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1 Introduction

Mathematical modelling plays an important role in the natural sciences
and engineering, but nowadays it is used also in many other fields such
as economics, sociology and psychology. The applicability of any model
is usually measured by its predictive performance; if the model’s predic-
tions about some phenomenon do not agree with our observations, there
is not much sense in trying to interpret the model. On the other hand, if
the model is able to make reasonable predictions, it may be useful even
though no model can be concluded to be ”correct” (Box, 1979). Some other
features of a good model are generally considered to be simplicity, trans-
parency and interpretability.

In this study we consider Bayesian statistical models and predictive model
selection. Predictive model selection refers to a problem where one is
choosing a model from a set of candidate models based on their ability
to predict unseen observations. In practice, the methods for assessing the
predictive performance of a given model may vary depending on the mod-
elling task and available data. We shall describe several methods which
estimate the predictive ability of a model via expected utilities and illus-
trate their use in a covariate selection problem. The methods we consider
are cross validation and two different information criteria, and also Bayes
and Gibbs variants for reference, training and test utilities.

We begin with a brief introduction to Bayesian statistics in section 2. We
introduce the concept of belief updating with Bayes’ theorem and the pre-
diction with a Bayesian model. After the general discussion, we derive
the Bayesian linear regression model as an example. Section 3 deals with
model selection and explains how the predictive performance of a model
is defined and how it can be estimated. In section 4 we illustrate the use of
these methods by applying them to a covariate selection problem, in which
we use the derivation of the regression model from section 2.2. Through
the example, we discuss some key differences and similarities between the
methods, such as biasness or unbiasness, as well as other relevant concepts
related to model selection.
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2 Bayesian inference

2.1 Bayes’ theorem and basic principles

In Bayesian statistics uncertain quantities are treated as random variables,
and in essence the whole Bayesian statistics is about revising subjective
beliefs about these quantities on the basis of observations. This interpreta-
tion is fundamentally different from what is done in frequentist statistics,
where the quantities of interest are usually considered to be fixed con-
stants even though they are unknown. For a parametric model, given all
the model assumptions M the belief updating about parameter or param-
eters θ on the basis of the observations y is done by the Bayes’ theorem

p(θ|y, M) =
p(y|θ, M)p(θ|M)

p(y|M)
=

p(y|θ, M)p(θ|M)∫
p(y|θ, M)p(θ|M)dθ

. (1)

Prior probability distribution p(θ|M) describes our beliefs about θ before
making the observations. p(y|θ, M) is the actual statistical model describ-
ing the relation between the parameters and the observations. Once the
observations are obtained, it becomes a function of θ and we call it the
likelihood. The likelihood describes which of the parameter values are more
likely based on the observations, but it is not a genuine probability dis-
tribution since in general it does not integrate into 1. The denominator
p(y|M), often referred to as the marginal likelihood, is a normalizing con-
stant that makes the right hand side a proper probability distribution. The
result p(θ|y, M) is called the posterior distribution and it combines the prior
information and the observations giving us the updated belief about θ. All
the inference is done using the posterior because it contains all the knowl-
edge there is about θ after the observations.

Bayesian treatment has a natural way of predicting new observations ỹ
given the old ones. This is done by using the statistical model p(ỹ|θ, M)

together with the posterior beliefs about the parameters θ. Because we do
not know the exact value of θ, we use all the possible values with respect
to their probabilities, which leads us to take expectation of the probability
model over the posterior p(θ|y, M):

p(ỹ|y, M) =
∫

p(ỹ|θ, M)p(θ|y, M)dθ. (2)

p(ỹ|y, M) is called the posterior predictive distribution, and it takes into ac-
count the uncertainty about θ as well as the stochastic randomness about
the future observation. One may see the analogy between the formulas
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of p(y|M) and p(ỹ|y, M); p(y|M) predicts the data y on the basis of the
prior beliefs p(θ|M), whereas p(ỹ|y, M) predicts the future observations
ỹ on the basis of the prior beliefs and the previous observations y. For this
reason, p(y|M) is also called as the prior predictive distribution before the
observations are made.

So far we have conditioned all the terms on model assumptions M. How-
ever, we can treat M exactly in the same way as we treat the other param-
eters θ. This is done by specifying a model space, i.e. a set of candidate
models {Mk}K

k=1, and writing using the Bayes’ theorem

p(M|y) = p(y|M)p(M)

p(y)
=

p(y|M)p(M)

∑K
k=1 p(y|Mk)p(Mk)

. (3)

Here p(M) and p(M|y) are discrete probability distributions determin-
ing the prior and posterior probabilities, respectively, for each model Mk,
and p(y|M) is the marginal likelihood from equation (1) also called the
model evidence. In other words, after specifying prior probabilities for each
model, p(M|y) indicates which of the models are more likely and which
of them are unlikely based on the prior beliefs and the data. After calcu-
lating posterior probabilities and posterior predictive distributions we can
integrate or sum over the model space to get the Bayesian model averaging
(BMA) predictive distribution (Hoeting et al., 1999)

p(ỹ|y)BMA =
K

∑
k=1

p(ỹ|y, Mk)p(Mk|y). (4)

BMA predictive distribution takes all the K models into account accord-
ing to their probabilities and is therefore richer than any of the candidate
models alone. BMA has been shown to have a good predictive perfor-
mance (Raftery and Zheng, 2003). However, it is important to note that
setting prior probabilities for a set {Mk}K

k=1 means stating a belief that
the true data producing model belongs to this group, i.e. models outside
this set are not possible. Thus, a poorly specified set of candidate models
is also likely to lead to poor results. We shall use BMA as the reference
model in our numerical example in section 4. The concept of the reference
model is discussed in section 3.2.

