
Mat-2.4108 - Independent Research Project in Applied
Mathematics

Unsupervised learning from HITChip microarray data

November 8, 2011

Max Sandholm

Aalto University School of Science
Systems Analysis Laboratory

The document can be stored and made available to the public on the open
internet pages of Aalto University. All other rights are reserved.

Contents

1 Introduction 1

2 Learning methods 2
2.1 Clustering . 2
2.2 Component analysis . 4
2.3 Validation methods . 6

2.3.1 CH-index . 7
2.3.2 Silhouette validation 7
2.3.3 Cross-validation . 8

2.4 Generative modeling . 9
2.4.1 Generative model for clustering 10
2.4.2 Parameter estimation 11
2.4.3 Generative models for component analysis 14

3 Results 15
3.1 Clustering . 15
3.2 Component analysis . 21
3.3 Generative model . 24

4 Discussion and conclusions 25

5 References 27

Appendices 30

A Cross-validation of CH-index and Silhouette 30

1 Introduction

Rather recently different high-throughput data gathering methods have opened
up new avenues for the research of biology in general. For example in terms of
the human intestinal tract, technologies such as HITChip (Rajilic-Stojanovic
et al., 2009) and PhyloChip (DeAngelis et al., 2011) have allowed researchers
to collect even thousands of samples that describe the microbial profiles in
the gut. The benefits in terms of cost and speed are tremendous compared to
having to take and analyze each sample individually in a laboratory setting.

However, the difficulty is how to find patterns in these huge amounts of
data. It is not possible to just have a look at the data and make inferences
straight away. The dimensionality of the data has to be reduced significantly
for human inference to be feasible. An example of this approach is the paper
by Arumugam et al. (2011), where three robust clusters, called enterotypes,
were found across different sets of samples.

Thus the aim of this study is to examine and implement unsupervised
learning methods that can be used for inference from large data sets describ-
ing the amount of different bacteria in human fecal samples. The goal of
unsupervised learning in general is to find regularities in the data without
the preset user input that characterizes supervised learning (Alpaydin, 2010).

Unsupervised learning methods most relevant to this special study in-
clude clustering, component analysis and generative modeling. In clustering,
we try to find points that best represent the groups present in our data set.
Component analysis on the other hand tries to find out components that
when combined with different multiplying coefficients can be seen to cre-
ate each of the samples. For instance there could be a component that is
common for everyone and then components that vary based on the physi-
cal condition, age, or living environment of the person in question. Finally,
generative probabilistic models can be used not only for both clustering and
finding components, but to create an estimate of the probability distribution
of the data and relevant parameters. In particular in this case the generative
models produce Dirichlet distributed data, which influences the computa-
tional difficulties that accompany the model. The implementation of these
methods and the computational procedure involving the generative model
will be discussed.

The data set used in this study consists of 1963 samples collected with the
aforementioned HITChip technology. Each sample consists of 130 different
variables that represent different groups of bacteria. The information used

1

is L2 data, meaning that certain species related to each other are combined
to produce the L2 data from species level data.

This special study is structured as follows. First the different methods
for unsupervised learning will be discussed. These include the choice of
clustering algorithms, related distance metrics, different component analysis
methods, and generative models. A high emphasis will also be put on val-
idation techniques, because it is vital for the reliability and interpretability
of the results that one chooses the right number of clusters or components to
examine. After the chosen methodologies have been discussed, the results of
different methods will be presented. Finally in the discussion section the goal
is to examine the reliability of these results and discuss further possibilities
for research in these areas.

2 Learning methods

2.1 Clustering

Clustering is an unsupervised learning method widely used to learn groups
in data. An example in the human microbiota research is the paper from
Arumugam et al. (2011) where three robust clusters were found. The most
common way to do clustering is the traditional k-means algorithm. Lloyd’s
implementation follows the guideline described in Algorithm 1.

Alg. 1 Lloyd’s k-means algorithm

begin
Initialize cluster centroids
until Cluster assignments remain the same
1) Assign each point to closest cluster centroid
2) Update cluster centroids: ~ci = 1

|Ci|
∑
ak=i ~xk

end

In Algorithm 1 the points are assigned to the closest cluster centroid
and then the centroids are updated to the mean of the points belonging
to the same clusters. It is apparent that the choice of distance measure
holds meaning in both steps: the measure influences the choice of closest
cluster centroid in step one and also the updating formula in step two. Here
Algorithm 1 is based on Euclidean distances, which means that the second
step minimizes the within cluster distances.

2

Readily available k-means implementations often have a possibility for
using for example squared Euclidean distances or the Manhattan distance.
Whether it is wise to use them for clustering depends on the nature of
the data set. The original HITChip paper (Rajilic-Stojanovic et al., 2009)
presented that the HITChip probe readings don’t represent the absolute
amounts of different species of bacteria, although the correlation is rela-
tively high. Instead, the readings describe better the relative abundances of
different species.

This leads us to consider data transformations and different choices of
a distance metric to remove the possibility that similar abundance profiles
may seem different due to high differences in absolute values. In the paper
by Arumugam et al. (2011) the authors scaled the data to sum up to one and
used the square root of Jensen-Shannon divergence (Endres and Schindelin,
2003) as a distance measure. Jensen-Shannon divergence is a measure specifi-
cally used to define distances between different probability distributions, and
its square root is a metric (Endres and Schindelin, 2003). It is defined as

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q ||M)

=
1

2

∑
i

P (i) log
P (i)

M(i)
+

1

2

∑
j

Q(j) log
Q(j)

M(j)
,

where DKL is the Kullback-Leibler divergence and M = P+Q
2

.
In this case transforming the data vectors to describe probability dis-

tributions removes the problem with differences in absolute values. Using
the square root of Jensen-Shannon divergence as a distance measure is well
founded, because it is a metric developed specifically for probability dis-
tributions, and this choice also guarantees comparability to the results of
Arumugam et al. (2011).

