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1 Introduction

Organizations typically consider more projects proposals than there are re-
sources for pursuing them. Consequently, organizations are faced with the
problem of selecting the subset or portfolio of projects that best matches
their preferences. Often the aim is to minimize the costs of the portfolio,
such that this portfolio fulfills some specified value requirements. For ex-
ample, municipalities may need to organize their legitimate duties, such as
education and health care, with the lowest possible expenses.

At the time of selection, the projects’ costs are typically uncertain. Hence,
the selection decision is made based on the projects’ estimated costs. How-
ever, generally the ex post costs of the selected projects differ from their ex
ante estimates. In particular, studies on real data have shown that the se-
lected projects often cost more than anticipated (Flyvberg et al. 2002;Siemi-
atycki 2009; Jørgensen 2013).

Many studies suggest that this occurs due to a downward systematic bias in
the projects’ cost estimates. For instance, Flyvberg et al. (2002) show that
the average cost overrun of 258 large transportation infrastructure projects
is 27.6%. They explain these overruns by strategic misrepresentation, i.e.,
lying, motivated by economical or political agendas of the project promoters.
Siemiatycki (2009) also explains the cost overruns found in transportation
infrastructure projects by systematic bias. He finds that governmental audits
tend to explain the systematic bias in cost estimation by technical difficulties
of delivering large, complicated projects.

Yet, even if there is no systematic bias in the projects’ cost estimates, cost
overruns are expected to occur due to selection bias. Selection bias occurs,
because the costs of the projects that have been selected based on low es-
timated costs are likely to have been underestimated. As a result, the cost
estimates of the selected projects are biased, even though the set of all the
cost estimates would be unbiased. This bias was first noted in the financial
literature by Brown in his note in 1974, and then described more formally
by Harrison and March (1984). More recent studies have been made by, e.g.,
Vilkkumaa et al. (2014), Begg and Bratvold (2008), and Smith and Winkler
(2006) and Jørgensen (2013).

Both causes for cost overruns are undesired. However, due to the different
nature of these causes, the two biases should be mitigated in a different
fashion. For example, Vilkkumaa et al. (2014) show how selection bias can
be diminished with Bayesian modeling. On the other hand, Flyvberg et al.
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(2002) suggest that the mitigation of systematic bias in cost estimation could
be possible with regulations and penalties for consistent estimation errors.
Thus, the mitigation of the biases in the estimates requires knowledge about
the relative amounts of the two biases.

The relative magnitudes of the biases could be estimated by building a statis-
tical model between the costs and the cost estimates, the parameters of which
could be estimated from empirical data on the realized and estimated costs.
This approach, however, is problematic because the realized costs are only
observed for the implemented projects. Thus, the data of the estimated and
realized costs is incomplete, and consequently ordinary maximum likelihood
(ML) estimation of the model parameters is not possible.

ML parameter estimation from an incomplete data set is possible by utiliz-
ing the Expectation Maximization (EM) algorithm, introduced by Dempster
et al. (1977). This algorithm consists of two steps: expectation step and
maximization step. The expectation step computes the expected values of
the missing data given the current estimates for the parameter values. In the
maximization step, the ML-estimates of the model parameters are updated
by using the complete data, which consists of the incomplete data and the
expected values of the missing data. These two steps enable iterative compu-
tation of the ML-estimates of the parameters with a guaranteed convergence
for regular exponential families (see, e.g., Wu (1983)).

In this study we develop a statistical model between the costs and cost es-
timates, which is based on the work of Vilkkumaa and Liesiö (2015). The
parameters of this model can be used to estimate the relative magnitudes of
selection and systematic biases. To estimate these parameters, we formulate
the EM-algorithm for project portfolio selection when the portfolio is selected
with the aim of minimizing costs. Then, we analyze by simulation how well
the parameters estimated with the algorithm can be used to compute the
relative magnitudes of the two biases. In particular, we demonstrate how the
number of estimated projects and the relative amount of missing data affects
the estimation of the biases.

The rest of the study is structured as follows. In section 2, we present the
statistical model for the true and estimated costs and formulate the biases. In
section 3, we show how to apply the EM-algorithm to the model. In section
4, we apply the algorithm to empirical data by Ohlsson et al. (1998, 1999)
to obtain realistic parameter values for testing the model. We then use the
estimated parameters in section 5 for validating algorithm with Monte Carlo
simulation. Finally, section 6 concludes.



3

2 Model framework

Consider N project candidates, out of which the portfolio will be selected.
The true costs of these projects are c = [c1, . . . , cN ]. These costs are assumed to
be realizations of independent lognormally distributed random variables Ci ∼
LogN(µ, σ2), i = 1, . . . , N . Lognormal distribution has a non-negative domain,
which includes arbitrary high values, and is thus suitable for modeling costs.

Cost estimates cE =
[
cE1 , . . . , c

E
N

]
are modeled as realizations of conditionally

independent random variables (CEi |Ci = ci) = ∆ci, where ∆ ∼ LogN(η, τ2). This
model is justified by, e.g., the shape of the data of cost escalations in Fly-
vberg et al. (2002), which resembled lognormal distributions. Moreover, a
multiplicative error model for the cost estimates reflects the fact that er-
rors in cost estimates are often proportional to the true costs of the projects
(Keisler 2004).

Because the projects’ true costs c = [c1, . . . , cN ] are unknown ex ante, the
optimal portfolio is selected based on the cost estimates cE =

[
cE1 , . . . , c

E
N

]
. We

denote the selected project portfolio with a binary vector z = [z1, . . . , zN ]T ∈
{0, 1}N×1, where zi = 1 if and only if the project i is selected in the portfolio
and zi = 0 otherwise. Using this notation, the optimal project portfolio can
be obtained as a solution to the problem

z
(
cE
)

= arg min
z∈Z

cE · z, (1)

where Z = {z|g (z) ≤ 0} is the set of feasible portfolios. If, for instance, the
value of the selected portfolio v (z) is required to exceed some threshold v∗,
then Z = {z|v∗ − v (z) ≤ 0}.

Biases

The conditional expected values E
[
CEi
∣∣Ci = ci

]
of the cost estimates CE =[

CE1 , . . . , C
E
N

]
do not necessarily coincide with the true costs C = [C1, . . . , CN ], in

which case the cost estimates are biased. Formally, there is a systematic bias
(SyB) in cost estimate CEi if and only if E

[
CEi
∣∣Ci = ci

]
= E [∆] ci = eη+

1
2 τ

2

ci 6= ci,
i.e., when η + 1

2τ
2 6= 0.