2.2 Example: linear regression

We now consider the linear regression as an example of the Bayesian infer-
ence. Here we derive the model and in section 4 we give a model selection
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example by fitting a set of linear models to a simulated data. We shall not
show all the steps here, but present only the main results. See appendix A
for more detailed treatment.

In linear regression with one dependent variable y and p predictor vari-
ables x = (x1, ..., xp) the idea is to fit to the given training dataset X =

(X, y) = {(y(i), x(i)1 , ..., x(i)p )}n
i=1 a model

y(i) = β1x(i)1 + β2x(i)2 + ... + βpx(i)p + ε(i), ε(i) ∼ N(0, σ2). (5)

This is in matrix form
y = Xβ + ε, (6)

where

y =

y(1)
...

y(n)

 , X =

x(1)
...

x(n)

 =


x(1)1 x(1)2 · · · x(1)p

...
...

. . .
...

x(n)1 x(n)2 · · · x(n)p

 , (7)

β =

β1
...

βp

 , ε =

ε(1)

...
ε(n)

 . (8)

In this case the unknown parameters are θ = (β, σ2) where β ∈ Rp and
σ2 ∈ R+. The joint posterior is

p(β, σ2|X ) =
p(y|X, β, σ2)p(β, σ2)

p(y|X) . (9)

It is important to note that here the observations y are conditioned on
the covariates X, so the covariate values are assumed to be known. First,
we write down the likelihood for a single observation which is now the
normal distribution

p(y(i)|x(i), β, σ2) =
1√

2πσ2
exp

(
− 1

2σ2 (y
(i) − x(i)β)2

)
. (10)

Assuming that the observations are conditionally independent, the joint
likelihood for all the observations is

p(y|X, β, σ2) =
n

∏
i=1

1√
2πσ2

exp
(
− 1

2σ2 (y
(i) − x(i)β)2

)
, (11)
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which can be shown to be proportional to multivariate normal-inverse-
gamma distribution for β and σ2:

p(y|X, β, σ2) = exp
(
− 1

2σ2 (β− β̂)TXTX(β− β̂)

)
×
(
2πσ2)− n

2 exp
(
− 1

2σ2 (y
Ty− β̂

T
XTXβ̂)

)
∝ N(β; ·, ·)× Inv-Gamma(σ2; ·, ·), (12)

where
β̂ =

(
XTX

)−1
XTy. (13)

Next we define a prior for the parameters. For convenience, we choose a
conjugate prior, which leads to a posterior of the same functional form as
the prior. The advantage is that we do not need to calculate the normaliz-
ing constant (marginal likelihood) since we know the form of the posterior.
In this case also the posterior predictive distribution (2) can be solved an-
alytically. The conjugate prior is given by a joint distribution which is of
the same form as the likelihood (12):

p(β, σ2) = p(β|σ2)p(σ2)

= N(β; µ0, σ−2A0)× Inv-Gamma(σ2; a0, b0). (14)

Note that here σ−2A0 denotes the precision matrix, i.e the inverse of the
covariance matrix of the coefficients β. Now we straightforwardly multiply
(12) and (14) to get for the joint posterior

p(β, σ2|X ) ∝ p(y|X, β, σ2)p(β, σ2)

∝ N(β; µn, σ−2An)× Inv-Gamma(σ2; an, bn) (15)

where

An = A0 + XTX (16)

µn = A−1
n (XTy + A0µ0) (17)

an = a0 +
n
2

(18)

bn = b0 +
1
2
(yTy + µT

0 A0µ0 − µT
nAnµn). (19)

Given that the unnormalized posterior is proportional to N(β; µn, σ−2An)×
Inv-Gamma(σ2; an, bn), the posterior must be exactly this distribution. So
the prior definition (14) with parameters µ0, A0, a0, b0 indeed leads in a
posterior of the same form with parameters determined by the equations
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(16)–(19).

After solving the posterior we can calculate the posterior predictive distri-
bution (2). We shall calculate the joint predictive distribution for ñ future
observations ỹ, assuming that the covariates X̃ in those points are known.
Straight from the definition (2) we obtain

p(ỹ|X̃,X ) =
∫ ∫

p(ỹ|X̃, β, σ2)p(β, σ2|X )dσ2dβ. (20)

This integral can be calculated analytically and the result is

p(ỹ|X̃,X ) = (2π)−ñ/2 Γ(ã)
Γ(an)

(
|An|∣∣Ã∣∣

) 1
2 ban

n

b̃ã
, (21)

where

Ã = An + X̃TX̃ (22)

µ̃n = Ã−1(X̃Tỹ + Anµn) (23)

ã = an +
ñ
2

(24)

b̃ = bn +
1
2
(ỹTỹ + µT

nAnµn − µ̃TÃµ̃). (25)

Distribution (21) is a multivariate t-distribution for ñ future observations
ỹ, given the covariates X̃. Later in the model selection example in section
4 we are interested in only one prediction at a time, and in this case we
simply set ñ = 1 and ỹ = ỹ.

