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Introduction

Adversarial risk analysis (ARA) combines statistical risk analysis and game theory to
create new methods for the analysis of decision making in counterterrorism and
corporate competition. ARA is concerned with problems in which there two or more
intelligent opponents who make decisions with uncertain outcomes (Rios Insua et al.,
2009).

Traditional statistical risk analysis was developed to model risks in complex
technological entities (such as nuclear power plants), insurance, finance, and other
applications in which the loss is governed by chance (sometimes called Nature). ARA
also seeks to model the (possibly malicious or self-interested) actions of intelligent
actors, which means that ARA also needs a model for the decision-making of all the
participants. This model can be based, for example, on classical game theory (Myerson,
1991) or more psychological considerations (Camerer, 2003).

Game theory alone is not ideal tool for describing human behavior. Minmax solutions
can often lead to sub-optimal solutions, because in reality the opponent is not perfectly
rational. The solutions may be too pessimistic, because by mitigating the worst possible
scenario, one can end up avoiding better outcomes that may correspond better to the
choices a human opponent would realistically make. Minmax solutions are also often
difficult to compute in real world scenarios, and they often need to make heavy
assumptions about common knowledge shared by the competitors (Kadane & Larkey,
1982 and Meng et al., 2014).

ARA has many quite obvious uses in military organizations. A significant proportion
of the more recent ARA literature focuses on counterterrorism and many of the results
can be applied directly for military use. Zhuang and Bier (2007), for example, apply
game theory to device strategies to allocate resources between protection from
intentional attack and natural disasters. In addition to helping in decision making in
relation to defending against terrorist threats, the same methods can be used to allocate
resources between strategically important targets, or even to decide how much money
should be allocated for different military projects or units. The finance literature based
uses of ARA can be useful too, because military organizations are also acquiring
numerous products and services from outside contractors.

This study paper does not, however, focus on exploring the ARA literature that could
possibly benefit the military. Our aim is instead to discuss how ARA can be applied to
combat simulation modeling or as a complement to it. There are numerous combat
models and simulators for calculating the outcomes of battles and the losses sustained
by the units and weapons systems, but most of these simulators do not model human
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decision making except on the most basic levels (Lappi, 2012, 14-20). Thus, ARA
could be used to enhance these simulators by increasing the realism of the decision
making process based on the simulation results or help them to predict the decision
making of the opponent.

Another advantage of the ARA perspective in traditional combat modeling is that the
effects and usefulness of military deception can be calculated. Game theory has been
applied to calculating the benefits of deceit before (Reese, 1980), but its applications
are still rare. This is partly because the classical game theory solution requires
assumptions that both sides have common knowledge about each other’s goals and
resources, which is not realistic when modeling deceit. ARA is not similarly limited
and it can even be applied to calculate the usefulness of decoys and dummy systems to
estimate if they are worth the cost, which is very difficult for most combat simulation
models to estimate.

Modeling adversarial risks

This section briefly describes how a situation in which there are adversaries whose
actions affect each other’s risks can be modeled. This section is mostly based on the
article by Rios Insua et al. (2009) and for more comprehensive description on
adversarial risk analysis (ARA) we refer to it. For a good overview on how the ARA
approach compares to classical game theory, please see the paper by Banks et al.
(2011).

Risk analysis

The simplest form of a non-adversarial risk management problem is a situation where
the decision maker is faced with a single choice from a set of decisions, and each
decision has uncertain costs associated with it. Uncertainties about costs may result
because the outcome of the decision is uncertain, or because the costs associated with
a particular outcome are uncertain, or both. This problem is presented as an influence
diagram in Figure 1.