Given η and τ2, the cost estimates can be debiased by multiplying them by
factor e−η−

1
2 τ

2

. The debiased cost estimates form a vector c̃E =
[
c̃E1 , . . . , c̃

E
N

]
,

where c̃Ei are realizations of random variables C̃Ei = e−η−
1
2 τ

2

CEi . Because
E
[
C̃Ei

∣∣∣Ci = ci

]
= e−η−

1
2 τ

2

eη+
1
2 τ

2

ci = ci for all i = 1, . . . , N , these estimates are

indeed unbiased.
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In general, using the debiased cost estimates c̃E can yield different optimal
portfolios than the initial cost estimates cE. Nevertheless, since the debiasing
factor e−η−

1
2 τ

2

is constant for all cost estimates, replacing the possibly biased
cE with the debiased estimates in (1) yields the same optimal portfolio. Thus,
we note that z

(
c̃E
)

= z
(
cE
)
.

In addition to systematic bias, the cost estimates are expected to differ from
the true costs due to selection bias (SeB), which occurs when cost underes-
timation increases the chances of selecting a project. The expected relative
cost overrun of a project portfolio - referred to as the total bias (TB) - thus
consists of both systematic and selection biases. These biases are defined
more formally below.

Definition 1 Let C, CE and C̃E be the true, estimated and debiased esti-
mated costs, respectively. Let z

(
CE
)

be defined as in 1, but with random cost
estimates CE. The total bias (TB), selection bias (SeB) and systematic bias
(SyB) are defined as

TB =
Cportfolio − CEportfolio

CEportfolio
=
C · z

(
CE
)
− CE · z

(
CE
)

CE · z (CE)

SeB =
Cportfolio − C̃Eportfolio

C̃Eportfolio
=
C · z

(
CE
)
− C̃E · z

(
CE
)

C̃E · z (CE)

SyB = TB − SeB.

(2)

From the above formulas it can be seen, that positive values of the biases
correspond cost underestimation, referred to as downward biases in the es-
timation. Correspondingly, the negative values and overestimation will be
referred to as upward biases.

3 Parameter estimation

The statistical model presented in the previous section includes four param-
eters, θ =

[
µ, σ2, η, τ2

]
. Would the data

(
cE , c

)
be complete, the Maximum

Likelihood (ML) estimates of these parameters could be computed in a con-
ventional way. However, those projects that are not selected in the portfolio
are never carried out, and consequently there is no data of their true costs.
Thus, the data of the true and estimated costs is incomplete, and more elab-
orate methods to compute the ML-estimates for the parameters θ are needed.
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We present an Expectation Maximization algorithm to compute the ML-
estimates of the model parameters from incomplete data. The algorithm is
initialized by computing the initial values for the model parameters from
the incomplete data. In the Expectation step, the expected values of the
missing data are computed, conditioned on the incomplete data and the
current parameter values. In the Maximization step, the algorithm computes
the conventional ML-estimates from completed data, which consist of the
incomplete data and the expected values computed in the previous step.
The parameter values are then updated for the following iteration, using the
newly computed ML-estimates. These steps will be repeated until a specified
tolerance level is met.

The EM-algorithm is especially useful when the distribution of the complete
data comes from an exponential family, as the lognormal distribution does.
For exponential families, deriving a closed formula for both the steps of the
algorithm is possible, thus much alleviating computation.

Before moving on to the formal definition of the algorithm for our statistical
model, some of the used notations should be clarified. We denote the indices
of the M ≤ N selected projects by I∗ and those of the N −M non-selected
projects by I◦. Using these notations, the logarithms of the observed true
costs of the selected projects are ln c∗ := {ln ci|i ∈ I∗}. Similarly, the logarithms
of the non-observable costs of the non-selected projects are ln c◦ := {ln ci|i ∈ I◦}.
For notational convenience, we denote the data as sets instead of vectors.

Initialization of the algorithm: Set the initial values of the parameters
θ = θ̂0 =

[
µ̂0, σ̂

2
0 , η̂0, τ̂

2
0

]
as

µ̂0 =
1

N

N∑
i=1

ln cEi − η̂0, σ̂2
0 =

1

M − 1

∑
i∈I∗

[
ln2 ci−

( 1

M

∑
i∈I∗

ln ci
)
2
]

(3)

η̂0 =
1

M

∑
i∈I∗

(
ln cEi − ln ci

)
τ̂20 =

1

M − 1

∑
i∈I∗

(
ln2 cEi − 2 ln cEi ln ci + ln2 ci − η̂20

)
.

Expectation step:
Given that θ = θ̂k =

[
µ̂k, σ̂

2
k, η̂k, τ̂

2
k

]
, compute the conditional expected values for

the missing data ln c◦ =
{
E
[
lnCi

∣∣lnCEi = ln cEi
]∣∣i ∈ I◦} and ln2 c◦ =

{
E
[
ln2 Ci

∣∣lnCEi =

ln cEi
]∣∣i ∈ I◦}, with

E
[
lnCi

∣∣lnCEi = ln cEi
]

=
τ̂2k

τ̂2k + σ̂2
k

µ̂k +
σ̂2
k

τ̂2k + σ̂2
k

(
ln cEi − η̂k

)
E
[
ln2 Ci

∣∣lnCEi = ln cEi
]

=
τ̂2k σ̂

2
k

τ̂2k + σ̂2
k

+ E
[
lnCi

∣∣lnCEi = ln cEi
]2
.

(4)
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Maximization step:
Using the complete data

(
ln cE , ln c∗, ln c◦, ln2 c∗, ln2 c◦

)
, compute the ML-estimates

θ̂k+1 =
[
µ̂k+1, σ̂

2
k+1, η̂k+1, τ̂

2
k+1

]
from

µ̂k+1 =
1

N

N∑
i=1

ln ci, σ̂2
k+1 =

1

N − 1

N∑
i=1

(
ln2 ci − µ̂2

k+1

)
(5)

η̂k+1 =
1

N

N∑
i=1

ln cEi − µ̂k+1 τ̂2k+1 =
1

N − 1

N∑
i=1

(
ln2 cEi − 2 ln cEi ln ci + ln2 ci − η̂2k+1

)
.

If
∥∥∥θ̂k+1 − θ̂k

∥∥∥ < δ, terminate the algorithm. If not, set k := k + 1 and θ = θ̂k+1

and return to the Expectation step with the new θ.

Detailed derivations of the steps of the algorithm are in the appendix.