As mentioned earlier in this section, the choice of a distance measure
influences also the behavior of the clustering algorithm. The problem with
using k-means with a different distance measure is to derive the centroid
updating formula (step two in algorithm 1).

This leads us into using the partitioning around medoids algorithm (Kauf-
man and Rousseeuw, 1990) (Algorithm 2). Partitioning around medoids is
similar to k-means but uses always an actual data point as a cluster centroid
instead of an arbitrary point somewhere in the middle. This allows the al-
gorithm to operate using purely the pairwise distances between data points,

3

Alg. 2 Partitioning around medoids algorithm

begin
Initialize cluster medoids to some data points
until Cluster assignments remain the same
1)Assign each point to closest cluster medoid
2)Update each medoid to the data point which minimizes within cluster
dissimilarities
end

and enables the use of different distance metrics. The same algorithm was
also used by Arumugam et al. (2011).

2.2 Component analysis

In clustering, we allow each data vector to be assigned only to a single cluster.
Next we relax that requisite by assigning each data point a k× 1 vector (k is
the number of components) to give scores for different components. There are
many different methods for finding components from data such as principal
component analysis (PCA), independent component analysis (ICA) (Comon,
1994), factor analysis, non-negative matrix factorization (NMF) (Lee and
Seung, 1999) and the recently develop semi-nonnegative matrix factorization
(semi-NMF) (Ding et al., 2010). An important part in choosing the method
is considering what the goal is when doing the analysis. Here the aim is to
find components that can then be interpreted and analyzed by the biologists.
The original hypothesis about how the components work is that when the
amount of certain bacteria increase, some may decrease at the same time.

All of the component analysis methods can produce a matrix factorization
of the form X ≈ FGT , where X is a m × n data matrix, F is a m × k
matrix of components and G is a n× k matrix of component scores for each
data sample. One of the differences between all of these methods are the
assumptions that they make about the matrices F , G and X. Although
the underlying principles are in some ways different, PCA, ICA and factor
analysis all produce components that may have positive or negative values
and also the component scores may be positive or negative. This results in a
problem in the interpretation of the components. Let us assume that there
are two components, A and B, and two people, X and Y . X has scores
0.7 for A and −0.5 for B, and Y has −0.4 for A and 0.8 for B. Now if A

4

has both positive and negative values, the interpretation seems reasonable
when X is concerned: some values go up and some down when the score for
A is increased. But when the score is negative with person Y , the signs in
the component itself are basically reversed. It is hard to say that it is even
the same component explaining the data anymore as the effect is the exact
opposite of the component that we found with a positive score. It would be
much easier if components could have only positive scores and the interpreter
could look at them as different parts that are added on top of each other.

These difficulties in interpretation make NMF and semi-NMF more at-
tractive possibilities. However, NMF demands that both the components
and their scores are non-negative. This requirement limits the kind of com-
ponents that can be found. Semi-NMF relaxes this condition and allows
negative values in the data matrix and the components but keeps the com-
ponent scores positive. Thus semi-NMF seems the most appropriate method
to produce results that can be readily interpreted. Ding et al. (2010) present
an iterative algorithm that fulfills the Karush-Kuhn-Tucker conditions for
the solution of a constrained optimization problem.

As a preparation for the semi-NMF algorithm the data is scaled so that
all column vectors sum up to one. This eliminates the possibility that the
components would try to explain large differences in absolute values. Ding
et al. (2010) argue that the algorithm, initialized using k-means, will converge
into a solution where the components resemble the cluster centroids. Here
that is not exactly the case as there will be negative values in the components
whereas the data describes probability distributions, and so includes values
wi ∈ (0, 1),

∑M
i wi = 1.

However, it is reasonable to assume that the components will resemble to
a certain extent the cluster centroids. If there is a cluster centroid that has a
relatively high value for variable A and a low value for variable B, there will
be a component that also has a low or a negative value for B and a higher
value for A. The initialization is done using the earlier mentioned partitioning
around medoids clustering algorithm, but otherwise with the same principle
as in the original semi-NMF paper where the authors suggested the use of
k-means. To assess the convergence of the algorithm it is possible to check
how much the approximated FGT matrix, F or G themselves change from
one iteration to another. Here it is required that all the values in G change
less than 0.0001, otherwise the iteration will be continued.

We should note that none of these methods really produce the kind of
data we started with. Even basic NMF would produce an approximate data

5

matrix that doesn’t sum up to one even though the data would stay posi-
tive. Nevertheless, the eventual results can be used to describe relationships
between different bacterial groups.

2.3 Validation methods

A major question related to clustering and component analysis is how to
choose the correct number of clusters or components. Using known clustering
algorithms or component analysis methods we can always find any number of
clusters or components. The goal is to find an appropriate number of them
to describe the data well enough, and at the same time avoid significant
overfitting to the training data.

In this study three different approaches are considered as possible mea-
sures for cluster validation:

• Calinski-Harabasz index (Calinski and Harabasz, 1974),

• Silhouette validation technique (Rousseeuw, 1987),

• cross-validation measuring the decrease of within cluster differences.

Cross-validation is also used for validating the component analysis results.
Each of these methods will be discussed next in the order above.

These three methods were chosen for a few reasons. CH-index was the
measure used by Arumugam et al. (2011) which makes it important to use it
for comparison. CH-index has also been found to produce comparably good
approximations of the actual number of clusters in the data set (Milligan and
Cooper, 1985), although there are also studies that notice occasional poor
performance (Maulik and Bandyopadhyay, 2002). Silhouette was also briefly
discussed by Arumugam et al. (2011), and average Silhouette has been found
to be a good measure in determining the number of clusters (van der Laan
et al., 2003). Finally, using cross-validation to examine plainly the error of
using a specific number of clusters to describe the data provides another way
of looking at the data. By using different measures one can examine the
robustness of the results. If the indices agree with each other the results can
be seen to be more reliable than before, and differing results warrant more
caution when actually interpreting the results.