Finally, we derive the model evidence p(y|X). This is needed for comput-
ing the posterior probabilities (3) for a set of different models to obtain the
BMA predictive distribution (4). The marginal likelihood is given by

p(y|X) =
∫ ∫

p(y|X, β, σ2)p(β, σ2)dσ2dβ. (26)

Since the prior p(β, σ2) and posterior p(β, σ2|X ) are of the same functional
form (because of the conjugacy), the integral is exactly the same as when
calculating the posterior predictive distribution (20), only the parameters
are changed. It is therefore easy to verify that the result for the marginal
likelihood is given by

p(y|X) = (2π)−n/2 Γ(an)

Γ(a0)

(
|A0|
|An|

) 1
2 ba0

0
ban

n
. (27)
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3 Predictive model selection

The term model selection in general can be considered as a decision problem
where one needs to select a model from a set of candidate models {Mk}K

k=1
on the basis of certain criteria. As already discussed in the introduction,
when we are talking about a scientific theory or a statistical model, the
best available model is usually the one giving the most precise predictions
about the future observations, and model selection that is based on assess-
ing the predictive performance of the candidate models is called predictive
model selection (Vehtari and Ojanen, 2013). The predictive performance of
a model can be defined via expected utilities which we shall discuss next.
Throughout section 3 we shall deal with models that predict a single out-
put variable y given a covariate vector x as an input. The linear regression
model from section 2.2 is an example of this type of model. Note, however,
that the following model selection methods can be used basically for any
Bayesian models, but we fix the model structure because of the notation.
Moreover, we shall again denote the training data as X = (X, y).

3.1 Predictive ability as an expected utility

A natural way of assessing the predictive performance of a model Mk is
to use a utility function to describe the quality of the predictions. This
means that we define a suitable utility function u that maps each predic-
tion ak ∈ Ak of the model to a utility value for each possible future obser-
vation ỹ ∈ Ỹ so that the utility is higher for predictions that are closer to
the possibly later observed state of the world. In mathematical terms the
utility function is u : Ak × Ỹ 7→ R.

Since u depends on ỹ which is typically not known before making the
prediction, the utilities for the predictions cannot be evaluated beforehand.
For this reason, instead of the actual utilities we use expected utilities,
which are defined simply as the expected value of the utility function u
over the true future observation distribution pt(ỹ|x̃). We call this the Bayes
generalization utility

uB
gen(Mk) = Eỹ|x̃[u(ak, ỹ)] =

∫
u(ak, ỹ)pt(ỹ|x̃)dỹ. (28)

According to its name, the generalization utility measures how well the
model generalizes on unseen data. The definition (28) holds when the
model predictions ak are not conditioned on the values of the model pa-
rameters θk. However, one can condition the predictions on the parameters
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ak = ak(θk) and then take the expectation of these parametric predictions
over the model posterior as Eθk |X [u(ak(θk), ỹ)]. The expectation of this over
the future observation distribution is called the Gibbs generalization utility
(following Watanabe (2009)):

uG
gen(Mk) = Eỹ|x̃

[
Eθk |X [u(ak(θk), ỹ)]

]
=
∫ [∫

u(ak(θk), ỹ)p(θk|X , Mk)dθk

]
pt(ỹ|x̃)dỹ. (29)

Even though both (28) and (29) measure the predictive ability of the model,
they differ in a fundamental respect. The Gibbs utility measures the aver-
age predictive performance of the parametric probability densities of the
model Mk and does not tell how to actually predict the future observa-
tions. On the other hand, the Bayes utility is a measure of the goodness
of the actual prediction made by the model. Because of this difference the
formulation of the Bayes utility appears more intuitive and natural.

3.2 Estimation of the expected utility

In practice the true data generating distribution pt(·) is also unknown and
the direct evaluation of (28) and (29) is not possible. However, there are
still several methods that can be employed to estimate the expected utility
of a model, and in sections 3.2.1–3.2.3 we review some of these methods
in detail. In some cases it is possible to construct a good model, which
is believed to describe well the knowledge about the modelling task and
no significant flaws in the model are detected. In this case we call such
a model the reference model or the actual belief model (Bernardo and Smith,
1994) and denote it by M∗. If the reference model is available, we may be-
lieve that it describes well the distribution of the future observation, and
we can calculate the expected utilities over this distribution and end up
with the reference utility. This is illustrated in Figure 1.

The reference model approach, however, leads to a natural question: if we
already have a model whose predictions we believe are the best available,
why is there need for any model selection? There may be several different
reasons. For example, the reference model may be very complex, it may
not be expressed in a closed form and the integrals over it may be difficult
and computationally heavy. Such a model may also be difficult to interpret
if we are interested in the model parameters. In practice it would be more
satisfying to obtain a model which gives almost as good predictions as the
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Reference
model M∗
available?

Reference
utility

ūref = Eỹ|x̃,M∗ [u(ak, ỹ)]
(Bayes and Gibbs vari-
ants)

Test set ỹ
available?

Test utility
ūtest =

1
ñ ∑ñ

i=1 u(aik, ỹi)

(Bayes and Gibbs vari-
ants)

(Training
utility)

ūtr = 1
n ∑n

i=1 u(aik, yi)

(Bayes and Gibbs vari-
ants)

or Cross
validation

Use different elements
in y for training and
testing (LOO-CV, κ-
fold-CV)

or Information
criteria

Training utility
+ bias correction
(DIC, WAIC)

Yes

No

Yes

No

Figure 1: Different ways of estimating the expected utility of model Mk
depending on the situation. The methods that we consider in this study
are classified according their type of approach and are given in parenthesis
in italic. The training utility is set in parenthesis due to its biasness and
incompetence in estimating the generalization utility.

reference model but is as simple as possible and also easy to interpret and
use in the calculations. Calculating the expected utilities over the reference
predictive distribution reveals if there exists such a model in the set of the
candidate models. The utility estimation with the reference model is dis-
cussed in section 3.2.1.