4 Application to student project data

In this section we apply the EM-algorithm to empirical data. We use data
from a software development course held at the department of Communica-
tion Systems in Lund University. The data was initially reported by Ohlsson
et al. (1998) and Ohlsson and Wohlin (1999), who studied ways to improve
the students’ ex ante effort estimates.

Data characteristics

The data consists of estimated and realized efforts of student projects. Be-
cause every student project was carried out, the data is complete, i.e., the
true efforts are observed for each project. This is useful, because (i) it en-
ables estimating θ with the algorithm using different amounts of implemented
projects M and (ii) the estimation results can be compared to conventional
ML-estimates computed from the complete data.

The software development course would be held annually, and the data pre-
sented in Ohlsson et al. (1998) and Ohlsson and Wohlin (1999) consists of
courses from three different years (1995, 1996 and 1998). During these years,
the projects and groups implementing them would not vary significantly;
nearly identical projects would be carried out by different groups that were
made as equal in size and expertise as it is possible in an educational en-
vironment. The data on the different groups’ true and estimated efforts is
presented in Table 1.
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Table 1: The data of student software development projects from Ohlsson
et al. (1998) and Ohlsson and Wohlin (1999)

Data Estimate (h) Outcome (h) ∆=Estimate/Outcome
i/year 1995 1996 1998 1995 1996 1998 1995 1996 1998

1 1182 1346 704 963 977 734 1.23 1.38 0.959
2 886 1415 908 599 1385 665 1.48 1.02 1.37
3 755 1172 1200 745 958 895 1.01 1.22 1.34
4 690 1010 868 810 1021 792 0.852 0.989 1.10
5 965 1183 986 1030 1265 1217 0.937 0.935 0.810
6 1001 1200 956 1000 1630 1332 1.00 0.736 0.718
7 1004 1096 776 894 951 739 1.12 1.15 1.05
8 816 736 1.11
9 1443 1500 0.962

10 1364 1017 1.34
11 1232 1189 1.04
12 796 958 0.831

To check whether the data from three different years could be combined to
compose one large sample, we tested that the variances and the means of the
data did not vary annually. Because our statistical model assumes lognormal
random variables and the used statistical tests require normal data, the tests
were made for the logarithms of the data.

First, Bartlett’s test was used to test the homogeneity of the variances. In
this test, the null hypothesis of equal population variances across all the k

populations H0 : σ2
1 = σ2

2 = · · · = σ2
k is tested against the alternative hypothesis

of unequal variances between at least two populations H1 : ∃ i, j s.t. σ2
i 6= σ2

j .
Table 2 shows that it is likely to obtain these kinds of samples when the
null hypothesis stands, because the p-values are large and χ2 < χ2

critical for
both the effort outcome and relative estimation error ∆. Thus, Bartlett’s
test indicates that the variances of the logarithms of the samples from three
years are equal at α = 0.05 significance level.

Table 2: Results from the Bartlett’s test for equal variances of the
logarithms of the data in Table 1.

data/variable χ2 p-value χ2
critical (α = 0.05, df = 23)

ln Outcome 0.892 0.640 35.2
ln ∆ 0.106 0.949 35.2
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Then, the equality of the means of the annual data were tested with One-way
ANOVA, which tests differences among population means in terms of a single
factor (year of the course). The null hypothesis of ANOVA is equal means
of all k populations H0 : µ1 = µ2 = · · · = µk, and the alternate hypothesis is
that at least two populations have different means H1 : ∃ i, j s.t. µi 6= µj.
The results of the one-way ANOVA are presented in Table 3. There is no
statistically significant difference between the logarithms of the outcomes
and ∆s of different years, because F < Fcritical for both of the sample sets.
Thus, because the variances and means of the data from different years have
no statistically significant difference, we could combine the data of different
years and treat them as one large sample.

Table 3: Results of the one-way ANOVA for the student data logarithms.

data/variable F p-value Fcritical (α = 0.05, (df1, df2) = (2, 23))
ln Outcome 2.86 0.078 3.42

ln ∆ 0.092 0.912 3.42

Table 4: Results of Shapiro-Wilk test for the data logarithms.

data/variable W p-value Wcritical (α = 0.05, n = 26)
ln Outcome 0.974 0.738 0.920

ln ∆ 0.974 0.740 0.920
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Figure 1: The histograms of the student project data. The artihmetic
means of the samples are marked with solid and medians with dashed lines.

We also checked the lognormality of the data with with Shapiro-Wilk normal-
ity test, which tests the null hypothesis of a normally distributed population
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(see Table 4). Because W > Wcritical and consequently p > 0.05 for both data
sets, the null hypothesis is not rejected and the lognormality assumption
stands. The lognormality of the data was also confirmed by the histograms
of effort outcomes and estimation errors shown in Figure 1.

Application of the EM-algorithm

Having confirmed that the student data is lognormal and can be used as one
large sample, we estimated the parameters θ with the algorithm from the
presented data. To do this, we considered portfolio selection processes (as in
(1)) with one feasibility constraint that limits the number of selected projects:

Z =

{
z

∣∣∣∣pN − N∑
i=0

zi = 0

}
, where p = M/N ∈ (0, 1]. This is useful, because

(i) selection bias is most distinctive when projects are selected solely based
on their estimated costs (see, e.g., Jørgensen 2013), and

(ii) we are essentially interested in the effect of the amount of missing data
on the estimation precision, and the constraint of fixing the amount of
selected projects is the simplest one for this purpose.

In addition, this kind of project portfolio selection fits well to the student
data where all projects can be considered to provide equal value, and thus
it would be reasonable to select a portfolio of the student projects based the
mere effort (cost) estimates.

The results of the parameter estimation are presented in Table 5. Based
on this table, the values of µ̂ vary relatively little. However, the rest of
the parameters fluctuate more; for example, η̂ varies to ten times greater
value when p is increased from 0.1 to 0.3. More implemented projects and
larger p and M yield faster convergence of the algorithm and seemingly better
estimates of the parameters as compared to the complete data ML-estimates
computed with p = 1.

Table 5: Parameters θ estimated with EM-algorithm from the student data
and the iterations required for convergence at tolerance level δ = 10−7.