Action =@—»< Result >

Figure 1. A simple influence diagram
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An influence diagram is a directed acyclic graph with three kinds of nodes: rectangle
shaped decision nodes, oval shaped uncertainty nodes, and hexagonal value nodes.
Arrows pointing to value or uncertainty nodes indicate functional or probabilistic
dependence, respectively. That means that the utility function at the value node
depends on its immediately preceding nodes, and the probabilities associated with a
chance node depend on the values of the immediately preceding nodes and are thus
conditional on them. Arrows pointing into decision nodes indicate that the values of
the nodes preceding the decision node are known at the time of the decision. (cf.
Howard & Matheson, 2005)

The problem in Figure 1 represents a situation where the decision maker has to make
a decision a from a set A of possible choices, represented by the rectangle. The cost ¢
associated with this decision is uncertain and is modeled through density m(c|a),
represented by the oval node. The result is modeled by Von Neumann-Morgenstern
utility function u(c). The decision maker seeks the decision that maximizes the
expected utility

Y = max[y(a) = [ u(c)m(cla) dc]. (1)

In practice, the costs of a particular action are complex and depend on the outcome.
The costs may often include fixed and random terms. For that reason, organizations
will often perform a risk assessment to better identify the disruptive events, and their
probabilities and associated costs. Figure 2 shows the influence diagram that has been
extended to account for the disruptive hazards identified by the risk assessment and the
additional costs they may cause.

Hazard

Action

Result >

Figure 2. Influence diagram after risk assessment.
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Adversarial risks

We now consider a situation in which there are two adversaries (Attacker and
Defender), whose decisions affect the risks each face. Figure 3 shows how the
influence diagram is extended to include the adversary in a symmetrical situation in
which decisions of both parties affect the risks and costs the other faces, and both seek
to maximize their own expected utilities. Even though the roles are symmetric in this
example, this does not have to be the case. An asymmetrical scenario could also be
modeled with an asymmetrical influence diagram.

We denote the sets of possible actions of Attacker and Defender with A and D
respectively. Their utility functions are u,(-) and uy(-). The sets containing their
beliefs about different probabilities are P, and P;. As can be seen in the influence
diagram in Figure 3, one of the nodes, Hazard, is common for both sides. This can
represent the possible complications arising from risks common to both sides, such as
weather for example. The other cost nodes are not common, and represent the random
costs for both parties and they could be very different.

The expected utilities for both the Attacker and the Defender depend upon the actions
of both. Specifically, by extending on (1), we get the utility the Attacker expects from
choosing action a € A when the Defender chooses action d € D

Yu(a,d) = qu(C)T[A(Cla: d)dc, (2)

where 4 (c|a, d)€eP, represents the Attacker’s beliefs about his costs corresponding to
the decision pair (a, d). It is noteworthy that these beliefs do not necessarily have to
match reality, because we are only modeling the decision the Attacker makes. The
expected utility for the Defender is analogous.

This representation of ARA matches normal form games, in which both players make
the decisions simultaneously. One could also build an influence diagram that applies
to sequential games, such as Stackelberg games, in which the players alternate making
their moves. The ARA methodology can be applied to solving them too (cf. Banks et
al., 2011 and Rios & Rios Insua, 2012).
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Figure 3. Influence diagram with an adversary
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Bayesian framework for ARA

A problem like the one presented in Figure 3 can be readily solved using classical game
theory if we assume that the costs and utility functions of both players are common
knowledge. If the players do not possess correct and accurate information about the
costs, resources, and goals of the adversary, (which is often the case in reality,) the
Nash equilibrium solution does not exist.

ARA solves this problem by using a Bayesian strategy to express uncertainty about the
adversary’s decision. If we examine the problem from the Attacker’s point of view, the
uncertainty means that the Defender’s decision is a random variable as presented in
Figure 4. To solve this problem, the Attacker needs more than just ,(c|a, d)eP, and
u,(c). The Attacker also needs p,(d), which is the probability that the Defender
chooses defense d as estimated by the Attacker. To find that, he is assumed to use
mirroring to form an estimate of both the Defender’s utility function up(c) and the
Defender’s costs m(c|a,d). That means that the Attacker assumes the Defender is
acting rationally and is using a similar strategy to predict the actions of the Attacker.