A completely different situation occurs when no reference model is avail-
able. This is typically the more general case when facing a new modelling
task. In this case the performance of the candidate models must be as-
sessed using the available data. The naive approach is to use the same
data for model training and testing which is referred to as training utility,
but this leads in biased, overoptimistic utility estimates. A better approach
is to separate a set of points from the data and use them for testing. This
leads to a test utility (figure 1). However, many times the amount of the
available data is relatively small and one cannot afford the luxury of split-
ting the data into two, as this would reduce the number of points for model
training too much. In these cases the utility estimation can be done for ex-
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ample using cross validation or information criteria (figure 1). The methods
based on the reuse of the training data are discussed in section 3.2.2.

3.2.1 Utility estimation when a reference model is available

In theory, the utility estimation when the reference model M∗ is available
is rather straightforward. As already mentioned in section 3.2, the idea
is to replace the true distribution of the future observation pt(·) with the
posterior predictive distribution of the reference model M∗ and evaluate
the integrals in equations (28) and (29) directly.

Bayes reference utility When estimating the Bayes generalization utility
(28), the expected utility for any prediction a = a(ỹ) about the future
observation ỹ can be expressed as

ū(a) =
∫

u(a, ỹ)p(ỹ|x̃,X , M∗)dỹ, (30)

where p(ỹ|x̃,X , M∗) is the posterior predictive distribution of the refer-
ence model. As a utility function, we shall use the logarithmic score pro-
posed by Good (1952):

u(a, ỹ) = log a(ỹ). (31)

The logarithmic score is a widely used utility function, which has also
information theoretical grounds (Kullback and Leibler, 1951). In this case
the expected utility of prediction a becomes

ū(a) =
∫

log a(ỹ)p(ỹ|x̃,X , M∗)dỹ, (32)

which is maximized by â = â(ỹ) = p(ỹ|x̃,X , M∗). In other words, the opti-
mal prediction under the reference model M∗ is the prediction made by the
reference model itself. This is evident, given that we believe p(ỹ|x̃,X , M∗)
describes best the future observations. With similar logic, the optimal pre-
diction under model specification Mk is the posterior predictive distri-
bution âk = âk(ỹ) = p(ỹ|x̃,X , Mk). Hence, the expected utility for the
optimal prediction of candidate model Mk is given by the Bayes reference
utility

uB
ref(Mk) =

∫
log p(ỹ|x̃,X , Mk)p(ỹ|x̃,X , M∗)dỹ. (33)

This utility is greatest for the models whose predictions are closest to the
predictions of M∗, so the candidate models can be ranked according to
their utilities. Naturally it follows that the quality of the model selected
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this way depends on the quality of the reference model. For example if
the reference model is overfitted to the training data, the model selection
favors also overfitted models.

In practice, the reference utility (33) can be evaluated by using the covari-
ates in the training set and calculating the average utility as

uB
ref(Mk) =

1
n

n

∑
i=1

∫
log p(y|x(i),X , Mk)p(y|x(i),X , M∗)dy. (34)

See section 3.2.3 for estimating the out-of-sample performance of the mod-
els with a cross validation reference utility (cross validation is discussed
in section 3.2.2).

Gibbs reference utility In the second approach, one does not form the
explicit predictive distribution a, i.e. θ is not integrated out to obtain the
posterior predictive distribution. Instead the logarithm score for model Mk
is calculated straight from the likelihood for the future observation

u(Mk, θk, ỹ) = log p(ỹ|x̃, θk, Mk), (35)

and then the expectation of this is taken over the model posterior p(θk|X , Mk)

u(Mk, θk) =
∫

log p(ỹ|x̃, θk, Mk)p(θk|X , Mk)dθk. (36)

This is a function of ỹ which gives higher values to those ỹ that are more
probable according to the model. The average predictive performance of
model Mk is thereby this function integrated over the posterior predic-
tive distribution of the reference model, which gives us the Gibbs reference
utility:

uG
ref(Mk) =

∫ [∫
log p(ỹ|x̃, θk, Mk)p(θk|X , Mk)dθk

]
p(ỹ|x̃,X , M∗)dỹ.

(37)

In mathematical terms, the difference between (37) and (33) is the order of
the logarithm and the inner integration. By Jensen’s inequality the Gibbs
utility is a lower bound for the Bayes utility. The Gibbs utility can be eval-
uated the same way as the Bayes utility, i.e. by averaging the expression
(37) in the training points

uG
ref(Mk) =

1
n

n

∑
i=1

∫ [∫
log p(y|x(i), θk, Mk)p(θk|X , Mk)dθk

]
p(y|x(i),X , M∗)dy.

(38)
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3.2.2 Utility estimation when no reference model is available

Training and test utilities When the reference model M∗ is not avail-
able, the training data X = (X, y) can be reused as a proxy for the true
distribution of the future observation. The simplest approach is to use the
same data for model training and testing. This is done by evaluating the
mean value of the utility function in the training points, which is called
the training utility. With the logarithmic utility function the Bayes training
utility is

uB
train(Mk) =

1
n

n

∑
i=1

log p(y(i)|x(i),X , Mk). (39)

This estimate, however, is biased, since the testing points are not inde-
pendent of the training points (we shall see this in section 4.3). A better
approach is to use a separate test set where the data points are indepen-
dent of the points used for training. If there is enough data, such a set
can be formed simply by dividing the original training data into a new
training and test sets. If such an independent test set X̃ = (X̃, ỹ) can be
formed in one way or another, one can obtain the test utility

uB
test(Mk) =

1
ñ

ñ

∑
i=1

log p(ỹ(i)|x̃(i),X , Mk). (40)