(p,M)/parameter µ̂ σ̂2 η̂ τ̂2 iterations
(0.1, 3) 6.90 0.0351 0.0207 0.0111 780
(0.3, 8) 6.71 0.0185 0.207 0.0387 126

(0.5, 13) 6.85 0.0515 0.0734 0.0383 36
(0.7, 18) 6.84 0.0450 0.0824 0.0356 22
(0.9, 23) 6.87 0.0588 0.0562 0.0397 10

(1, 26) 6.88 0.0648 0.0451 0.0373 1
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Interestingly, the effort estimates of the students were pessimistic; the effort
estimates were on average larger than the true efforts, because η̂+ 1

2 τ̂
2 > 0 with

all the estimated parameters. This can perhaps be explained by incentives
to overestimate effort in a noncompetitive student environment. Unlike in
competitive settings, the student projects will be carried out regardless of
the estimated effort. Being pessimistic about the estimated effort might pay
off, since overestimating effort would lead to excessive available time and
consequently ease the implementation of the project, which could be of some
of the students’ interests.

To see how well the estimated parameter values fit the data for different
values of p, lognormal distributions corresponding to p = 0.1, p = 0.5 and
p = 1 were plotted in the same graph with the histograms of the complete
data (in Figure 2). With both p = 0.1 and p = 0.5, the distributions of the
effort outcomes are close to the distribution using the complete data ML-
estimates of the parameters with p = 1. While the distribution of the relative
estimation errors ∆ is rather narrow when p is very small 0.1, when p = 0.5 also
the distribution of ∆ is really close to such distribution with p = 1. Thus, even
with half of the true efforts missing, we were able to estimate distributions
nearly identical to the best-case scenario when p = 1.
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Figure 2: The histograms of the student project data and the estimated
probability density functions of Ci and ∆.
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5 Algorithm validation with simulation

Due to the small sample size and the fact that only one problem instance was
considered, no statistically significant results on the performance of the EM-
algorithm can be drawn from the results presented in the previous section.
Furthermore, to compare the estimated and true values of the parameters θ,
knowledge about the true values of the parameters is required.

We use Monte Carlo to systematically test the performance of the algorithm.
Simulation allows generating data from a known distribution, thus enabling
thorough analysis of the estimates by comparison with the true values. In
keeping with the previous section, we simulate the selection of p = M/N

projects with the lowest estimated cost. The simulation proceeds as follows.

(i) Initialization

- Set the true values to the parameters θ =
[
µ, σ2, η, τ2

]
.

- Select the amount N of project proposals and the relative share p of
selected projects.

(ii) Data generation

- Generate N project costs ci from Ci ∼ LogN
(
µ, σ2

)
, i = 1, . . . , N .

- Generate N ∆s from ∆ ∼ LogN
(
η, τ2

)
and compute the corresponding

estimated costs cEi = ∆ci, i = 1, . . . , N .

(iii) Portfolio selection

- Select M = pN projects with the lowest costs to the portfolio.

- Divide the indices to those of the selected projects I∗ and those of the
non-selected projects I◦.

(iv) Parameter estimation

- Execute the EM algorithm with the incomplete data
(
ln cE , ln c∗

)
, and

obtain the estimated model parameters θ̂ =
[
µ̂, σ̂2, η̂, τ̂2

]
.

- Compute the different biases through (2).

(v) Store the results and return to step (ii).

Realistic parameter values for the validation of the algorithm were estimated
from student data in the previous section. Because the earlier literature
suggests that the systematic bias can generally be expected to be downward
(Flyvberg et al. 2002; Siemiatycki 2009; Jørgensen 2013), a data set with a
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downward systematic bias (η + 1
2τ

2 < 0) is included by changing the sign of
parameter η. Table 6 presents such parameter values used in the simulation.

Table 6: The values of the parameters θ used for data generation in the
simulation.

value set\parameter µ σ2 η τ2

1 6.88 0.0648 0.0451 0.0373
2 6.88 0.0648 -0.0451 0.0373

Different values for the amount N of project proposals and the relative share
p of selected projects are used. We analyze the effect of varying p from 0.1 to
1 and N from 20 to 1000.

For each p and N , project portfolio selection is simulated 10000 times. The
expected values of the parameters θ estimated with the EM-algorithm are
computed as arithmetic means of the estimated parameters θ̂ from the 10000

simulation rounds, and these means will be compared to the true values of
the parameters. The expected values of the biases are studied in a similar
fashion; the biases are computed with the true and the estimated parameter
values, and the means of these biases are then compared.

Results with upward systematic bias

Figure 3 presents the mean estimates of the model parameters when η +
1
2τ

2 > 0. Increased relative amount of implemented projects p was observed
to increase estimation precision. When p ≥ 0.5, the estimates were fairly
accurate, besides τ̂2 with small N . The average estimates differed more from
the true parameter values when p was decreased, especially with small N .
When p = 0.1 and N = 20, we observed a systematic overestimation of the
parameters µ and σ2, and a systematic underestimation of the parameters η
and τ2. However, as the number of the estimated projects was larger (N ≥ 150)
the bias was changed to the overestimation of η and τ2 and underestimation
of µ and σ2.

Table 7 illustrates the relative errors Err [x̂] = 100% × (x−Avg[x̂]) /Avg [x̂] , x ∈{
µ, σ2, η, τ2

}
of the means Avg [·] of the estimates for a medium sample size of

N = 150. It can be seen that the estimates of µ and σ2 are fairly accurate,
but the estimates of η and τ2 are slightly worse.
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Figure 3: Average values of parameter estimates for different p and N , when
η + 1

2τ
2 > 0. 10000 simulation rounds.

Table 7: The relative error of the means of each model parameter estimate,
when N = 150 and p varies.

parameter\p 0.1 0.3 0.5 0.7 0.9 1
Err [µ̂] (%) 0.23 0.077 0.013 0.0021 0.0033 0.0050

Err
[
σ̂2
]

(%) 3.4 1.3 0.0020 0.051 -0.11 -0.015
Err [η̂] (%) -26 -11 -2.6 -0.75 -0.43 -0.21

Err
[
τ̂2
]

(%) -7.8 -4.5 -1.7 -0.85 -0.15 0.026

Selection and systematic biases were computed with the estimated and true
values of the parameters θ through (2) during each simulation round. The
averages of these biases are presented as stacked columns in Figure 4, where
the two biases are distinguished by color and the total bias is shown at the
top of each bar and marked with a black bar.

A smaller share p of selected projects leads to an overestimation of selection
bias. Because selection bias is computed as SeB = Cportfolio/C̃

E
portfolio−1, where

C̃Eportfolio = e−η̂−
1
2 τ̂

2

CE ·z
(
CE
)
, the overestimation of selection bias results from

overestimation of η̂ and τ̂2, which can be observed in Figure 3 and Table 7.
Nevertheless, the bias estimation results are rather satisfactory when p ≥ 0.5,
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since the biases computed with the estimated parameters’ values are close to
the biases computed with the true values. Thus, the EM-algorithm computes
fairly accurate estimates of the magnitudes of selection and systematic biases,
provided that p is sufficiently large (when N = 150).
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Figure 4: Average biases, when η + 1
2τ

2 > 0 and N = 150.