6

If the Attacker tried to estimate the Defender’s utility function and cost function by
assuming the Defender is doing the exact same thing that he is doing, the Attacker
would need to think what the Defender thinks he thinks. To avoid infinite regress, the
chain is usually cut there and the Attacker just forms an educated guess about the
Defender’s thoughts about the Attacker’s estimated utilities and costs. Obviously the
thinking could be taken even further, but it usually not a realistic way to resolve the
problem at hand.

Defender Hazard

Action Result >

Figure 4: Influence diagram from the Attacker's point of view.

The ARA methodology is quite similar to Bayesian level-k thinking. The way of
modeling opponents thoughts presented here resembles most closely level-2 thinking.
Rothschild et al. (2012) have taken the approach further and applied actual level-k
thinking to the ARA approach. Their methodology is not without drawbacks as the
level-k approach requires some additional assumptions and the problems become
intractable even faster as their complexity increases. Possibly the greatest advantage
gained from the level-k thinking approach is the ability to easily perceive how the level
of adversary’s thinking affects the optimal decision.

Applying ARA to military combat modeling

In this section we present some ideas for applying ARA to military combat modeling
problems and modeling process. These ideas are still mostly untested, and they are
offered mostly as suggestions for interesting future research subjects.

Distribution of resources

Like we mentioned in the introduction section, a significant proportion of ARA
literature is focused on preventing terrorist threats, and more specifically on how
should limited resources be allocated to best combat these threats (cf. Pat-Cornell &
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Guikema, 2002, Zhuang & Bier 2007 and Kroshl et al., 2015). Resource allocation is
a problem that military faces always, not just when combating terrorism. The methods
developed for allocating resources against terrorist threats are easy to apply to combat
environment, because assessing the effects of the adversary’s decision is one of the
biggest challenges in ARA. Combat modeling has been developed for decades to
calculate those effects i.e. the results of combat.

This is probably the easiest way to benefit from ARA in the context of combat
modeling. Studying the ARA research related to counter terrorism and applying the
developed methods to combat situations by calculating the related risks using combat
modeling tools has the potential to reap large rewards with only relatively minor
Investments.

Modeling decision making

Currently many combat models do not include algorithms that are capable of modeling
the human thought process behind tactical or higher level decisions (Washburn &
Kress, 2009, 111-130). Depending on the model practically all higher level decisions
above soldier or platoon level are made by the operator. As a result, the time required
to create a scenario is usually significantly longer than the time required to calculate
the results (Lappi, 2012).

The fact that the user defines the actions taken by the troops in the modeled scenario is
not always a hindrance. It also offers many benefits, including the ability to fine tune
the scenario to match events of a historical battle (Lappi et al., 2014) or to easily
examine and change the actions taken by the troops. The reliance on user making all
the significant decisions can, however, become problematic when a really large number
of scenarios is required, which is often the case when data farming more complex cases
(Lappi et al., 2015). Currently many aspects of the scenario can modified by just
changing some simple parameters, but that approach requires a high level of operator
expertise and is still somewhat limited in its applications.

Including a model that would allow the units inside the simulation make simple
tactically sensible decisions would widen the range of problems that can be analyzed
using data farming. The ARA methodology could well be used as a basis for such
decision making algorithm. Use of ARA over some other game theory based decision
method is made more attractive by the fact that the ARA framework makes it possible
to better take into account the uncertainties and possible misinformation that are
present on the battlefield.
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However, there are some limitations to applying ARA to modeling decision making.
Because the method is so calculation intensive, it is not ideal for modeling low level or
continuous decision making. The most effective way to apply ARA would be to limit
the choice to between a few possible strategies. Including too many different and
separate choices will cause the problem to become intractable.