Test utility approaches the true generalization utility (28) as the number of
testing points ñ increases. For both of these, training and test utilities we
can define the Gibbs utilities the same way as we did with the reference
utility. The analogous Gibbs utilities are defined as

uG
train(Mk) =

1
n

n

∑
i=1

∫
log p(y(i)|x(i), θk, Mk)p(θk|X , Mk)dθk (41)

uG
test(Mk) =

1
ñ

ñ

∑
i=1

∫
log p(ỹ(i)|x̃(i), θk, Mk)p(θk|X , Mk)dθk. (42)

Cross validation Even if no separate test set X̃ is available, a better
utility estimate than the training utility can be obtained with the cross
validation. The idea in cross validation is to use each data point in the
original training set for testing, but the same points are never used simul-
taneously for training and testing to achieve the independence between
the training and testing points. Probably the most natural choice is to pick
up one point at a time for testing, and train the model with the rest of the
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data. This is referred to as leave-one-out cross validation (LOO-CV) and its
utility estimate with the logarithmic score is given by

uLOO(Mk) =
1
n

n

∑
i=1

log p(y(i)|x(i),X (\i), Mk), (43)

where X (\i) denotes the original training data set excluding ith point.
Watanabe (2010) showed that LOO-CV with logarithmic utility function is
asymptotically equal to the expected true utility and the error is o(1/n).
The drawback in LOO-CV is that in large modelling tasks the computa-
tion of (43) may be time consuming, since it requires solving the posterior
predictive distribution n times. There are some ways to reduce the com-
putational effort, such as importance sampling LOO-CV (IS-LOO-CV) but
they are not considered in this study. Another cross validation method re-
quiring less computing than LOO-CV is the κ-fold-CV, where the original
training data is divided into κ subsets. Each of these subsets is used at a
time for testing whereas the rest of the points are used for the training.
The utility for κ-fold-CV is given by

uκ-fold(Mk) =
1
n

n

∑
i=1

log p(y(i)|x(i),X (\I(i)), Mk), (44)

where I(i) denotes the subset where ith point belongs to and hence X (\I(i))

refers to points in X except those which belong to I(i). In κ-fold-CV the
computational burden is smaller than in LOO-CV since the predictive dis-
tribution needs to be solved only κ < n times, but the flip side is that the
smaller the κ, the smaller the number of points for training and the poorer
the results. Note also that there is no unique way of dividing the data into
κ sets, and thus also the results for κ-fold-CV are not unique.

Information criteria Another way of improving the utility estimate from
the training utility (39) without a separate test set X̃ is to use information
criteria (IC) methods, which can be usually defined in the form IC = train-
ing utility + bias correction. One often used method in Bayesian literature
is the deviance information criterion (DIC) (Spiegelhalter et al., 2002) which
uses the deviance function δ(θk) = −2 log p(y|x, θk, Mk) to estimate the
utility. DIC utility can be calculated as

uDIC(Mk) = −
1

2n
[
2Eθk |X ,Mk

[δ(θk)]− δ(Eθk |X ,Mk
[θk])

]
= − 1

2n

[
2 ̂δ(θk)− δ(θ̂k)

]
, (45)
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where Eθk |X ,Mk
[·] denotes expectation over the model posterior p(θk|X , Mk).

One advantage in DIC is that it is easy to calculate, only samples from the
posterior are needed in order to evaluate the expectations. The downside
is, however, that it is dependent on a point estimate which means rejecting
the uncertainty of the parameters. Due to the use of the plug-in estimate,
the DIC value is also variant to the parametrization.

Another IC method is the widely applicable information criterion (WAIC) for
which the utility estimate can be written as

uWAIC(Mk) = uB
train(Mk)−

V
n

, (46)

where V is the functional variance

V =
n

∑
i=1

{
Eθk |X ,Mk

[
(log p(y(i)|θk, Mk))

2
]
−
(

Eθk |X ,Mk

[
log p(y(i)|θk, Mk)

])2
}

.

(47)
Watanabe (2010) showed that WAIC is different from DIC but instead
asymptotically equal to the LOO-CV and to the expected true utility, and
therefore asymptotically unbiased. Note that WAIC is not dependent on a
point estimate in contrast to DIC.

3.2.3 Other methods

Cross validation reference utility Even if the reference model is avail-
able, one may still be interested in estimating the out-of-sample perfor-
mance of the candidate models, i.e. the performance outside the training
set. In this case one can combine the idea of cross validation to the refer-
ence utility calculation and obtain a cross validation reference utility

uCV
ref (Mk) =

1
n

n

∑
i=1

∫
log p(y(i)|x(i),X (\I(i)), Mk)p(y(i)|x(i),X (\I(i)), M∗)dy,

(48)
where I(i) denotes the subset where ith point belongs to, and hence X (\I(i))

refers to points in X except those which belong to I(i). Note that (48) is a
mixing of Bayes reference utility (34) and κ-fold cross validation (44). The
major drawback in the reference cross validation is that it requires solving
both the candidate models and the reference model κ times, which may
lead to a huge computational effort. The advantage is, however, the use of
cross validation should avoid the selection of an overfitted model.
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4 Example problem: covariate selection

In this section we consider a covariate selection problem for a linear re-
gression model derived in section 2.2. The used data and the model are
explained first and we then consider how the various methods are calcu-
lated for a regression model (section 4.2) and then discuss about the results
(section 4.3).

4.1 Data and model

We use the following simulation data (Vehtari and Lampinen, 2004):

z1, ..., z4 ∼ U(−1.73, 1.73)

x1, ..., x4 ∼ N(z1, 0.0452)

x5, ..., x8 ∼ N(z2, 0.052)

x9, ..., x12 ∼ N(z3, 0.0552)

x13, ..., x16 ∼ N(z4, 0.062)

y = z1 + 0.5z2 + 0.25z3 + ε

ε ∼ N(0, 0.52).

