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1 Introduction

Quadcopter, also known as quadrotor, is a helicopter with four rotors. The rotors
are directed upwards and they are placed in a square formation with equal distance
from the center of mass of the quadcopter. The quadcopter is controlled by adjusting
the angular velocities of the rotors which are spun by electric motors. Quadcopter
is a typical design for small unmanned aerial vehicles (UAV) because of the simple
structure. Quadcopters are used in surveillance, search and rescue, construction
inspections and several other applications.

Quadcopter has received considerable attention from researchers as the complex
phenomena of the quadcopter has generated several areas of interest. The basic
dynamical model of the quadcopter is the starting point for all of the studies but
more complex aerodynamic properties has been introduced as well [1, 2]. Different
control methods has been researched, including PID controllers [3, 4, 5, 6], back-
stepping control [7, 8], nonlinear H

∞
control [9], LQR controllers [6], and nonlinear

controllers with nested saturations [10, 11]. Control methods require accurate infor-
mation from the position and attitude measurements performed with a gyroscope,
an accelerometer, and other measuring devices, such as GPS, and sonar and laser
sensors [12, 13].

The purpose of this paper is to present the basics of quadcopter modelling and
control as to form a basis for further research and development in the area. This
is pursued with two aims. The first aim is to study the mathematical model of the
quadcopter dynamics. The second aim is to develop proper methods for stabilisation
and trajectory control of the quadcopter. The challenge in controlling a quadcopter
is that the quadcopter has six degrees of freedom but there are only four control
inputs.

This paper presents the differential equations of the quadcopter dynamics. They are
derived from both the Newton-Euler equations and the Euler-Lagrange equations
which are both used in the study of quadcopters. The behaviour of the model is
examined by simulating the flight of the quadcopter. Stabilisation of the quadcopter
is conducted by utilising a PD controller. The PD controller is a simple control
method which is easy to implement as the control method of the quadcopter. A
simple heuristic method is developed to control the trajectory of the flight. Then
a PD controller is integrated into the heuristic method to reduce the effect of the
fluctuations in quadcopter behaviour caused by random external forces.

The following section presents the mathematical model of a quadcopter. In the
third section, the mathematical model is tested by simulating the quadcopter with
given control inputs. The fourth section presents a PD controller to stabilise the
quadcopter. In the fifth section, a heuristic method including a PD controller is
presented to control the trajectory of quadcopter flight. The last section contains
the conlusion of the paper.
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2 Mathematical model of quadcopter

The quadcopter structure is presented in Figure 1 including the corresponding an-
gular velocities, torques and forces created by the four rotors (numbered from 1 to
4).
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Figure 1: The inertial and body frames of a quadcopter

The absolute linear position of the quadcopter is defined in the inertial frame x,y,z-
axes with ξ. The attitude, i.e. the angular position, is defined in the inertial frame
with three Euler angles η. Pitch angle θ determines the rotation of the quadcopter
around the y-axis. Roll angle φ determines the rotation around the x-axis and yaw
angle ψ around the z-axis. Vector q contains the linear and angular position vectors

ξ =





x
y
z



 , η =





φ
θ
ψ



 , q =

[

ξ

η

]

. (1)

The origin of the body frame is in the center of mass of the quadcopter. In the body
frame, the linear velocities are determined by VB and the angular velocities by ν

VB =





vx,B
vy,B
vz,B



 , ν =





p
q
r



 . (2)

The rotation matrix from the body frame to the inertial frame is

R =





CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ
SψCθ SψSθSφ + CψCφ SψSθCφ − CψSφ
−Sθ CθSφ CθCφ



 , (3)

in which Sx = sin(x) and Cx = cos(x). The rotation matrix R is orthogonal thus
R−1 = RT which is the rotation matrix from the inertial frame to the body frame.
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The transformation matrix for angular velocities from the inertial frame to the body
frame is Wη, and from the body frame to the inertial frame is W−1

η , as shown in
[14],

η̇ = W−1

η ν,

ν = Wη η̇,





φ̇

θ̇

ψ̇



 =





1 SφTθ CφTθ
0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ









p
q
r



 ,





p
q
r



 =





1 0 −Sθ
0 Cφ CθSφ
0 −Sφ CθCφ









φ̇

θ̇

ψ̇



 ,

(4)

in which Tx = tan(x). The matrix Wη is invertible if θ 6= (2k − 1)φ/2, (k ∈ Z).