Simulating larger chains of events

The ARA methodology can also be applied to aid in modeling military operations that
are too large to simulate as single scenario. The scale can become an issue if the number
of units involved is too large, or the operation takes place over such a long timeframe
that it starts to take too many different possible paths based on the events. Kangas and
Lappi (2006) present how methods of probabilistic risk analysis can be used in
conjunction with stochastic combat modeling to analyze larger chains of events. The
ARA approach could be used to build on those results and take the analysis one step
further. In addition to predicting the success chances of larger operations, it would also
be possible to predict those of the adversary’s choices that can affect the path of events.

Practically any combat model can be used with ARA methodology as long as it can be
used to calculate the probabilities for each side winning the battle and the expected
losses on both sides. This includes practically all stochastic combat models and even
some of the deterministic ones. The combat model should be chosen first and foremost
to fit the problem at hand. Sometimes the best choice is a platform level Monte Carlo
simulation, and sometimes it is a high level attrition model like FATHM (Brown &
Washburn, 2000).

In some cases, it can be possible to use ARA to model these larger chains of events
without having to rely on an actual stochastic combat modeling software like Sandis as
Kangas and Lappi (2006) did. There are also alternative, lighter stochastic
computational models that can be used to predict the outcome of a duel between two
platoon sized forces (Lappi et al., 2012; Akesson, 2012; Roponen, 2013). They can be
used to significantly cut down the calculation time required for solving all the success
probabilities and expected losses in different stages of the chain, not to mention the
time savings from not having to create a complete model scenario, which is, as stated
earlier, a time consuming process. The use of the lighter duel simulation methods could
even be automatized to a certain degree, because they require much fewer input
parameters.

Modeling the effectiveness of military deceit

Using deceit to gain upper hand against an adversary is absolutely integral part of
military tactics and strategy. At the same time, the effects of deceit are very difficult to
predict and simulate using existing operational analysis and combat modeling software.
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Because the effects are difficult to reduce to mathematical formulas, modeling the
effects of deceit relies usually on expert opinions, which in the context of combat
modeling usually means that it is left to the operator of the software. A common
alternative is to use wargames to model the uncertainties associated with human
decision making, but that approach is not without its problems either (Washburn &
Kress, 2009, 111-130).

The ARA approach could be used to help measure the effects of deceit tactics have on
the decision making of the adversary. The ability to model the effects of the adversary’s
altered perceptions should at least be useful when used as a complement to the
elicitation of expert opinions. Mathematical equations are, after all, immune to effects
of optimistic thinking.

Examples of situations that could be relatively easily modeled with ARA include cases
in which the adversary is deliberately misinformed about the strength of the opposing
forces. This can be achieved for example by hiding troop movements and employing
dummy units or decoys. ARA can be then used to estimate the effect of the deceit on
adversary’s decision making and whether that effect is beneficial or not. An example
of such estimation process is given in the next section.

Supporting decision making

Possibly the most important reason for military combat modeling is its use for
supporting strategic, tactical or technical decision making process (Tolk, 2012, 55-78).
However, it is not an easy task to translate the results of combat models to actual
decisions or recommendations (Davis & Blumenthal, 1991).

The ARA framework could be applied to translate the data, produced by the
mathematical models, to answers to more concrete questions such as what will happen
if we do not allocate more troops to a specific airfield, or where is the enemy likely to
attack if we do X? Obviously, problems like this are mathematically and
computationally very difficult, but they are not impossible to answer if sufficient time
and effort is invested into developing the methods. (What is prohibitively hard to
calculate today may not be so five years from now, thanks to the rapid increase in
computer power.)

One possible way of using ARA to translate simulation results to an easily applicable
form is to perform a portfolio analysis on the possible strategies being considered.
Similar methods have already been used in assessing cost-efficiencies of different
weapon system combinations (Kangaspunta et al., 2012). ARA could be used in this
instance to predict the most likely responses of the adversary and calculate the expected
utilities gained from choosing each strategy under different conditions. The
applicability of this approach would again rely on streamlining or automatizing the
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process so that it would provide accurate results and save time compared to manually
assessing the need for use of combat simulation and analyzing the results it provides.

