZX(δ),j is asymptotically
tight for any j ∈ {2, ..., J}. ZX(δ),j is asymptotically tight, if for every ξ > 0
there exist a compact set K such that lim infδ→0 PZ(δ),j(ZX(δ),j ∈ Kη) ≤ 1−ξ
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for every η > 0, where PZ(δ),j is defined at every A ∈ A by PZ(δ),j(A) =
Pj(Z−1X(δ),j(A)).

According to another theorem by van der Vaart and Wellner (Th. 1.5.7,
[7]), PZ(δ),j is asymptotically tight if and only if PZ(δ),j(v,α) is tight in R
for every w = (v,α), and there exist a semimetric dw on W = (V × ∆j)
such that (W , dw) is totally bounded and PZ(δ),j is asymptotically uniformly
dw-equicontinuous in probability, i.e. for every κ, ς > 0 there exists a γ such
that

lim sup
δ→0

PZ(δ),j

(
sup

w,w′:dw(w,w′)<γ

|ZX(δ),j(w)− ZX(δ),j(w
′)| > κ

)
< ς.

ZX(δ),j(v,α) is tight, because F is copmlete. Since V is compact, W is also
compact. Thereby (W , dw) is totally bounded, when we select dw to be l1
norm. Then, it remains to show that PZ(δ),j is asymptotically uniformly
dw-equicontinuous in probability. Now we have

Pr

(
sup

w,w′:dw(w,w′)<γ

|ZX(δ),j(w)− ZX(δ),j(w
′)| > κ

)
≤ Pr

(
sup

w,w′:dw(w,w′)<γ

|ZX(δ),j(v,α)− ZX(δ),j(v
′,α)| > κ/2

)
+Pr

(
sup

w,w′:dw(w,w′)<γ

|ZX(δ),j(v
′,α)− ZX(δ),j(v

′,α′)| > κ/2

)
= I + II.

Since F is now defined to be the space of dw-equicontinuous functions over V ,
and since dw-equicontinuity is preserved under convex combinations, ZX(δ),j(·,α)
is dw-equicontinuous with probability 1. Hence, for every κ, ς > 0, there exists
a γ > 0 such that I < ς/2. As v′ ∈ V is fixed in II, it is obvious, that when
γ is small enough, it follows that II < ς/2. As the bound on I and II hold
independently of δ, PZ(δ),j is asymptotically uniformly dw-equicontinuous in
probability.

Thus, by Theorem 1.5.4 of van der Vaart and Wellner [7], we now know that
ZX(δ),j ; ZY,j for every j ∈ {2, ..., J}. Now, by the Portmanteau theorem
(Th. 11.3.3, [1]), we get that there exists a η ↘ 0 as δ ↘ 0 such that
ρ(PZ(δ),j, QZ(Y ),j) = M < η(δ), where QZ(Y ),j(a) = Pj(Z−1Y,j(A)) and ρ denotes
the Lévy-Prokhorov metric. That means, that for all A ∈ A, PZ(δ),j(A) ≤
QZ(Y ),j(A

ξ)+ ξ for all ξ ∈ [M, η(δ)), where Aξ := {p ∈ F|∃q ∈ A, d(p, q) < ξ}
is the ξ-neighborhood of A. By setting B(x) = ∪{A ∈ A : x ∈ A}, we get
PZ(δ),j(B(x)) ≤ QZ(Y ),j(B(x)ξ) + ξ for all ξ ∈ [M, η(δ)). By the symmetry
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of Lévy-Prokhorov metric and since B(x) ⊂ B(x)ξ for ξ > 0, we get that
|PZ(δ),j(B(x))−QZ(Y ),j(B(x))| ≤ ξ < η(δ). Thus,

|DJ(x, P )−DJ(x,Q)| ≤
J∑
j=2

|PZ(δ),j(B(x))−QZ(Y ),j(B(x))| < (J − 1)η(δ).

By setting ε = (J−1)η(δ) and replacing every δl in the above derivations with
δ = η−1(ε/(J − 1)), property P-6. is satisfied with the additional constraint,
i.e. F restricted to be the space of equicontinuous functions on V ⊂ R.

To sum it up, from the six desired properties for the functional depth, the
band depth satisfies four, i.e. P-1., P-2G., P-4. and P-6. Altough for P-6.
additional constraint is required. The band depth fails to satisfy properties
P-3. and P-5.

4 Simulations

Then, the properties of the band depth are examined in practice through
simulation data. In this study, two simulation scenarios are considered. The
first case is to examine, what kind of effect different noises in the measure-
ments cause in the band depth values. In the second case, the receptivity of
the band depth to shape differences is considered.

In the first simulation scenario, the data consist of random constant func-
tions, with additional noise, i.e. Xi(t) = Yi + Zi(t), where Yi for every
i ∈ {1, ..., N} are independent realizations of random variable Y ∼ N (0, 1),
Zi(t) for every i ∈ {1, ..., N} and for every t ∈ {1, ..., T} are independent
realizations of random variable Z ∼ N (0, σ2

z). N is the number of simulated
functions and T is the number of observed points in each function. The
parameters used in every simulation are N = 30 and T = 100. When cal-
culating the band depth values, the maximum number of functions used for
constructing the simplices, were set to J = 3.

Similar simulations are run with four different noise, by using different vari-
ances σ3

z . The used variances are σ2
z,1 = 0, σ2

z,2 = 0.05, σ2
z,2 = 0.2 and

σ2
z,3 = 0.5. One realization from each simulation with different σ2

z , but same
Yi for every i ∈ {1, ..., N}, are shown in Figures 2 to 5. In the figures, the
function with the highest band depth, is marked by red line. The colors of
other functions are also determined by their corresponding band depth val-
ues, such that darker color indicate higher depth value compared to other
functions in the same figure.
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Figure 2: One realization of simulation
without additional noise.