The quadcopter is assumed to have symmetric structure with the four arms aligned
with the body x- and y-axes. Thus, the inertia matrix is diagonal matrix I in which
Ixx = Iyy

I =





Ixx 0 0
0 Iyy 0
0 0 Izz



 . (5)

The angular velocity of rotor i, denoted with ωi, creates force fi in the direction of
the rotor axis. The angular velocity and acceleration of the rotor also create torque
τMi

around the rotor axis

fi = k ω2

i , τMi
= b ω2

i + IM ω̇i, (6)

in which the lift constant is k, the drag constant is b and the inertia moment of the
rotor is IM . Usually the effect of ω̇i is considered small and thus it is omitted.

The combined forces of rotors create thrust T in the direction of the body z-axis.
Torque τB consists of the torques τφ, τθ and τψ in the direction of the corresponding
body frame angles

T =

4
∑

i=1

fi = k

4
∑

i=1

ω2

i , TB =





0
0
T



 , (7)

τB =







τφ

τθ

τψ






=













l k (−ω2

2
+ ω2

4
)

l k (−ω2

1
+ ω2

3
)

4
∑

i=1

τMi













, (8)

in which l is the distance between the rotor and the center of mass of the quad-
copter. Thus, the roll movement is acquired by decreasing the 2nd rotor velocity
and increasing the 4th rotor velocity. Similarly, the pitch movement is acquired by
decreasing the 1st rotor velocity and increasing the 3th rotor velocity. Yaw move-
ment is acquired by increasing the the angular velocities of two opposite rotors and
decreasing the velocities of the other two.
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2.1 Newton-Euler equations

The quadcopter is assumed to be rigid body and thus Newton-Euler equations can
be used to describe its dynamics. In the body frame, the force required for the
acceleration of mass mV̇B and the centrifugal force ν × (mVB) are equal to the
gravity RTG and the total thrust of the rotors TB

mV̇B + ν × (mVB) = RTG+ TB. (9)

In the inertial frame, the centrifugal force is nullified. Thus, only the gravitational
force and the magnitude and direction of the thrust are contributing in the acceler-
ation of the quadcopter

mξ̈ = G+RTB,





ẍ
ÿ
z̈



 = −g





0
0
1



+ T
m





CψSθCφ + SψSφ
SψSθCφ − CψSφ

CθCφ



 .

(10)

In the body frame, the angular acceleration of the inertia Iν̇ , the centripetal forces
ν × (Iν) and the gyroscopic forces Γ are equal to the external torque τ

Iν̇ + ν × (Iν) + Γ = τ ,

ν̇ = I−1



−





p
q
r



×





Ixx p
Iyy q
Izz r



− Ir





p
q
r



×





0
0
1



ωΓ + τ



 ,





ṗ
q̇
ṙ



 =





(Iyy − Izz) q r/Ixx
(Izz − Ixx) p r/Iyy
(Ixx − Iyy) p q/Izz



− Ir





q/Ixx
−p/Iyy

0



ωΓ +





τφ/Ixx
τθ/Iyy
τψ/Izz



 ,

(11)

in which ωΓ = ω1−ω2+ω3−ω4. The angular accelerations in the inertial frame are
then attracted from the body frame accelerations with the transformation matrix
W−1

η and its time derivative

η̈ = d

dt

(

W−1

η ν
)

= d

dt

(

W−1

η

)

ν +W−1

η ν̇

=





0 φ̇CφTθ + θ̇Sφ/C
2

θ −φ̇SφCθ + θ̇Cφ/C
2

θ

0 −φ̇Sφ −φ̇Cφ
0 φ̇Cφ/Cθ + φ̇SφTθ/Cθ −φ̇Sφ/Cθ + θ̇CφTθ/Cθ



 ν +W−1

η ν̇.
(12)
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2.2 Euler-Lagrange equations

The Lagrangian L is the sum of the translational Etrans and rotational Erot energies
minus potential energy Epot

L (q, q̇) = Etrans + Erot − Epot

= (m/2) ξ̇T ξ̇ + (1/2)νT I ν − mgz.
(13)

As shown in [10] the Euler-Lagrange equations with external forces and torques are

[

f

τ

]

=
d

dt

(

∂L

∂q̇

)

−
∂L

∂q
. (14)

The linear and angular components do not depend on each other thus they can be
studied separately. The linear external force is the total thrust of the rotors. The
linear Euler-Lagrange equations are

f = RTB = mξ̈ +mg





0
0
1



 , (15)

which is equivalent with Equation (10).