In other words, in the data, we have one dependent variable y and 16
possible covariates x1, ..., x16. The x-variables do not determine y but in-
stead are noisy indicators of the underlying true parameters z that are not
observed. The covariates are divided into four groups and in each group
the covariates are highly correlated with each other. We have a hundred
replications of training and testing data D1, ..., D100. In each replication,
the training set X consists of n = 20 points and the test set X̃ of ñ = 400
points of data. Note that the number of training points in each replication
is relatively small and close to the maximum number of covariates.

Given that the number of predictors is 16, the number of different sub-
sets is 216 so we have now K = 216 linear candidate models for the data.
The task is to try to find one which would have a good predictive abil-
ity but would be as simple as possible, i.e. would contain only relevant
covariates. Since the number of candidate models is still relatively small,
we can apply the ’brute force’-approach and calculate all the utilities for
all the models. However, in real world problems it may be impossible to
go through all the candidate models since in difficult modelling tasks the
number of possible models K may be far too great. For these purposes
more advanced searching methods have been developed but they are not
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considered in this study.

The basic model is given by the equation (6), where the dimensions of X
and β vary according to the number of covariates in each model. For each
model we use the conjugate prior (14), where the parameters are defined
as:

µ0 =
[
0 · · · 0

]T

A0 = τ0I, τ0 = 0.3

a0 = 1

b0 = 1.

That is, all the regression coefficients βi are defined to have zero prior
mean and precision of 0.3 (variance 0.3−1), and no covariances between
the predictors are set a priori. The prior parameters a0 = 1 and b0 = 1
in the inverse gamma distribution lead in a relatively flat prior and an
expectation of about 1.22 for the noise parameter σ2. The sizes of vector
µ0 and matrix A0 naturally vary according to the number of covariates in
each model, but other than that the prior parameters are similar for all the
candidate models. With the prior specified, the posterior parameters (16)–
(19) and the posterior predictive parameters (22)–(25) can be calculated.

4.2 Methods

For each of the models, we calculate the utilities using the methods de-
scribed in sections 3.2.1–3.2.3. As a reference model M∗ we use the BMA
predictive distribution (4), i.e. p(ỹ|X̃,X , M∗) = pBMA(ỹ|X̃,X ) which can
be justified if there is strong belief that these 16 predictors contain all the
necessary information to describe y and in addition that the relationships
between xi and y are linear. In order to calculate pBMA(ỹ|X̃,X ) we need
the posterior predictive distributions (21) and model evidences (marginal
likelihoods) (27) for each model Mk. In addition, we need to specify prior
probabilities p(Mk) for all the models. For simplicity, we set equal prior
probabilities for each model, p(Mk) = 1/K. In this case we get for poste-
rior probabilities (3)

p(Mk|X ) =
p(y|X, Mk)p(Mk)

∑K
k=1 p(y|X, Mk)p(Mk)

=
1
K p(y|X, Mk)

1
K ∑K

k=1 p(y|X, Mk)

=
p(y|X, Mk)

∑K
k=1 p(y|X, Mk)

.
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Thus the posterior probabilities are proportional to the model evidences
p(y|X, Mk) (equation (27)). After these, the BMA is straightforward to cal-
culate.

After the BMA and the predictive distributions for each of the models are
solved, the Bayes and cross validation utilities are obtained in a straight-
forward fashion by plugging in the predictive densities and evaluating the
necessary integrals numerically. The expressions for Gibbs utilities and in-
formation criterion can be expanded as some of the expectations can be
calculated analytically. The derivation is, however, long and detailed and
is not presented here. In addition to these, we shall evaluate the true Bayes
and Gibbs generalization utilities (28) and (29) to illustrate the differences
between the utility estimates of the different methods and the true util-
ities. This can be done since the data is determined by the simulations
and we know the true data generating process is a normal distribution
pt(y|z) = N(y; mt, s2

t ), where mt = z1 + 0.5z2 + 0.25z3 and s2
t = 0.52.

4.3 Results

Figure 2 shows the maximum mean utilities in all the datasets for dif-
ferent number of covariates (red dots). In other words, we calculated the
utilities in all the datasets for each model, and figure 2 shows the mean
utilities of the best models of each size. The genaralization utilities (calcu-
lated exactly the same way) are plotted for comparison (black dots). The
differences between the red and black dots describe the asymptotic bias-
ness of the utility estimates, and we see that both of the training utilities
are significantly biased. The training utility increases with the model com-
plexity which demonstrates the overfitting effect: the model fits better to
the training data, but the generalization utility does not increase after 3 co-
variates, and even reduces after 12 covariates. On the other hand one can
see the effect of using independent test data; the test utility gives almost
exactly the same estimates as the true generalization utility. The reason
that the reference utilities deviate from the generalization utilities is that
the reference model is not good enough. In closer inspection, the BMA
predictive distribution seemed to be somewhat flatter than the true data
generating distribution (not shown) which at least partly explains the dif-
ference in the results. Nevertheless, an important point is that in contrast
to the training utility, the reference utility does not increase monotonically
with the number of covariates, therefore protecting from choosing an over-
fitted and unnecessarily complex model.
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Figure 2: Maximum mean utility over all the datasets D1, ..., D100 for dif-
ferent number of covariates (red). In other words, with each number of
covariates, the utility value is given by the best model of that size. Black
dots show the corresponding Bayes or Gibbs true mean generalization util-
ities. 95%-confidence intervals are smaller than the dots.