Results with downward systematic bias

A similar simulation was made with negative η to study the performance of
the algorithm when there is a downward systematic bias in the cost estimates.
Figure 5 presents the average parameter estimates of the EM-algorithm with
such downward systematic bias. The estimates are nearly identical to the
estimated parameters corresponding to Figure 3. Increasing p yields better
estimates of θ, and decreasing p results in larger difference between the mean
estimates and true values of θ, the difference being more drastic when N is
also small. When N = 150, the relative errors of the parameters coincide with
the values in table 7, and are not be presented here for that reason.

The average downward biases in the cost estimates were then computed using
the estimated and true parameter values. As seen in Figure 6, the overes-
timation of η and τ2 leads to minor overestimation of selection bias, and
consequently systematic bias is slightly smaller when computed with the
estimated parameters. The estimation precision again increases when p is
increased.
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Figure 5: Average values of parameter estimates for different p and N , when
η + 1

2τ
2 < 0. 10000 simulation rounds.
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Figure 6: Average biases, when η + 1
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2 < 0 and N = 150.

Table 8 presents the relative magnitudes of average systematic and selection
biases, computed as SyBrel = 100% × Avg [SyB] /Avg [TB] and SeBrel = 100% ×
Avg [SeB] /Avg [TB], respectively. It can be seen that the relative magnitudes
of the two biases can be computed relatively accurately using EM-algorithm,
when p is large enough. While the errors in the relative amounts of the biases
are somewhat large when p = 0.1, the rather accurate parameter estimates
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with larger p provide good estimates for the biases. These estimates even
coincide with the true values within the used working precision, when p = 0.7.

Table 8: Relative biases for different values of p, when η + 1
2τ

2 < 0 and
N = 150.

bias parameters θ/p 0.1 0.3 0.5 0.7 0.9 1

SyBrel(%)
estimated 3.2 11 18 27 46 100

true 12 15 20 27 45 100

SeBrel(%)
estimated 97 89 82 73 54 0.36

true 88 85 80 73 55 -0.19

Estimation precision dependence on N

The dependence of the parameter estimates on N are shown in Figure 7.
Based on this Figure, increasing the number of projects proposals N results
in better estimation precision on average. This increase becomes more dis-
tinctive as the relative amount of the selected projects p decreases. We note
that the series of p = 0.1 crossing the true value when N = 50 is consistent
with the results for constant p in Figures 5 and 3, where the biases of the
parameter estimates changed their signs when N was increased at p = 0.1.

N
   20      50      150     400    1000  

V
al

u
e

6.87

6.88

6.89

6.9

6.91

6.92

a) 7 estimates vs true value

N
   20      50      150     400    1000  

V
al

u
e

0.062

0.064

0.066

0.068

0.07

0.072

0.074

b) <2 estimates vs true value

N
   20      50      150     400    1000  

V
al

u
e

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

c) 2 estimates vs true value

N
   20      50      150     400    1000  

V
al

u
e

0.03

0.032

0.034

0.036

0.038

0.04

d) = 2 estimates vs true value

P = 0.1

P = 0.3

P = 0.5

P = 0.7

P = 0.9

P = 1

true value

Figure 7: Average values of parameter estimates for different p and N , when
η + 1

2τ
2 < 0. 10000 simulation rounds.



17

The dependence of the average estimated biases on N is illustrated in Figure
8. Table 9 then presents the relative magnitudes of these biases, computed
similarly as in Table 8.
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Figure 8: Average biases, when η + 1
2τ

2 < 0 and p = 0.3.

Table 9: Relative biases for different values of p, when η+ 1
2τ

2 < 0 and p = 0.3.

bias parameters θ/N 20 50 150 400 1000

SyBrel(%)
estimated 8.4 7.4 11 14 15

true 16 16 15 15 15

SeBrel(%)
estimated 92 93 89 86 85

true 84 84 85 85 85

Figure 8 and Table 9 show that when p = 0.3, a large amount of project pro-
posals N results in rather accurate estimates of the two biases. Table 9 shows
that the relative average systematic and selection biases computed with es-
timated and true parameter values are within one percent, when N ≥ 400.
N = 150 yields biases within 5% of the true values, and N ≤ 50 leads to larger,
over 5%, errors in the estimated relative biases.

Bias estimation precision dependence on both p and N

Because the estimation precision of the EM-algorithm depends on both the
amount N of projects proposals and the relative share p of selected projects,
we examined the estimation precision when both of these values are varied.

We computed the differences between the true and estimated relative aver-
age selection biases SeBrel = 100% × Avg [SeB] /Avg [TB]. The differences were
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computed as SeBrel− ŜeBrel, where SeBrel and ŜeBrel stand for the relative bi-
ases computed with the true and estimated parameters, respectively. Thus,
positive values mean that selection bias is underestimated on average and
negative values correspond to the overestimation of selection bias. Comput-
ing these differences for the systematic bias is not necessary, because such
differences are simply the opposite value of that of the selection bias: if the
amount of selection bias is underestimated, then the amount of systematic
bias is overestimated by exactly the same amount, and vice versa.

The errors in the estimated relative biases are illustrated in Figure 9 below.
In the Figure, the stacked columns on the left are the biases computed with
the estimated parameters and the columns on the right correspond to the true
biases. The areas encircled with black dots mark the differences between the
biases computed with the estimated and true parameters. The percentages
within the columns correspond to the relative magnitudes SyBrel and SeBrel,
and the difference SeBrel − ŜeBrel is shown within the encircled area. The
absolute percentages of the biases can be read from the y-axis.
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Figure 9: Differences of the relative biases, when N = 20.

Table 10 below presents the differences between the relative average biases
for different values of p and N . Those cells that correspond to values of p
and N for which the relative errors in the biases are less than 1% are colored
with green. Yellow cells correspond to errors less than 5% but greater than
1%, and errors greater than 5% are marked with red cells.
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Table 10: The differences between the relative average selection biases
SeBrel − ŜeBrel, when η + 1

2τ
2 < 0.