6

2.3.1 CH-index

Calinski-Harabasz (CH) index (Calinski and Harabasz, 1974) is defined in
Euclidean distances by the formula

CH(k) =
B(k)

W (k)

N − k
k − 1

,

where k is the number of clusters, N is the number of samples, B(k) is the
total between cluster sum of squares, W (k) is the total within cluster sum of
squares. The optimum of the index comes at its maximum point. Intuitively
the index rewards for large separation between clusters and small variance
inside a single cluster while punishing for having too many clusters. An
extension to accommodate different distance measures is given by Hennig
and Liao (2010). The authors defined B(k) and W (k) as

W (k) =
k∑

h=1

1

|Ch|
∑

wi,wj∈Ch

d(wi, wj)
2,

B(k) =
1

n

n∑
i,j=1

d(wi, wj)
2 −W (k).

In the definition of W (k) we sum for each point i its squared distances to
all points j that belong to the same cluster as i, do this for all points, and
average the results within the cluster. Finally we sum the results of different
clusters to obtain the within cluster measure. B(k) is defined similarly to
traditional between cluster sum of squares as the difference of a term that
describes the variation in the whole data set and the within cluster measure.

2.3.2 Silhouette validation

Silhouette width is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
,

where b(i) is the average dissimilarity from a certain point to the nearest
neighboring cluster and a(i) is the average dissimilarity to the points in the
point’s own cluster. One may notice from the equation for s(i) that it is
confined to the interval [−1, 1], where value one means that all the points in
a points own cluster are at the exact same position as the point itself. Values

7

below zero signify a misclassification and the closer s(i) is to one the better.
The way to use different Silhouettes as a validation technique is to use the
average Silhouette width.

Both CH-index and Silhouette width were calculated using the R-package
fpc and its function cluster.stats (Hennig, 2010). We get the parameters
from calculating the distance matrix with the square root of Jensen-Shannon
divergence and running the partitioning around medoids algorithm.

2.3.3 Cross-validation

Compared to CH-index and Silhouette validation technique that both take
the between cluster differences into consideration, 10-fold cross-validation can
be used to measure purely how well the distribution of the data is described.
Here we measure the average squared distances to the closest cluster medoid.
The clustering is found with each training set, and then tested with a corre-
sponding validation set. The measure used to compare different numbers of
clusters is then

D(k) =
1

F

F∑
m=1

1

|Vm|

|Vm|∑
i=1

d(xi, ci)
2,

where F is the number of folds (10), xi is a validation set vector, ci is the
closest cluster medoid for i and |Vm| is the size of each validation set.

The cross-validation procedure operates as follows. First, we divide the
data randomly to ten different equally sized parts. Then we run ten itera-
tions, where we do the pam-clustering with nine of the parts, and calculate
the average squared distance in terms of Jensen-Shannon divergence to the
nearest cluster medoid for the left out validation set. It seems clear that
when plotting the average squared distances for validation sets, the measure
will become smaller when the number of clusters increases. However, if we
can spot an ”elbow” in the plot after which the improvement slows down, we
can conclude that the amount of clusters representing the elbow explains the
data well enough. The small increase in accuracy indicates that overfitting
is highly probable if the number of clusters is still increased.

Cross-validation is also used in this study for validating the semi-NMF
results. Validation techniques are a research field that is yet to achieve a
final consensus on which methods would be the best as far as component
analysis is concerned. As semi-NMF is a newly developed method there is
no research that would be directly aimed at deciding the correct number of

8

components to be taken out from a data set with semi-NMF (for a review
and testing of techniques for NMF, see Maisog (2009)). This is why 10-fold
cross-validation is used again in this context. We first find the component
matrix F with the training set, and optimize the component scores for the
validation set using the update rule found in the semi-NMF algorithm. The
measure indicating how good of an approximation does a certain amount of
components provide is the Frobenius norm of the matrix X − FGT , where
X is the actual validation set and FGT is the estimated validation set. The
Frobenius norm of a matrix A is defined as

‖A‖F =
√∑

i

∑
j

a2
ij.

The Frobenius norm is calculated for each different validation set, and these
results are averaged over all the sets. If there is an elbow in the plot, where
the improvement from one amount of components to the next slows down,
the corresponding number of components is the optimum.

2.4 Generative modeling

In addition to the purely iterative methods discussed above, building genera-
tive probabilistic models is also a possibility. In generative models we assume
that the data has been generated from a certain probability distribution and
generally infer the needed parameters conditioning on the data itself. A gen-
erative model forms an estimate of the probability distribution of the data
and allows us to engage in more ways of examining the data. For example, a
probabilistic model would make it possible to consider how well a data point
fits into a certain cluster in terms of posterior probabilities instead of just
hard clustering.

Another advantage of using generative models is the possibility of mod-
eling a process that produces the kind of data we started with. As was seen
when discussing component analysis methods, this property cannot be taken
for granted and some other approaches lead to the model constructing data
that may be impossible by the nature of the original data itself. For exam-
ple, the abundances of different bacteria certainly cannot be negative but
most component analysis methods allow and may produce negative values
with their approximations. The possibility of having a model that in prin-
ciple models the right thing makes pursuing generative models even more
worthwhile.