Figure 3 shows the analogous results for the cross validations and infor-
mation criteria. As can be seen, the cross validations and information cri-
teria produce practically unbiased utility estimates as was discussed in
section 3.2.2, and no significant differences can be seen. Again, the utility
estimates of the reference cross validation method differ from the gener-
alization utility for the same reason as the reference utility – the reference
model is imperfect.

Given the asymptotical properties of the methods, we then consider what
happens in the model selection. Figure 4 shows the maximum cross valida-
tion and information criteria utilities with different number of covariates
for a single dataset D1 (red dots). Red crosses mark the chosen models,
i.e. the models with highest utility in the dataset D1. One can see that un-
necessarily large models may be selected when the selection is based on
the utility maximization. For instance the 5-fold-CV chooses a model with
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Figure 3: The same as in figure 2 but for cross validations and information
criteria.

9 covariates even though the utility does not increase significantly after 3
covariates. This is an example of the selection bias. In this case the selection
bias means that even if the real predictive performance does not increase
after a certain amount covariates (3 in this case), some model containing
for example 9 covariates may give the highest utility just by chance, since
there are so many candidate models containing 9 predictors. The selection
induced bias becomes even clearer when we consider how the best mod-
els with different number of covariates in D1 perform on average in all the
datasets D1, ..., D100; green dots show the mean over all the datasets and
black lines denote the interval containing 95% of the values. This demon-
strates how the models performing well in D1 give on average significantly
lower utilities when we change the dataset. The phenomenon seems to be
clearest for the cross validations and information criteria due to their high
variance in the utility estimates. The use of the reference model or inde-
pendent test data reduces the variance, and in these cases also the selection
bias is smaller (reference-CV in figure 4, and reference and test utilities in
figure 5).

The selection bias is an important phenomenon in model selection (see
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Figure 4: The maximum utilities for different number of covariates in
dataset D1 (red dots) and the chosen model (red cross). Green dots show
the performance of those models on average in all the datasets D1, ..., D100

and black lines show the 95%-interval

e.g. Vehtari and Lampinen, 2004; Cawley and Talbot, 2010) which cannot
be removed. There are, however, methods of estimating its magnitude but
we do not consider them here. In short, the conclusion from this example
is that there are asymptotically unbiased methods for estimating the true
utilities of the given models, but after selecting a model by maximizing the
utility estimate, the expected performance of the chosen model on unseen
data is weaker than the utility estimate suggests.

5 Conclusions

In this study we discussed the theory and methods of predictive Bayesian
model selection using expected utilities. We presented also a numerical ex-
ample about applying these methods to a covariate selection problem. As
we saw, the estimation of the predicitive ability and thereby the goodness
of the model, can be done in several ways. How this is done depends on
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Figure 5: Same as in figure 4 but for Bayes and Gibbs utilities.

the available data and the modelling task (section 3).

In section 4 we demonstrated that if the predictive performance of a model
is estimated by using the same data points that are used for model train-
ing the utility estimate becomes biased. A better approach is to avoid this
by dividing the original data into the training and validation sets by us-
ing cross validation techniques, or to use a completely separate test set
if possible. If there is not enough test data the biasness of the training
utility can be corrected also by using the information criteria approaches.
However, we demonstrated that even when using (almost) unbiased util-
ity estimates, the model selection itself induces bias when the selection
is based on maximizing the expected utility. This means that an unneces-
sarily large or complex model may be selected just by change, because it
happens to fit well to the used dataset, but on average it is expected give
lower utilities. The selection bias comes from overfitting to data and the
probability of selecting a nonoptimal model increases with the number of
considered models (Vehtari and Lampinen, 2004). The magnitude of se-
lection bias can be reduced by choosing a method whose utility estimates
have small variance (Cawley and Talbot, 2010).
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A Linear regression model with conjugate prior

Let the training data X = (X, y) and the parameters θ = (β, σ2) be defined
as in section 2.2. The likelihood for a single observation is then the normal
distribution

p(y(i)|x(i), β, σ2) =
1√

2πσ2
exp

(
− 1

2σ2 (y
(i) − x(i)β)2

)
.

Assuming that the observations are conditionallly independent, the joint
likelihood for all the observations is

p(y|X, β, σ2) =
n

∏
i=1

1√
2πσ2

exp
(
− 1

2σ2 (y
(i) − x(i)β)2

)

=
(
2πσ2)− n

2 exp

(
− 1

2σ2

n

∑
i=1

(y(i) − x(i)β)2

)

=
(
2πσ2)− n

2 exp
(
− 1

2σ2 (y− Xβ)T(y− Xβ)

)
.

Now we need to modify the likelihood to get a distribution for β and σ2.
The inner product in the exponent can be written as

(y− Xβ)T(y− Xβ) = βTXTXβ− 2βTXTy + yTy

= βTMβ− 2βTMβ̂ + β̂
T

Mβ̂ + C

= (β− β̂)TM(β− β̂) + C,

where

M = XTX

Mβ̂ = XTy ⇒ β̂ = M−1XTy

C = yTy− β̂
T

Mβ̂

assuming that
(
XTX

)−1 exists. Hence the likelihood becomes

p(y|X, β, σ2) =
(
2πσ2)− n

2 exp
(
− 1

2σ2 (y
Ty− β̂

T
XTXβ̂)

)
× exp

(
− 1

2σ2 (β− β̂)TXTX(β− β̂)

)
,

where

β̂ =
(

XTX
)−1

XTy.
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Now this is a multivariate normal inverse gamma distribution for β and
σ2.