N/p 0.1 0.3 0.5 0.7 0.9 1
20 12 -7.5 -6.0 -2.6 1.5 5.2
50 -5.5 -8.2 -3.4 -0.73 -0.48 3.0

150 -8.4 -4.6 -1.7 -0.39 0.32 -0.55
400 -7.9 -1.9 -0.44 -0.066 0.061 0.46

1000 -4.8 -0.53 -0.011 0.061 0.028 0.20

With a few exceptions, increasing either p or N yields better estimated rel-
ative average errors. Surprisingly, the conventional ML-estimation of the
parameters θ when p = 1 seemingly results in worse estimated biases than
EM-algorithm estimation with p = 0.9 and p = 0.7. One can also note the sign
change of the difference in the relative biases when p = 0.1, and the relatively
small error with this p and N = 50. This observation corresponds to the series
of p = 0.1 crossing the true value when N = 50 in Figure 7.

Conclusion of the simulation results

The precision of the EM-algorithm in estimating the parameters of our
project portfolio selection model was found to depend on (i) the relative
share p of selected projects and (ii) the amount N of project proposals, as
Figures 3, 5 and 7 illustrate. For example, Table 7 shows how the true values
of the model parameters θ are all within 1% of the means of the estimated
parameters when p is greater than 0.7, while the true values lie as far as 26%

away from the mean estimates when p is 0.1 (when N = 150).

Using the estimated parameters, the computation of selection and systematic
biases in project portfolio selection also depends on p and N , as is presented
in Figures 4, 6 and 8. Table 10 shows that the average estimated biases are
computed accurately, within 1% from the average true bias as percentages
of the total bias, when both p and N are large. Decreasing either of these
yields greater 1 − 5% differences between the estimated and true biases. If
both p and N are small, the errors in the estimated relative average biases
are greater than 5%.



20

6 Conclusion

This study applies a method (presented in Vilkkumaa and Liesiö 2015) to
compute the relative magnitudes of selection and systematic biases in de-
cision settings, in which a project portfolio is selected based on uncertain
estimates about the projects’ costs. In this method, the parameters of the
statistical model for the projects’ true and estimated costs are estimated
through an EM-algorithm using incomplete data. Using realistic model pa-
rameters estimated from a real case study, the performance of the presented
method was analyzed with Monte Carlo simulation. This analysis was carried
out by first comparing the average parameter estimates to the true values of
the parameters. Then, the estimated average selection and systematic biases
were compared to the true biases.

We found that it is possible to estimate the model parameters relatively
accurately on average, when the share p of selected projects and the amount
N of project proposals are large enough. Only the cases with both small
p and N yielded rather poor average estimation precision. Following from
the accurate parameter estimation, the average biases computed with the
estimated parameters are close to those computed with the true parameter
values, as long as p and N are sufficiently large. In particular, for each of
the studied p, estimation precision of selection and systematic biases could
be enhanced by increasing N . For example with a relatively small p = 0.3,
the estimated biases were within 1% from the true biases, when N = 1000.

Because the average parameter estimates computed with the EM-algorithm
differ from the true values when p and N were small, there remains room for
improvement in the estimation precision. Future work concerning the im-
provement of the method presented in this study could head in two different
directions. On the one hand, the presented method could be enhanced to im-
prove estimation accuracy. On the other hand, methods could be developed
to calibrate the estimated parameters or the computed biases of the project
portfolio selection, for example, by building a model between the estimation
errors and the parameters of the project portfolio selection, p and N .
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Appendices

Appendix A provides a detailed proof of the computation of the expected
values in the Expectation step. For the Maximization step, the log-likelihood
function used in likelihood maximization is deduced in appendix B, and the
maximization of this function is presented in appendix C.

A Conditional expected values of lnCi proof

In order to compute the conditional expected values E
[
lnCi

∣∣lnCEi = ln cEi
]

and

E
[
ln2 Ci

∣∣lnCEi = ln cEi
]
, we model

(
lnCi, lnC

E
i

)T
as a random vector that follows

a bivariate normal distribution. Hence(
lnCi, lnC

E
i

)T ∼ N (µ,Σ) ,where

µ =

(
E [lnCi]
E
[
lnCEi

]) ,Σ =

(
Var [lnCi] Cov

[
lnCi, lnC

E
i

]
Cov

[
lnCi, lnC

E
i

]
Var

[
lnCEi

] ) (6)

We begin with the descriptive statistics of lnCi. Since Ci ∼ LogN
(
µ, σ2

)
, it is

easy to see that

lnCi ∼ N
(
µ, σ2

)
⇒ E [lnCi] = µ and Var [lnCi] = σ2. (7)

The cost estimates CEi are assumed conditionally independent random vari-
ables

(
CEi
∣∣Ci = ci

)
= ∆ci. If we leave out the condition of given ci, CEi is a

product of two lognormally distributed random variables, ∆ ∼ LogN(η, τ2) and
Ci ∼ LogN(µ, σ2). By taking the logarithm of this random variable, we get

lnCEi = ln ∆Ci = ln ∆ + lnCi = X + Y, where X ∼ N
(
η, τ2

)
and Y ∼ N

(
µ, σ2

)
⇒ lnCEi ∼ N

(
η + µ, τ2 + σ2

)
⇒ E

[
lnCEi

]
= η + µ,Var

[
lnCEi

]
= τ2 + σ2.

(8)

The covariance of Ci and CEi can be derived as follows.

Cov
[
lnCi, lnC

E
i

]
=E

[
lnCi lnCEi

]
− E [lnCi]E

[
lnCEi

]
=E [lnCi (ln ∆ + lnCi)]− E [lnCi]E

[
lnCEi

]
=E [lnCi ln ∆] + (−E [lnCi]E [ln ∆] + E [lnCi]E [ln ∆])

+ E
[
ln2 Ci

]
+
(
−E [lnCi]

2
+ E [lnCi]

2
)
− E [lnCi]E

[
lnCEi

]
(9)

=Cov [lnCi, ln ∆] + E [lnCi]E [ln ∆] + Var [lnCi] + E [lnCi]
2

− E [lnCi]E
[
lnCEi

]
=0 + µη + σ2 + µ2 − µ (η + µ) = σ2,
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where Cov [lnCi, ln ∆] = 0 follows from the independence of Ci and ∆. In general,
for a binomial random vector X = (X1, X2) ∼ N (µ,Σ), the bivariate conditional
expectation and the bivariate conditional variance are, respectively,

E [X1|X2 = x2] = E [X1] + Corr [X1, X2]

√
Var [X1]

Var [X2]
(x2 − E [X2]) and

Var [X1|X2 = x2] = Var [X1]
(

1− Corr [X1, X2]
2
)
.

(10)

Thus, we can compute the conditional expected value of lnCi given ln cEi as
follows.