9

2.4.1 Generative model for clustering

When the data is scaled to sum up to one, we can think of data samples as
separate draws from a Dirichlet distribution with some parameters Θ·k. The
density function of the Dirichlet distribution is given by

p(x·j|Θ·k) =
Γ(
∑M
i=1 Θik)∏M

i=1 Γ(Θik)

M∏
i=1

xΘik−1
ij ;∀(i, k)Θik > 0,

where x·j is a sample vector describing a data point and Θ·k is a vector of
Dirichlet parameters coming from cluster k. When we assume the data to
come from the Dirichlet distribution, we can build a generative model in
an attempt to infer the parameters: the clusters Θ and cluster assignments
Z. Generative models are often presented in graphical form to display the
relationships that different variables have with each other. The model is
presented here in Figure 1.

Θ	

α	 x	
N	

Z	

β	
K	

Figure 1: Plate presentation of the generative model for clustering Dirichlet
distributed data.

10

The joint distribution of the model presented in Figure 1 is given by

p(X,Θ, Z|α, β) =
K∏
k

(
p(Θ·k|β)

) N∏
j

(
p(zj| α)p(x·j|zj,Θ·zj)

)
.

The joint distribution displays how the likelihood of a data point depends on
the corresponding cluster assignment zj and cluster parameters Θ·zj . We can
sum over the cluster assignments and give the likelihood of the data using
soft clustering and conditioning on the cluster parameters:

p(X|Θ, α) =
N∏
j

(K∑
i

p(zj = i|α)p(x·j|zj = i,Θ·i)
)
.

The individual distributions in the joint distribution are predetermined
for other variables than cluster parameters Θ. As was mentioned, the data is
drawn from a Dirichlet distribution and the cluster assigments are naturally
drawn from a discrete distribution with possible states zj ∈ {1, 2, 3, ..., K},
where K is the number of clusters. The choice of distribution for Θ will be
discussed in the next section.

2.4.2 Parameter estimation

The problem with this generative model is estimating the parameters. Exact
inference is intractable, and achieving decent approximate posterior inference
also proves difficult. Examining the posterior distribution allows us to give a
prior distribution for each different variable, and then sharpen our knowledge
by conditioning on the data. Markov Chain Monte Carlo (MCMC) methods
can be used to collect samples from the posterior distributions of each differ-
ent variable, always conditioning on the data and the state of the other latent
variables. Here two MCMC methods for approximate posterior inference are
discussed: Gibbs sampling and the Metropolis-Hastings algorithm (Gelman
et al., 2003).

In generative topic modeling, like Latent Dirichlet Allocation (Blei et al.,
2003), it is possible to use conjugate prior distributions so that the posterior
distributions are of the same known form as the prior, just with different
parameters. As an example about conjugate prior distributions we can think
of making a test which has two possible results: 1 or 0. Clearly the proba-
bility distribution to model this test is a Bernoulli distribution. The density

11

function of a Bernoulli distribution is given by

p(x|q) = qx(1− q)1−x = qa(1− q)b; a, b ∈ {0, 1}, a+ b = 1,

where q is the probability of 1 and 1 − q corresponds to the probability of
0. Now if we want to give a prior distribution also to q, we can try the beta
distribution, which is defined as

p(q|α, β) =
1

B(α, β)
qα−1(1− q)β−1,

whereB(α, β) is the beta function. Now the posterior distribution p(q|x, α, β)
is given by

p(q|x, α, β) ∝ p(q|α, β)p(x|q) = qa+α−1(1− q)b+β−1,

which shows that the posterior distribution is of the same form as the prior.
The advantage in using conjugate prior distributions comes from the fact

that often we can give different variables distributions that we know how to
sample from. Then naturally if the posterior is of the same form as the prior
we gave, we can sample from the posterior distributions as well. However,
the conjugate prior of the Dirichlet is not a standard distribution, and even
though we can solve it up to a normalizing constant (Lefkimmiatis et al.,
2009), there is no method available to directly sample from it. One is then
forced to use the Metropolis-Hastings algorithm instead of Gibbs sampling.

With Gibbs sampling, the idea is to initialize the variables somewhere
and then repeatedly sample from each of the posterior distributions of dif-
ferent latent variables in turn, always conditioning with the data and the
other latent variables. This procedure then produces a Markov chain as each
different new sample only depends on the current state of the chain and not
the entire history. Because Gibbs sampling operates by sampling directly
from the posterior distributions, the Markov chain can move freely in the
area where there is some likelihood, and finally ends up in an area of high
posterior probability for the parameters.

In contrast, Metropolis-Hastings algorithm is generally used when straight-
forward sampling is not possible. In Metropolis-Hastings, we choose an ap-
propriate jumping distribution from which we randomly draw a new sample,
and then test whether it is a point worth going to based on its posterior like-
lihood. Intuitively speaking the jumps take the previous value of the latent

12

variable in question as a starting point and make a jump to some point in the
neighborhood. The choice of jumping distribution influences how the new
point is chosen in this procedure.

Compared to Gibbs sampling the difficulty in using Metropolis-Hastings
algorithm is to find a jumping distribution that is able to move around the
possible parameter space efficiently: it should move with large enough jumps
so that the chain doesn’t get stuck in a single area of locally high probability,
but also small enough so jumps are actually accepted with a reasonable rate
(Andrieu et al., 2003).

In this specific model the cluster assignments zi can be found using Gibbs
sampling as the cluster probabilities can be updated with the help of the
Bayes theorem. The Bayes theorem states that

p(A|B) =
p(B|A)p(A)

p(B)
.

In this case A corresponds to p(zi = k) while B is the distribution of data X
and clusters Θ. Although the probability distribution describing the data is
continuous in the form of a Dirichlet, we can use its likelihoods in place of
discrete probabilities to take advantage of the Bayes theorem:

p(zi = k |x,Θ) =
p(zi = k)p(xi|Θ·k, zi = k)∑K
j=1 p(zi = j)p(xi|Θ·j, zi = j)

.

In this case the prior probabilities would just be equal numbers depending
on the number of clusters that sum up to one.