Example of applying ARA to a tactical problem

To demonstrate how ARA can be applied in practice, we use it here to solve a relatively
simple tactical problem. The methodology can be applied to significantly more
complex situations. The purpose of this section is just to give a general idea of the
methodology.

The problem

Let us examine a situation where there are two sides: the Defender and the Attacker.
The Defender is moving in more troops to protect a valuable target, and the Attacker
has an opportunity to decide whether he will try and take the valuable target or use is
his troops somewhere else.

To make the problem easier to understand and calculate, we have reduced the choices
of the Defender and the Attacker to simple binary questions. The Defender decides
whether to hide the movements of his reinforcements from the Attacker. The Attacker
will decide, after observing the perceived strength of the defender, whether he should
commence the attack against the target or not. If the Defender decides to hide his
reinforcements, the Attacker will not know about them, and thus make the decision,
whether to attack or not, using incomplete information. We will solve the problem from
the point of view of the Defender. Figure 5 shows the influence diagram from the
Defender’s point of view.

Hide | Decision Battl Result
troops to attack iltii esu

Figure 5. Influence diagram of the example case from the point of view of the Defender.

Let us denote the options the Defender and the Attacker as D = {0,1} and A = {0,1}
respectively. The only uncertainty in this case is the outcome of the battle S (say,
success or failure for the Defender to keep hold of the target). The utility functions over
the costs are up(cp, cs) and u,(cp, cq), With costs dependent on the actions of the
Attacker.

Solving the problem requires assessing the probabilities over the costs, conditional on
(a,d,S); and about S, conditional on (a, d). The Attacker and the Defender have in
this case different assessments: for example, for success, these are p, (S = 1]a, d) and
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pa(S = 1]a,d), respectively. The Attacker’s assessment of the success of the assault
is likely different from the Defender’s because the Attacker is not even aware of any
choices being made by the Defender, as can be seen in Figure 6. The expected utility,
for the Attacker, obtained with (a, d) is

l/)A(a; d) = PA(S = 0la, d)ZZ[uA(CA» cp)Ta(cy cpla, d,S = 0)]
“a < 3)
49405 = Ua,d) D Y [ua(ea oI ma(CarCpla, d,S = 1)].

Ca Cp
Battle Result >

The Defender’s expected utility is similar.
Figure 6. Influence diagram of the example case from the point of view of the Attacker.

Decision
to attack

Strength of
defending troops

We now solve the game from the Defender’s point of view. The Defender has 15 men

defending the target and has 15 more men coming in as reinforcements. He has the

opportunity to hide the presence of the reinforcements from the attacker. The Defender

estimates that the Attacker has at least 20 men but no more than 35, and he thinks that

the most likely number is 30, so he fits a triangular distribution as seen in Figure 7.
0,15

0,1

0,05

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Propability mass

Figure 7. Defender's estimation of Attacker's strength as a probability mass
distribution.

Using the strength estimates of both forces, the Defender can use, for example, a
stochastic combat model to calculate p, and ;. The Defender also determines that the
utility gained from the situation follows function

up(S,a,cy,cp) =355+ 5a+ 0.1cy — cp, (4)



12

where S = 1 corresponds to the situation where the Defender manages to hold the
target area, a = 1 corresponds to the situation where the Attacker decides to attack,
instead of using the troops elsewhere, and c, and cp are the Attacker’s and the
Defender’s losses respectively.

It is not enough to solve the problem for the Defender to know pp, mp and uy,. To
calculate the expected utility from decision d, he first needs to estimate p,(ald). To
do that, he needs to solve the problem from the viewpoint of the Attacker. He assumes
that the Attacker is also an expected utility maximizer. The problem is presented from
the Attacker’s point of view in Figure 6.

The Defender estimates that the Attacker thinks the Defender has 13 to 17 men, and
finds all values equally likely, and will not find out about the reinforcements if the
Defender decides to hide their movement. If the Defender decides not to hide the
reinforcements, he estimates the Attacker will think the Defender has 28 to 32 men,
and find all values within that range equally likely. Using those strengths for his
estimates he can use the same stochastic combat model used to solve p, and m, to
calculate p, and m,.