E
[
lnCi

∣∣lnCEi = ln cEi
]
= E [lnCi] + Corr

[
lnCi, lnC

E
i

]√ Var [lnCi]

Var
[
lnCEi

] (ln cEi − E
[
lnCEi

])
=E [lnCi] +

Cov
[
lnCi, lnC

E
i

]√
Var [lnCi] Var

[
lnCEi

]
√

Var [lnCi]

Var
[
lnCEi

] (ln cEi − E
[
lnCEi

])
=

Var
[
lnCEi

]
Var

[
lnCEi

]E [lnCi] +
Cov

[
lnCi, lnC

E
i

]
Var

[
lnCEi

] (
ln cEi − E

[
lnCEi

])
(11)

=
1

τ2 + σ2

[(
τ2 + σ2

)
µ+ σ2

(
ln cEi − η − µ

)]
=

τ2

τ2 + σ2
µ+

σ2

τ2 + σ2

(
ln cEi − η

)
Finally, we use the algebraic formula for the variance Var [X] = E

[
X2
]
−E [X]

2

and the bivariate conditional variance to compute the conditional expected
value of ln2 Ci given ln cEi .

E
[
ln2 Ci

∣∣lnCEi = ln cEi
]

= Var
[
lnCi

∣∣lnCEi = ln cEi
]

+ E
[
lnCi

∣∣lnCEi = ln cEi
]2

= Var [lnCi]
(

1− Corr
[
lnCi, lnC

E
i

]2)
+ E

[
lnCi

∣∣lnCEi = ln cEi
]2

= Var [lnCi]

(
1−

Cov
[
lnCi, lnC

E
i

]2
Var [lnCi] Var

[
lnCEi

])+ E
[
lnCi

∣∣lnCEi = ln cEi
]2

= σ2

[
1−

(
σ2
)2

σ2 (τ2 + σ2)

]
+ E

[
lnCi

∣∣lnCEi = ln cEi
]2

(12)

=
σ2
(
τ2 + σ2

)
−
(
σ2
)2

τ2 + σ2
+ E

[
lnCi

∣∣lnCEi = ln cEi
]2

=
σ2τ2

τ2 + σ2
+ E

[
lnCi

∣∣lnCEi = ln cEi
]2
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B Log-likelihood function proof

The likelihood of the parameters in a model of independent random variables
is

L (θ|x) =

n∏
i=1

fX (xi|θ) , (13)

where fX (xi|θ) is the probability density function of X at the data points
xi, given the parameter values θ. This function represents the likelihood of
the parameters θ , given observed data x. Consequently, by maximizing this
function with respect to θ we get the parameters that best fit to the data,
the maximum likelihood estimates θ̂.

Because ln f(x) is maximized by the same x as f(x), it is possible to work
with the logarithm of (13), the log-likelihood function. This is often more
convenient, since the logarithm of a product equals the sum of logarithms of
the factors. Thus, our goal is to find the parameters θ, that maximize the
log-likelihood function. Formally this can be stated as

θ̂ = arg max
θ

` (θ|x) , where

` (θ|x) = lnL (θ|x) =

n∑
i=1

ln fX (xi|θ) .
(14)

We begin by noting that the bivariate density of CEi and Ci can be written as
the marginal density of Ci times the conditional density of CEi given ci. That
is

fCEi ,Ci
(
cEi , ci

∣∣µ, σ2, η, τ2
)

= fCi
(
ci
∣∣µ, σ2

)
fCEi

(
cEi
∣∣Ci = ci, η, τ

2
)
. (15)

Ci ∼ LogN
(
µ, σ2

)
gives us

fCi (ci|µ, σ) = lnϕ
(
ci
∣∣µ, σ2

)
, (16)

where lnϕ
(
x
∣∣µ, σ2

)
stands for the probability density function of the lognormal

distribution. Correspondingly,
(
CEi
∣∣Ci = ci

)
= ∆ci, where ∆ ∼ LogN(η, τ2), yields

(
CEi
∣∣Ci = ci

)
∼ LogN(ln ci + η, τ2)

⇒fCEi
(
cEi
∣∣Ci = ci, η, τ

2
)

= lnϕ
(
cEi
∣∣ln ci + η, τ2

) (17)

We note here that the relationship between the lognormal and normal density
function for scalar variables is

lnϕ
(
x
∣∣µ, σ2

)
=

1

x
ϕ
(
lnx
∣∣µ, σ2

)
, (18)
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where ϕ
(
x
∣∣µ, σ2

)
stands for the probability density function of the normal

distribution.

The likelihood, given complete data (cE , c), is

L
(
θ
∣∣cE , c) =

N∏
i=1

fCEi ,Ci
(
cEi , ci

∣∣µ, σ2, η, τ2
)

=

N∏
i=1

fCi (ci|µ, σ) fCEi

(
cEi
∣∣Ci = ci, η, τ

2
)

=

N∏
i=1

lnϕ
(
ci
∣∣µ, σ2

)
lnϕ

(
cEi
∣∣ln ci + η, τ2

)
.

(19)

Substituting (18) into (19) yields

L
(
θ
∣∣cE , c) =

N∏
i=1

(
cic

E
i

)−1
ϕ
(
ln ci

∣∣µ, σ2
)
ϕ
(
ln cEi

∣∣ln ci + η, τ2
)
. (20)

Next, we take the logarithm of (20) to get the log-likelihood function.

`
(
θ
∣∣cE , c) =

N∑
i=1

− ln cic
E
i + ln

[
ϕ
(
ln ci

∣∣µ, σ2
)
ϕ
(
ln cEi

∣∣ln ci + η, τ2
)]

(21)

We note that the probability density function of a normal random variable
is of the form

ϕ
(
x
∣∣µ, σ2

)
=

1

σ
√

2π
e−

(x−µ)2

2σ2 . (22)

First, we write the probability density functions as (22) and drop the first
term in (21) that is constant with respect to θ (since eventually we are defining
the θ that maximizes the log-likelihood).

`
(
θ
∣∣cE , c) =

N∑
i=1

ln

[
1

σ
√

2π
e−

(ln ci−µ)
2

2σ2
1

τ
√

2π
e−

(ln cEi −ln ci−η)
2

2τ2

]
(23)

Then, we apply the logarithm to get

`
(
θ
∣∣cE , c) =

N∑
i=1

− ln 2π − ln (τσ)− (ln ci − µ)
2

2σ2
−
(
ln cEi − ln ci − η

)2
2τ2

. (24)

Again, we can drop the first term that has no effect on the maximization.
Then, we can sum over i in the first term since there is no dependence on i.
Finally, we get the function in the form

`
(
θ
∣∣cE , c) = −N ln (τσ)− 1

2

N∑
i=1

[
(ln ci − µ)

2

σ2
+

(
ln cEi − ln ci − η

)2
τ2

]
. (25)
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C Complete data ML estimates proof

The log-likelihood function will be maximized (as in (14)) using Mathemat-
ica. However, the form (25) is not possible to be directly maximized with
the software. Thus, the expression requires some modification.