The conjugate prior is now of the same functional form as the likelihood,
that is

p(β, σ2) = p(β|σ2)p(σ2)

= N(β; µ0, σ−2A0)× Inv-Gamma(σ2; a0, b0)

= (2π)−
p
2
∣∣σ−2A0

∣∣ 1
2 exp

(
− 1

2σ2 (β− µ0)
TA0(β− µ0)

)
×

ba0
0

Γ(a0)

(
σ2)−a0−1

exp
(
− b0

σ2

)
.

Here σ−2A0 is the precision matrix, i.e the inverse of the covariance matrix.
Now, dropping out the constants and completing the square for β, the joint
posterior becomes

p(β, σ2|X ) ∝ p(y|X, β, σ2)p(β, σ2)

∝
(
σ2)− p

2 exp
(
− 1

2σ2 (β− µn)
TAn(β− µn)

)
×
(
σ2)−an−1

exp
(
− bn

σ2

)
∝ N(β; µn, σ−2An)× Inv-Gamma(σ2; an, bn),

where

An = A0 + XTX

µn = A−1
n (XTy + A0µ0)

an = a0 +
n
2

bn = b0 +
1
2
(yTy + µT

0 A0µ0 − µT
nAnµn).

Thus the prior definition with parameters µ0, A0, a0, b0 leads to a posterior
of the same functional form with parameters defined above.

Let us calculate the joint posterior predictive distribution for ñ future ob-
servations ỹ, assuming that the predictor values X̃ in those points are
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known. We obtain

p(ỹ|X̃,X ) =
∫ ∫

p(ỹ|X̃, β, σ2)p(β, σ2|X )dσ2dβ

=
∫ ∫

(2π)−
1
2 (ñ+p) |An|

1
2

ban
n

Γ(an)

(
σ2)−(ã+ p

2 )−1

× exp
(
− 1

2σ2 (β− µ̃)TÃ(β− µ̃)

)
exp

(
− b̃

σ2

)
dσ2dβ,

where

Ã = An + X̃TX̃

µ̃n = Ã−1(X̃Tỹ + Anµn)

ã = an +
ñ
2

b̃ = bn +
1
2
(ỹTỹ + µT

nAnµn − µ̃TÃµ̃).

The inner integral can be calculated by taking the constants out and writ-
ing the rest in a form of a normalized inverse Gamma distribution for
σ2:

p(ỹ|X̃,X ) =
∫

(2π)−
1
2 (ñ+p) |An|

1
2

ban
n

Γ(an)

Γ(A)

BA∫ BA

Γ(A)

(
σ2)−A−1

exp
(
− B

σ2

)
dσ2︸ ︷︷ ︸

=1

dβ

=
∫

(2π)−
1
2 (ñ+p) |An|

1
2

ban
n

Γ(an)

Γ(A)

BA dβ,

where

A = ã +
p
2

B = b̃ +
1
2
(β− µ̃)TÃ(β− µ̃).

After rewriting, the resulting part becomes a multiplication of a constant
and a multivariate t–distribution for β with location µ̃, precision matrix
νÃ
2b̃

and ν degrees of freedom:

A = ã +
p
2

:=
ν + p

2
⇒ ν = 2ã



A LINEAR REGRESSION MODEL WITH CONJUGATE PRIOR 27

and

B = b̃ +
1
2
(β− µ̃)TÃ(β− µ̃)

= b̃
(

1 +
1
ν
(β− µ̃)T νÃ

2b̃
(β− µ̃)

)
⇒ BA = b̃A

(
1 +

1
ν
(β− µ̃)T νÃ

2b̃
(β− µ̃)

)A

= b̃(ν+p)/2
(

1 +
1
ν
(β− µ̃)T νÃ

2b̃
(β− µ̃)

)(ν+p)/2

.

Hence

p(ỹ|X̃,X ) = (2π)−(ñ+p)/2 |An|
1
2

ban
n

Γ(an)
b̃−(ν+p)/2Γ(

ν

2
)(πν)p/2

∣∣∣∣νÃ
2b̃

∣∣∣∣−
1
2

×
∫ Γ( ν+p

2 )
∣∣∣ νÃ

2b̃

∣∣∣ 1
2

Γ( ν
2 )(πν)p/2

(
1 + 1

ν (β− µ̃)T νÃ
2b̃
(β− µ̃)

)(ν+p)/2
dβ

︸ ︷︷ ︸
=1

= (2π)−(ñ+p)/2 |An|
1
2

ban
n

Γ(an)
b̃−(ν+p)/2Γ(

ν

2
)(πν)p/2

(
ν

2b̃

)−p/2 ∣∣Ã∣∣− 1
2

= (2π)−ñ/2 Γ( ν
2 )

Γ(an)

(
|An|∣∣Ã∣∣

) 1
2 ban

n

b̃ν/2

= (2π)−ñ/2 Γ(ã)
Γ(an)

(
|An|∣∣Ã∣∣

) 1
2 ban

n

b̃ã

This is the joint posterior predictive distribution for ñ future observations,
given the predictors X̃. The marginal likelihood p(y|X) is now given by

p(y|X) =
∫ ∫

p(y|X, β, σ2)p(β, σ2)dσ2dβ.

Because the prior and posterior are of the same form, this integral is ex-
actly the same as with the predictive distribution. Thus simply replacing
the posterior parameters with the prior parameters and X → X̃, y → ỹ
and ñ→ n in the likelihood we obtain

p(y|X) = (2π)−n/2 Γ(an)

Γ(a0)

(
|A0|
|An|

) 1
2 ba0

0
ban

n
.
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