The problem here is the sampling of the cluster parameters, Θ in Figure 1.
First we have to decide what distribution we put the clusters to be generated
from. Possible alternatives may include the Dirichlet conjugate prior and
the Dirichlet distribution itself. Both require using the Metropolis-Hastings
algorithm to get samples from the posterior distribution. The choice is espe-
cially relevant for making it as easy as possible for the sampling procedure
to work properly. One of the reasons using conjugate prior distributions is
generally favorable is naturally that it makes the sampling much easier and
more reliable by allowing straightforward Gibbs sampling.

Possible jumping distributions in these cases may include (corresponding
cluster distributions are in brackets)

• multivariate normal distribution (Dirichlet conjugate prior),

13

• Dirichlet distribution (Dirichlet),

• gamma distribution (Dirichlet conjugate prior).

When using the multivariate normal distribution the non-negativity con-
straint of the parameters of a Dirichlet distribution has to be taken into con-
sideration. This problem can be solved for instance by taking the logarithm
of parameters x and making the jumps in that space, and then converting
back with exp(x). With a Dirichlet distribution one has to choose an appro-
priate multiplier for the current values of the clusters so that the new guess
would be relatively close to the old one. When using the gamma distribution
one should choose the shape parameter as some positive constant C and the
scale parameter as θt−1/C, where θt−1 is the current value of the variable in
question. This way the expectation of the gamma distribution, scale param-
eter × shape parameter, is equal to the current value, while the constant C
controls the variance of the distribution. The computational implications of
the different choices will be further discussed in later sections.

2.4.3 Generative models for component analysis

In addition to the already presented probabilistic clustering model, genera-
tive modeling could be considered to find components in data. This basically
requires doing different assumptions about the Dirichlet parameters Θ and
the cluster assignments Z. The data, although continuous, correlates signif-
icantly with the absolute quantities of different bacteria (Rajilic-Stojanovic
et al., 2009). This may allow the use of Latent Dirichlet Allocation (Blei
et al., 2003) by discretizing the data and treating the numbers as counts of
different bacteria. In Latent Dirichlet Allocation each data sample would be
treated as a bag of bacteria. The components would be Dirichlet distributed
and would describe the probability of a certain bacterium presenting itself
from that specific component. Each bacterium from the data would be as-
signed a component from which it comes from, and all the data samples
would be assigned a vector that includes the probabilities of choosing differ-
ent components.

Models that may avoid the discretization resemble the generative model in
Figure 1. As a change the models would assign a vector of component weights
instead of a cluster assignment to each data sample. As the computational
difficulties regarding these models would most likely be even harder to tackle
than the more simple clustering model, this study will concentrate only on

14

the model presented by Figure 1. Also the implementation of Latent Dirichlet
Allocation is left for later examination.

3 Results

3.1 Clustering

In this section first the results of different validation techniques will be pre-
sented that then decide the number of clusters we choose for the partitioning
around medoids algorithm to find.

5 10 15 20

15
0

20
0

25
0

Number of medoids

C
H
-in
de
x

5 10 15 20

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

0.
14

Number of medoids

S
ilh
ou
et
te

Figure 2: Calinski-Harabasz index and Silhouette results.

Figure 2 displays the clustering validation results using CH-index and
average Silhouette. Both plots indicate that three clusters is the optimal
choice for this data. This is consistent with the work of Arumugam et al.
(2011). Figure 2 also suggests that choosing more than six clusters seems
totally unfounded. The value of both indices starts quickly decreasing with
seven clusters and above. The behavior of CH-index and average Silhouette
is further examined in Appendix A, where the results they give were cross-
validated. As can be seen from Figure 9, the results resemble a lot those of
Figure 2.

15

5 10 15 20 25 30

0.
06

0.
07

0.
08

0.
09

0.
10

0.
11

Number of medoids

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or

5 10 15 20 25 30
0.
00
0

0.
00
5

0.
01
0

0.
01
5

Number of medoids

D
iff
er
en
ce

Figure 3: Clustering cross-validation results. The average squared distance
from the closest cluster medoid for validation set samples is drawn on the
Y-axis.

Figure 3 shows the clustering cross-validation results and is not as con-
clusive as Figure 2 in determining the number of clusters to pick up. On the
right the absolute value of the ”derivative” of the cross-validation curve is
presented, meaning that the first point in the figure describes the value of
”result with two medoids - result with three medoids”. This helps identify
when the improvement starts slowing down. We see that although there is
some room for interpretation, Figure 3 is not really contradictory to Figure
2. There is a big improvement from two clusters to three, but then the im-
provement clearly slows down. The maximum number of clusters one could
see as the optimum seems to be seven as after that the improvement is steady
and slow.

Because the validation techniques limit the possible number of clusters to
be between three and seven it is useful to determine how the found clusters
behave in this interval. The expectation is that the same center points that
are found with three clusters more or less remain and then new clusters are
formed from the edges of the data. This would also indicate that the original
three clusters are robust and not only some centroids that are in the center
but actually are not able to describe the data well.

16

Luckily the data is sparse in the sense that most families of bacteria have
very low counts throughout the samples. Thus the few that have the largest
variance are the ones that mostly decide the cluster assignments. This makes
visualizing the results much easier.

With three found clusters the centers are driven by the following bacteria:

• Prevotella,

• Ruminococcus,

• Subdoligranulum and Faecalibacterium.

Out of these three, two are consistent with the recently found enterotypes
in smaller data sets Arumugam et al. (2011). With five clusters all these
clusters remain similar with additional clusters being driven by Bacteroides
and Streptococcus. Figures 4 and 5 illustrate the differences between the
samples that belong to each cluster.

17

Faec. prausnitz. Prevot. melan. Rumino. obeum Subdo. var.