The Jacobian matrix J (η) from ν to η̇ is

J (η) = J = W T

η
I Wη,

=







Ixx 0 −IxxSθ

0 IyyC
2

φ + IzzS
2

φ (Iyy − Izz)CφSφCθ

−IxxSθ (Iyy − Izz)CφSφCθ IxxS
2

θ + IyyS
2

φC
2

θ + IzzC
2

φC
2

θ






.

(16)

Thus, the rotational energy Erot can be expressed in the inertial frame as

Erot = (1/2)νT I ν = (1/2) η̈T J η̈. (17)

The external angular force is the torques of the rotors. The angular Euler-Lagrange
equations are

τ = τB = J η̈ +
d

dt
(J) η̇ −

1

2

∂

∂η

(

η̇T J η̇
)

= J η̈ +C (η, η̇) η̇. (18)

,

in which the matrix C (η, η̇) is the Coriolis term, containing the gyroscopic and
centripetal terms.
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The matrix C (η, η̇) has the form, as shown in [9],

C (η, η̇) =





C11 C12 C13

C21 C22 C23

C31 C32 C33



 ,

C11 = 0

C12 = (Iyy − Izz)(θ̇CφSφ + ψ̇S2

φCθ) + (Izz − Iyy)ψ̇C
2

φCθ − Ixxψ̇Cθ

C13 = (Izz − Iyy)ψ̇CφSφC
2

θ

C21 = (Izz − Iyy)(θ̇CφSφ + ψ̇SφCθ) + (Iyy − Izz)ψ̇C
2

φCθ + Ixxψ̇Cθ

C22 = (Izz − Iyy)φ̇CφSφ

C23 = −Ixxψ̇SθCθ + Iyyψ̇S
2

φSθCθ + Izzψ̇C
2

φSθCθ

C31 = (Iyy − Izz)ψ̇C
2

θSφCφ − Ixxθ̇Cθ

C32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2

φCθ) + (Iyy − Izz)φ̇C
2

φCθ

+Ixxψ̇SθCθ − Iyyψ̇S
2

φSθCθ − Izzψ̇C
2

φSθCθ

C33 = (Iyy − Izz)φ̇CφSφC
2

θ − Iyyθ̇S
2

φCθSθ − Izz θ̇C
2

φCθSθ + Ixxθ̇CθSθ.

(19)

Equation (18) leads to the differential equations for the angular accelerations which
are equivalent with Equations (11) and (12)

η̈ = J−1 (τB −C (η, η̇) η̇) . (20)

2.3 Aerodynamical effects

The preceding model is a simplification of complex dynamic interactions. To en-
force more realistical behaviour of the quadcopter, drag force generated by the air
resistance is included. This is devised to Equations (10) and (15) with the diagonal
coefficient matrix associating the linear velocities to the force slowing the movement,
as in [15],




ẍ
ÿ
z̈



 = −g





0
0
1



+
T

m





CψSθCφ + SψSφ
SψSθCφ − CψSφ

CθCφ



−
1

m





Ax 0 0
0 Ay 0
0 0 Az









ẋ
ẏ
ż



 , (21)

in which Ax, Ay and Az are the drag force coefficients for velocities in the corre-
sponding directions of the inertial frame.