Figure 3: One realization of simulation
with noise variance equal to 0.05.

From Figure 2, it can be seen that when there is no noise, the band depth
gives the highest depth value to the function, corresponding to the sample
median. Based on Figure 2 and Figure 3, it seems that the band depth
works better as some noise is added, since the function getting the highest
depth value is closer to zero compared to the deepest function in Figure 2.
In both of the figures, the depth values decrease smoothly as the distance
to the deepest function increases. The highest band depth value in the first
case, i.e. without noise, is 0.774 and in the second case, with σ2

z,2 = 0.05,
the maximum depth is 0.697. In all of the simulations, the smallest achieved
band depth value is 0.097, which means that the function belonged only to
those simplices, which were defined by using the function itself. Thereby
that is the lowest possible band depth value, when parameters N and J are
fixed. Every function, that for any t, obtains higher or lower value than any
other sample, gets the lowest possible band depth value regardless of the rest
of the function.

Examples of simulation results with variances σz,2 = 0.2 and σz,3 = 0.5 are
presented in Figures 4 and 5, respectively. There are still some differences
in the band depth values in Figure 4, as the highest depth value is 0.463.
In Figure 5, there is not much differences in the colors of the functions, and
the highest depth value in that case is only 0.145. There are also great
differences in the amount of functions obtaining the lowest possible depth
value. Without additional noise, the number of functions with minimum
band dept is obviously two. When the noise is increased to 0.05, the number
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Figure 4: One realization of simulation
with noise variance equal to 0.20.

Figure 5: One realization of simulation
with noise variance equal to 0.50.

of minimum band depth functions is increased by only one. With σ2
z,2 = 0.2,

the corresponding amount is already seven, but in the last case, over half of
the 30 functions, i.e. 18 functions, get the same, lowest possible depth value.

The second simulation scenario considered the band depth of functions with
differences in shapes. For that purpose, simulation model, similar to the
noiseless case in the last scenario, is used. The difference in this case is, that
if Yi < β, then Xi(t) = Yi + 0.1sin(t/2). Otherwise Xi(t) = Yi, for every
t ∈ {1, ..., T}. One realization of such simulation is presented in Figure 6. In
this simulation, parameter β = 0.16 is used. The colors in the figure has the
same meanings as in the previous figures.

From Figure 6, it can be seen that the band depth do not differentiate the
functions based on the shape, as the function with the largest depth value is
actually one of the functions with the shape distortion.

5 Results and discussion

As showed in Chapter 3, the band depth fail to satisfy two of the six prop-
erties. The properties, which the band depth fail to satisfy, are P-3., i.e.
strictly decreasing with respect to the deepest point, and P-5. i.e. receptiv-
ity to convex hull width across the domain. However, the failure to fulfill all
of the properties does not mean that the band depth is especially bad as a
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Figure 6: One realization of simulation with functions with different shape.

functional depth. As a comparison, in the study of Nieto-Reyes and Battey
[4], six different functional depth constructions were considered, and none of
them were able to satisfy all the properties.

In addition, not all of the properties are desired in every occasion. For
example, the property P-5., which is related to the robustness of the depth
function, might not always be desirable. The property state, that the regions,
where the convex hull of the functions is small, should contribute less to the
depth value compared to other regions, with wider convex hull. In some
cases however, it might be that a seemingly normal function exhibit slight
abnormality at the region, where all the function values are close to each
other. Then it might be appropriate for the functional depth to identify the
abnormality, by giving the function smaller depth value, which might not
happen, if the impact of such region is neglected.

One of the main tasks for functional depth is to provide a center outward
ordering of the data. Therefore the failure to satisfy property P-3. might be
considered as a more significant drawback of the band depth. This should
be taken into account especially if the underlying distribution is examined
by using the order statistics of sample functions based on the band depth
values.

From the simulations in Chapter 4, it can be seen that the band depth
works well and as expected, when the noise variance is relatively low. When
comparing the two simulations with the smallest variances, it looks like the
one with higher variance has a deepest function closer to zero. However, this
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is only due to the small sample size, and the deepest function in the constant
case would get closer to zero, if the sample size is increased.

In the two simulations with higher noise variance, the range of the depth
values grew smaller and smaller as the noise increased. In the simulation
with the highest noise, 60% of the samples received the same depth value.
That is also not desirable, if the functions should be ordered based on the
depth values. Due to the inherent properties of the band depth, even one
abnormal value can determine the band depth of the whole function. In some
applications, that is highly sought after property (for example in health care,
even the smallest events can be significant), whereas in other applications it
might make the band depth totally useless. When this property is combined
with the failure to satisfy property P-5. and the observation from the high
noise simulation case, the following example can be concluded. Consider
a set of functions, which are 99.9% of the time the same as in the first
simulation case, and during the rest 0.1%, they get values corresponding to
the high noise simulation case, multiplied of very small ε > 0. Now, by
using the band depth, those functions would get depth values only based
on the 0.1% region, and the depths would be the same as in the high noise
simulation case. Again, it depends on the application, wether this is a good
or bad feature. Nevertheless, some of the shortcomings of the band depth
are corrected in other functional depth constructions, closest example being
modified band depth by López-Pintado and Romo [3], but they have then
their own drawbacks.

Another lack of the band depth is the negligence of the shape of the functions,
which can be clearly noticed in the last simulation case. However, if the
function values are close enough, functions with different shapes might easily
cross over many functions with ’normal’ shape. In that case, the band depth
values are highly affected by the shape differences, even though the shape is
not explicitly considered.
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