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Cluster 1

Bacteria

A
b
u
n
d
a
n
ce

Faec. prausnitz. Prevot. melan. Rumino. obeum Subdo. var.
0
.0

0
.2

0
.4

0
.6

Cluster 2

Bacteria

A
b
u
n
d
a
n
ce

Faec. prausnitz. Prevot. melan. Rumino. obeum Subdo. var.

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Cluster 3

Bacteria

A
b
u
n
d
a
n
ce

Figure 4: Abundances of four different bacteria with three clusters. The
bacteria are from left to right Faecalibacterium prausnitzii et rel., Prevotella
melaninogenica et rel., Ruminococcus obeum et rel., and Subdoligranulum
variable et rel..

18

Bacteroid. vulg. Faec. prausnitz. Prevot. melan. Rumino. obeum Strept. bov. Subdo. var.

0
.0

0
.2

0
.4

0
.6

Cluster 1

Bacteria

A
b
u
n
d
a
n
ce

Bacteroid. vulg. Faec. prausnitz. Prevot. melan. Rumino. obeum Strept. bov. Subdo. var.

0
.0

0
.2

0
.4

0
.6

Cluster 2

Bacteria

A
b
u
n
d
a
n
ce

Bacteroid. vulg. Faec. prausnitz. Prevot. melan. Rumino. obeum Strept. bov. Subdo. var.

0
.0

0
.2

0
.4

Cluster 3

Bacteria

A
b
u
n
d
a
n
ce

Bacteroid. vulg. Faec. prausnitz. Prevot. melan. Rumino. obeum Strept. bov. Subdo. var.

0
.0

0
.2

0
.4

0
.6

Cluster 4

Bacteria

A
b
u
n
d
a
n
ce

Bacteroid. vulg. Faec. prausnitz. Prevot. melan. Rumino. obeum Strept. bov. Subdo. var.

0
.0

0
.2

0
.4

Cluster 5

Bacteria

A
b
u
n
d
a
n
ce

Figure 5: Abundances of six different bacteria with five clusters. The bacteria
are from left to right Bacteroides vulgatus et rel., Faecalibacterium prausnitzii
et rel., Prevotella melaninogenica et rel., Ruminococcus obeum et rel., Strep-
tococcus bovis et rel. and Subdoligranulum variable et rel..

19

Table 1: Number of samples belonging to each cluster.

Driver 3 clusters 5 clusters

Faec. and Subd. 956 770
Prevotella 208 200

Ruminococcus 799 601
Bacteroides - 300

Streptococcus - 92

With seven clusters an additional cluster with high abundance of Bifi-
dobacterium presents itself. Some of the other clusters already start to mix
slightly, although Prevotella, Ruminococcus, Bacteroides and Streptococcus
clusters remain intact. These results indicate that there are only a handful of
bacterial profiles that are robust because the clusters found here are mostly
consistent with the ones found by Arumugam et al. (2011).

Table 1 displays the number of points that belong to each cluster when
grouping with either three or five clusters. It should be noted that the clusters
with relatively high abundances of Faecalibacterium and Subdoligranulum
are the most common in the data set of approximately 2000 samples. Also
the cluster driven by Ruminococcus is very common. On the other hand
especially the cluster with a high relative amount of Sreptococcus is small
compared to the others. This may indicate that it is specific to a certain
condition or illness.

20

3.2 Component analysis

2 4 6 8 10 12

1.
0

1.
5

2.
0

2.
5

Number of components

Fr
ob

en
iu

s
no

rm

2 4 6 8 10 12

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Number of components

D
iff
er
en
ce

Figure 6: semi-NMF cross-validation results. Average frobenius norm of
X − FGT is drawn on the Y-axis on the left-hand side. The absolute value
of the ”derivative” of the curve is on the right.

In this section the cross-validation results of semi-NMF will be discussed
similarly to previous section before the actual components are described.
Figure 6 shows that the benefit of an additional component clearly decreases
when the amount of components is nine. This indicates that nine compo-
nents is the optimal value to pick up from the data. Differences between
components are displayed in Figure 7 with the bacteria that have the largest
variance between the components.

Figure 7 shows that the components found for the most part resemble the
clusters themselves as is expected. Perhaps the most striking relationship can
be seen from components two and six. When the amount of Streptococcus
bovis rises, the amounts of the bacteria that constitute the most common
bacterial profile, Faecalibacterium and Subdoligranulum, become smaller,
and vice versa. The fact that we took nine components (more than the
amount of clusters tested) is probably what makes most components to be
mostly about a single component. Also the sparsity of the data contributes
to this because most of the groups in the data set need not be even taken
into consideration during the analysis. It seems that although the amount

21

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 1

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 2

Bacteria

Lo
ad
in
gs

0.
00

0.
05

0.
10

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 3

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

0.
30

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 4

Bacteria

Lo
ad
in
gs

0.
00

0.
10

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 5

Bacteria

Lo
ad
in
gs

0.
0

0.
1

0.
2

0.
3

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 6

Bacteria

Lo
ad
in
gs

-0
.4

-0
.2

0.
0

0.
2

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 7

Bacteria

Lo
ad
in
gs

-0
.0
5

0.
05

0.
15

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 8

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

Bact. Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 9

Bacteria

Lo
ad
in
gs

0.
0
0.
1
0.
2
0.
3
0.
4

Figure 7: Nine components found with semi-NMF. Names of the bacteria are
shortened to fit, but they the following from left to right: Bacteroides vulga-
tus et rel., Bifidobacterium, Faecalibacterium prausnitzii et rel., Oscillospira
guillermondii et rel., Prevotella melaninogenica et rel., Ruminococcus obeum
et rel., Streptococcus bovis et rel., Subdoligranulum variable et rel..

of components is not large at all compared to the amount of bacteria in the
data (130), the data is so sparse that already this amount of components
produces overlap between them. This overlap gives encouragement to try a
lower amount of components to make inferences.