The Defender estimates that the Attackers utility function is similar to his own but is
uncertain how high the attacker values the target and the loss of opportunity to use the
troops elsewhere. Thus he estimates that the Attacker’s utility function is

uA(S, a, CAJ CD) = _(35 + Ul)S - (5 + Uz)a + O.lCD - CAI (5)

where U; and U, are uniform on [—5, 5].

Let us look at solving the problem step by step. To solve the problem, the Defender
will:

1. Calculate the success probabilities and expected losses for both sides for all the
possible combinations of strengths of both sides as perceived by the attacker.

2. Calculate the Attackers expected utilities 1, for attacking and not attacking for
all possible strengths of the Attacker’s force taking into account the uncertainties
with u,.

3. Compare the expected utilities to get an estimate for the probability of an attack
for each possible strength of the attacker as seen in Figure 8.

4. Use probability of an attack with a specific strength of the attacker (Figure 8)
and the probability for each of those strengths (Figure 7) to calculate pp(ald).

5. Calculate Y, for all possible values of a.

6. Use pp(ald) to calculate the d with best expected utility.
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1,2

0,8
0,6
0,4
0,2

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Attack probability

Figure 8: Probability of an attack as a function of the Attacker's strength, when the
Defender has not hidden the reinforcements.

We used the approximative method for simulating a duel between two forces presented
by Roponen (2013) to calculate pj, mp, p, and m,, because the program code was
easily available and it calculated the results fast and with sufficient accuracy. This
program code was also written to loop through all the possible strengths of both sides
and calculate the expected utilities to find out the attack probabilities p,(ald). The
attack probability when the Defender hides the reinforcements p,(ald = 1) = 1, and
when he hides the reinforcements p,(ald = 0) = 0.33. Then the expected utilities of
the Defender were calculated from p, and mj, as

Yp(a,d =1) = 13.44,and Yp(a,d = 0) =~ 27.88.
(6)

Thus the Defender decides that hiding the reinforcements is not in his best interests.

The result may seem counterintuitive, but it makes sense, if one takes into account that
() the Defender values the safety of the defended target more than the losses sustained
by the Attacker and (Il) the fact that the Defender does not necessarily outnumber the
Attacker even with the reinforcements at hand.

Discussion

Adversarial risk analysis (ARA) is still a relatively new research area that has been
becoming more prominent in the context of counter terrorism and corporate
competition. However, we feel that ARA has much to offer for military combat
modeling too. It is able to combine the statistical approach of risk analysis, already
used in combat modeling, with a game-theoretical perspective that can be used to help
predict the actions of one’s opponents.
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We have listed some possible uses for the ARA approach in the context of military
combat modeling, operations analysis, and decision making in general. The ideas
presented in this paper are still tentative, and they would require more research and
work before they can be fully implemented. Real problems are extremely complex and
solving them using the ARA methodology is very difficult. Actual battles can easily
involve thousands of possible decisions, and the uncertainties associated with the goals
and resources are significant. However, we feel that this should not stop us into looking
at the new possibilities ARA has to offer.

We also presented a relatively simple example using the ARA methodology in tandem
with stochastic combat modeling. Most of the numerous calculations required for
solving the ARA side problem were relatively simple to implement into program code,
and there already exist numerous tools for calculating the outcomes of battles (Kangas,
2005). It seems that it is possible to build software tools for solving numerous
comparable problems by formulating valid approaches for solving, how the opponent’s
utilities affect his decision making. This, however, is not an easy task.

Possibilities for future research are abundant as one of the primary aims of this paper
was to find some such possibilities. At the moment, the avenue that in our opinion
shows the most promise in advancing the research into possibilities of ARA, would be
to tackle a more complicated combat simulation problem than the one presented in this
paper to push the boundaries of what is possible using ARA with stochastic combat
modeling.
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