The terms will be arranged so that the estimated parameters µ, σ2, η and τ2

are shifted out from the sums. This is possible since the parameters are not
dependent on i. By extracting the denominator from the sum in (25), we get

`
(
θ
∣∣cEi , ci) = −N ln (τσ)− 1

2τ2σ2

N∑
i=1

[
τ2 (ln ci − µ)

2
+ σ2

(
ln cEi − ln ci − η

)2]
. (26)

Let us take a more detailed look at the second sum in (26).

N∑
i=1

τ2 (ln ci − µ)
2

+ σ2
(
ln cEi − ln ci − η

)2
=

N∑
i=1

τ2
(
ln2 ci − 2µ ln ci + µ2

)
+ σ2

[(
ln cEi − ln ci

)2 − 2η
(
ln cEi − ln ci

)
+ η2

]
=

N∑
i=1

τ2
(
ln2 ci − 2µ ln ci + µ2

)
+ σ2

[
ln2 cEi − 2 ln cEi ln ci + ln2 ci

− 2η
(
ln cEi − ln ci

)
+ η2

]
(27)

=

N∑
i=1

σ2 ln2 cEi +
(
τ2 + σ2

)
ln2 ci − 2σ2 ln cEi ln ci − 2σ2η ln cEi

+ 2
(
σ2η − τ2µ

)
ln ci +

(
τ2µ2 + σ2η2

)
= σ2

(
N∑
i=1

ln2 cEi

)
+
(
τ2 + σ2

)( N∑
i=1

ln2 ci

)
− 2σ2

(
N∑
i=1

ln cEi ln ci

)

− 2ησ2

(
N∑
i=1

ln cEi

)
+ 2

(
σ2η − τ2µ

)( N∑
i=1

ln ci

)
+
(
τ2µ2 + η2σ2

)
N

Now, we will note the sums of ln ci, ln cEi , ln2 ci, ln2 cEi and ln cEi ln ci as

A =

N∑
i=1

ln2 cEi , B =

N∑
i=1

ln2 ci, C =

N∑
i=1

ln cEi ln ci (28)

D =

N∑
i=1

ln cEi , E =

N∑
i=1

ln ci,

These notations give the log-likelihood function in the form
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`
(
θ
∣∣ln cE , ln c) = −

(
ln (τσ) +

τ2µ2 + η2σ2

2τ2σ2

)
N (29)

− 1

2τ2σ2

[
σ2A+

(
τ2 + σ2

)
B − 2σ2C − 2ησ2D + 2

(
σ2η − τ2µ

)
E
]

This form of log-likelihood can be maximized with a computational engine.
We use the software Wolfram Mathematica to calculate the maximum. This
gives us

θ̂ =
[
µ̂, σ̂2, η̂, τ̂2

]
, where

µ̂ =
E

N
, σ̂2 =

B

N
− E2

N2
=
B

N
− µ̂2, (30)

η̂ =
D

N
− E

N
=
D

N
− µ̂, τ̂2 =

A− 2C +B

N
− D2 − 2DE + E2

N2
=
A− 2C +B

N
− η̂2

The original sums will be retrieved from the formulas in (28). We get the
ML estimates of the complete data as

µ̂ =
1

N

N∑
i=1

ln ci, σ̂2 =
1

N

N∑
i=1

ln2 ci − µ̂2 (31)

η̂ =
1

N

N∑
i=1

ln cEi − µ̂ τ̂2 =
1

N

N∑
i=1

(
ln2 cEi − 2 ln cEi ln ci + ln2 ci

)
− η̂2

It is easy to see that the formulas of σ̂2 and τ̂2 in (31) are those of the ML esti-
mates of the variances of random variables ln ci ∼ N

(
µ, σ2

)
and

(
ln cEi − ln ci

)
∼

N
(
η, τ2

)
. However, the ordinary ML estimates of variances give, in general,

biased estimates of the true values (i.e., the mean of the estimates do not
equal the true values of the parameters). These estimates can be debiased
simply by multiplying them with a factor N/(N − 1). We will also move µ̂
and η̂ inside the summing statements to simplify the formulas. Making these
changes gives us

σ̂2 =
1

N − 1

N∑
i=1

(
ln2 ci − µ̂2

)
τ̂2 =

1

N − 1

N∑
i=1

(
ln2 cEi − 2 ln cEi ln ci + ln2 ci − η̂2

)
.

(32)

The formulas of µ̂ and η̂ in (31) and σ̂2 and τ̂2 in (32) will be used in the
Maximization step of the EM algorithm to compute the estimates θ̂k+1 =[
µ̂k+1, σ̂

2
k+1, η̂k+1, τ̂

2
k+1

]
in each iteration.
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From (31) and (32) we also gain the initial values of the parameters θ̂0 =[
µ̂0, σ̂

2
0 , η̂0, τ̂

2
0

]
rather easily. Because at the beginning of the algorithm there

are no estimates for the missing data ln c◦, it is reasonable to compute the
first parameters with all the data that exists,

(
ln cE , ln c∗

)
(i.e., we get the

initial values θ̂0 by summing over the selected projects i ∈ I∗ instead of all
the projects, from 1 to N). Furthermore, since η̂k+1 is computed with µ̂k+1 in
(31), it is conversely possible to compute µ̂k+1 by using η̂k+1 as follows.

η̂k+1 =
1

N

N∑
i=1

ln cEi − µ̂⇒ µ̂k+1 =
1

N

N∑
i=1

ln cEi − η̂k+1 (33)

This modification will permit including all the data of the cost estimates
when computing the initial value µ̂0. However, if the initial µ̂ is computed
with N data points from ln cE, the formula of σ̂2 in (31) does not stand when
computed with M data points of the completed projects’ ln c∗. Instead, the
following formula can be used.

σ̂2
0 =

1

M − 1

∑
i∈I∗

[
ln2 ci−

( 1

M

∑
i∈I∗

ln ci
)
2
]
, (34)

where instead of µ̂0, the explicit formula of it is applied to the cost logarithms
of the completed projects ln c∗.
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