Figure 8 displays the components when the amount is decreased to seven.
Clearly a positive correlation between Oscillospira and Subdoligranulum be-
comes visible in the first component.

22

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 1

Bacteria

Lo
ad
in
gs

-0
.0
2

0.
02

0.
06

0.
10

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 2

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

0.
30

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 3

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 4

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

0.
30

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 5

Bacteria

Lo
ad
in
gs

-0
.1
0

0.
00

0.
10

0.
20

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 6

Bacteria

Lo
ad
in
gs

0.
00

0.
10

0.
20

Bact Bifi. Faec. Osci. Prev. Rumi. Strep. Subd.

Component 7

Bacteria

Lo
ad
in
gs

0.
0

0.
1

0.
2

0.
3

Figure 8: Seven components found with semi-NMF. Names of the bacteria
are the same as in Figure 7.

23

3.3 Generative model

Figure 1 describes the generative model with a plate diagram. As discussed
earlier, the main difficulty with this model is to find a way to achieve decent
behavior with approximate posterior inference using Markov Chain Monte
Carlo methods. Cluster assignments Z can be drawn by building a Gibbs
sampler as was already presented, but the more difficult part is to build a
Metropolis-Hastings algorithm that can sequentially draw the cluster matrix
Θ and actually converge to an area where the parameters have high posterior
probability.

To achieve this, three different possible jumping distributions were con-
sidered. It turns out that using the Dirichlet distribution seems to be the only
one that may be possibly viable without extra modifications. This is mostly
due to the nature of the data distribution itself. Because the data vectors
consist of a 130 dimensional Dirichlet distribution, the likelihood function
is revealed to be extremely spiky in the areas where likelihood exists. This
results in two problems. First, if the Metropolis-Hastings jumps end up in an
area where there is some likelihood, it will have basically zero probability of
jumping away from there as the surrounding area has minimal values for the
likelihood function. Secondly, the large differences in likelihoods also make
the cluster assignments get stuck in certain clusters and make them not to
mix naturally.

If we choose the prior for the parameters to also be a Dirichlet distribu-
tion, the parameters naturally are restricted to be between zero and one, and
to sum up to one. If the parameter values would be allowed to grow freely,
increasing the parameter values around the data points would produce higher
and higher likelihoods and even result in a computational overflow due to the
gamma functions getting extremely high values in the likelihood function. By
restricting the parameters to remain small, the likelihoods also remain lower.

This restriction when using the Dirichlet does not take away the model’s
predicted ability to find cluster vectors, because the relative values within the
cluster centroids are much more important than the absolute ones. Addition-
ally restricting the likelihood values to be smaller should in theory allow the
Markov chain to mix better, both in terms of the cluster assignment vector
and the cluster matrix. As the likelihoods remain smaller, the probabilities
of assigning a certain point to a cluster should remain more reasonable.

However, if we were to choose either the normal distribution or the gamma
distribution to choose the new candidate values, the ability of the model could

24

be hindered. If we wanted to limit the parameters from rising too high, we
should initialize them close to zero and use extremely tight prior distributions
so that the likelihoods of the Dirichlet conjugate prior would be small. This
could also hinder the relative changes in the values as the prior part of the
posterior would give high values only in a very small area.

In the end it turns out that even choosing the Dirichlet distribution as
a prior and as a jumping distribution doesn’t completely solve the problem.
With small test sets it works nicely, but the large dimension of the actual data
set still gives problems. The fact remains that the likelihood of one cluster
may be in the range of 1030 times the likelihood of another cluster, which
clearly then results in the posterior probabilities being very close to one for
that cluster, and basically zero for others. This behavior makes the Markov
chain to get stuck in a small area, which means that the model doesn’t really
provide any new or reliable results.

The next thing to try is to smoothen the likelihood function. Smoothing
was tried during the burn-in period by taking the tenth root of the likelihoods
when choosing the cluster assignments. The power is then linearly increased
until, in the end of the burn-period, the sampler uses the actual likelihoods.

However, even with the smoothing the algorithm ends up in a state where
most of the points are stuck to a single cluster, which prevents the clusters
themselves to properly update based on the data. The smoothing helps
during the first rounds of the iteration but when the smoothing decreases,
the same problem appears once again. This means that the generative model
proves to be computationally too difficult to be able to produce reliable
results in this special study.

4 Discussion and conclusions

Using a data set that originated from the use of HITChip technology (Rajilic-
Stojanovic et al., 2009) with human fecal samples, the goal of this special
study was to present, analyze and implement clustering and component anal-
ysis tools for unsupervised learning. In addition, different validation method-
ologies were discussed and used. In terms of clustering, significant results
were found using the partitioning around medoids algorithm. The results
partly correspond to the enterotypes presented by Arumugam et al. (2011),
but also provide new clusters that clearly separate themselves from the other
samples.

25

The clusters that were found can be found reliable and significant as
similar cluster medoids were picked up even when the cluster count was lifted
from the original three. This indicates that the clusters are in fact present
in the data set, and the found centroids aren’t only some random points in
the middle of the data set. Different validation techniques were considered
and used, all of which indicated that the real number of clusters present in
the data is no more than seven even with close to 2000 samples. The results
seem to be a sign that there are not that many stable bacterial compositions
that may be present inside the human digestive system. This once again
corresponds to the findings of Arumugam et al. (2011).

With component analysis the results are in many ways in accordance
with the clustering results. The components represent the bacteria that
have the largest variance between the data samples, and basically each of
the significant bacteria that drove their own clusters also have their own
components. While not many significant or surprising relationships between
different bacteria were discovered, the main contribution of these findings is
perhaps the chance to be able to examine the scores that each data sample
has for different components. This examination may provide information on
which samples are heavily related to certain components and thus provide
interesting research opportunities. However, this examination is left outside
this special study because the background information about the samples
was extremely incomplete.

The generative model for clustering was deemed computationally difficult
due to the nature of the Dirichlet distribution and it didn’t yet provide any
usable results. In future attempts the concentration should first be on finding
appropriate measures to take which would allow for the model to mix better
instead of getting stuck in a certain, suboptimal position. This would require
more examination into smoothing the likelihood function, and perhaps also
considering different ways of implementing the jumping distribution. For
instance, using the normal distribution as the Metropolis-Hastings jumping
distribution and changing only one variable at the time may be able to find
new suggestions better than simple Dirichlet jumps do. However, this imple-
mentation would require some upper limits for the variables to avoid addi-
tional computational issues. Additionally even longer burn-in periods could
be pursued so that the cluster centers would have time to update themselves
to reasonable locations. Currently the burn-in period was set to at most 2000
iterations, but it still was not long enough for the smoothing to be effective.

26

5 References

Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, 2nd
edition.

Andrieu, C., de Freitas, N., Doucet, A. and Jordan, M. I. (2003). An Intro-
duction to MCMC for Machine Learning. Machine Learning, 50(1):5–43.

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende,
D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J.-M., Bertalan, M.,
Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori,
M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez,
F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin,
J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal,
E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S.,
Dore, J., Antolin, M., Artiguenave, F., Blottiere, H. M., Almeida, M.,
Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz,
G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon,
E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste,
C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E.,
Merieux, A., Melo Minardi, R., M’rini, C., Muller, J., Oozeer, R., Parkhill,
J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A.,
Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller,
G., Weissenbach, J., Ehrlich, S. D. and Bork, P. (2011). Enterotypes of
the human gut microbiome. Nature, 473(7346):174–180.

Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003). Latent Dirichlet Allocation.
J. Mach. Learn. Res., 3(Jan):993–1022.

Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis.
Communications in Statistics - Theory and Methods, 3(1):1–27.

Comon, P. (1994). Independent component analysis, a new concept? Signal
Process., 36(3):287–314.

27

DeAngelis, K., Wu, C., Beller, H., Brodie, E., Chakraborty, R., DeSantis,
T., Fortney, J., Hazen, T., Osman, S., Singer, M., Tom, L. and Andersen,
G. (2011). PCR Amplification-Independent Methods for Detection of Mi-
crobial Communities by the High-Density Microarray PhyloChip. Applied
and Environmental Microbiology, 77(18):6313–6322.

Ding, C., Li, T. and Jordan, M. I. (2010). Convex and Semi-Nonnegative Ma-
trix Factorizations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(1):45–55.

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probability dis-
tributions. IEEE Transactions on Information Theory, 49(7):1858–1860.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian
Data Analysis. Chapman and Hall/CRC, 2nd edition.

Hennig, C. (2010). fpc: Flexible procedures for clustering. R package version
2.0-3.

Hennig, C. and Liao, T. F. (2010). Comparing latent class and dissimilar-
ity based clustering for mixed type variables with application to social
stratification. Research report no. 308, Department of Statistical Science,
UCL.

Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley Interscience, New York.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791.

Lefkimmiatis, S., Maragos, P. and Papandreou, G. (2009). Bayesian infer-
ence on multiscale models for Poisson intensity estimation: applications to
photon-limited image denoising. Trans. Img. Proc., 18(8):1724–1741.

Maisog, J. (2009). Non-negative matrix factorization: Assessing methods
for evaluating the number of components, and the effect of normalization
thereon. Master’s thesis, Georgetown University.

Maulik, U. and Bandyopadhyay, S. (2002). Performance Evaluation of Some
Clustering Algorithms and Validity Indices. IEEE Trans. Pattern Anal.
Mach. Intell., 24(12):1650–1654.

28

Milligan, G. and Cooper, M. (1985). An examination of procedures for deter-
mining the number of clusters in a data set. Psychometrika, 50(2):159–179.

Rajilic-Stojanovic, M., Heilig, H. G. H. J., Molenaar, D., Kajander, K.,
Surakka, A., Smidt, H. and De Vos, W. M. (2009). Development and
application of the human intestinal tract chip, a phylogenetic microarray:
analysis of universally conserved phylotypes in the abundant microbiota of
young and elderly adults. Environmental Microbiology, 11(7):1736–1751.

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20(1):53–65.

van der Laan, M., Pollard, K. and Bryan, J. (2003). A new partitioning
around medoids algorithm. Journal of Statistical Computation and Simu-
lation, 73(8):575–584.

29

A Cross-validation of CH-index and Silhou-

ette

This appendix includes the plots showing the cross-validation of CH-index
and Silhouette. The cross-validation was done for the purpose of making sure
the indices give as reliable results as possible. First the data was divided into
folds and clustering was done with partitioning around medoids algorithm
for each training set. Then the optimal clustering, in terms of the square
root of the Jensen-Shannon divergence, was found for each validation set.
Corresponding CH-indices and average Silhouettes were then averaged over
validation sets. In this case only five folds were used because with ten folds
(smaller validation sets, larger training sets) all clusters weren’t given any
points from the validation sets when the amount of clusters was close to ten.

The results of the cross-validation are presented in Figure 9. The plots
show that CH-index indeed gives three as an optimum also across the vali-
dation sets. Silhouette on the other hand gives two as a clear optimum, but
the rest of the curve is very similar to Figure 2.

30

2 4 6 8 10

35
40

45
50

55

Number of medoids

A
ve

ra
ge

 C
H

-in
de

x
fo

r v
al

id
at

io
n

se
ts

2 4 6 8 10

0.
10

0.
12

0.
14

0.
16

0.
18

Number of medoids

A
ve

ra
ge

 S
ilh

ou
et

te
 fo

r v
al

id
at

io
n

se
ts

Figure 9: Cross-validation of CH-index and Silhouette.

31