Several other aerodynamical effects could be included in the model. For example,
dependence of thrust on angle of attack, blade flapping and airflow distruptions have
been studied in [1] and [2]. The influence of aerodynamical effects are complicated
and the effects are difficult to model. Also some of the effects have significant effect
only in high velocities. Thus, these effects are excluded from the model and the
presented simple model is used.
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3 Simulation

The mathematical model of the quadcopter is implemented for simulation in Matlab
2010 with Matlab programming language. Parameter values from [3] are used in the
simulations and are presented in Table 1. The values of the drag force coefficients
Ax, Ay and Az are selected such as the quadcopter will slow down and stop when
angles φ and θ are stabilised to zero values.

Table 1: Parameter values for simulation

Parameter Value Unit
g 9.81 m/s2

m 0.468 kg
l 0.225 m
k 2.980 · 10−6

b 1.140 · 10−7

IM 3.357 · 10−5 kg m2

Parameter Value Unit
Ixx 4.856 · 10−3 kg m2

Iyy 4.856 · 10−3 kg m2

Izz 8.801 · 10−3 kg m2

Ax 0.25 kg/s
Ay 0.25 kg/s
Az 0.25 kg/s

The mathematical model is tested by simulating a quadcopter with an example case
as following. The quadcopter is initially in a stable state in which the values of all
positions and angles are zero, the body frame of the quadcopter is congruent with
the inertial frame. The total thrust is equal to the hover thrust, the thrust equal to
gravity. The simulation progresses at 0.0001 second intervals to total elapsed time
of two seconds. The control inputs, the angular velocities of the four rotors, are
shown in Figure 2, the inertial positions x, y and z in Figure 3, and the angles φ, θ
and ψ in Figure 4.

For the first 0.25 seconds the quadcopter ascended by increasing all of the rotor
velocities from the hover thrust. Then, the ascend is stopped by decreasing the rotor
velocities significantly for the following 0.25 seconds. Consequently the quadcopter
ascended 0.1 meters in the first 0.5 seconds. After the ascend the quadcopter is
stable again.

Next the quadcopter is put into a roll motion by increasing the velocity of the
fourth rotor and decreasing the velocity of the second rotor for 0.25 seconds. The
acceleration of the roll motion is stopped by decreasing the velocity of the fourth
and increasing the velocity of the second rotor for 0.25 seconds. Thus, after 0.5
seconds in roll motion the roll angle φ had increased approx. 25 degrees. Because
of the roll angle the quadcopter accelerated in the direction of the negative y-axis.

Then, similar to the roll motion, a pitch motion is created by increasing the velocity
of the third rotor and decreasing the velocity of the first. The motion is stopped
by decreasing the velocity of the third rotor and increasing the velocity of the first
rotor. Due to the pitch movement, the pitch angle θ had increased approximately
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22 degrees. The acceleration of the quadcopter in the direction of the positive x-axis
is caused by the pitch angle.

Finally, the quadcopter is turned in the direction of the yaw angle ψ by increasing
the velocities of the first and the third rotors and decreasing the velocities of the
second and the fourth rotors. The yaw motion is stopped by decreasing the velocities
of the first and the third rotors and increasing the velocities of the second and the
fourth rotors. Consequently the yaw angle ψ increases approximately 10 degrees.

During the whole simulation the total thrust of the rotors had remained close to the
initial total thrust. Thus, the deviations of the roll and pitch angles from the zero
values decrease the value of the thrust in the direction of the z-axis. Consequently
the quadcopter accelerates in the direction of the negative z-axis and is descending.
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4 Stabilisation of quadcopter

To stabilise the quadcopter, a PID controller is utilised. Advantages of the PID
controller are the simple structure and easy implementation of the controller. The
general form of the PID controller is

e(t) = xd(t)− x(t),

u(t) = KP e(t) +KI

∫ t

0

e(τ) d τ +KD

d e(t)

d t
, [16]

(22)

in which u(t) is the control input, e(t) is the difference between the desired state
xd(t) and the present state x(t), and KP , KI and KD are the parameters for the
proportional, integral and derivative elements of the PID controller.

In a quadcopter, there are six states, positions ξ and angles η, but only four control
inputs, the angular velocities of the four rotors ωi. The interactions between the
states and the total thrust T and the torques τ created by the rotors are visible from
the quadcopter dynamics defined by Equations (10), (11), and (12). The total thrust
T affects the acceleration in the direction of the z-axis and holds the quadcopter in
the air. Torque τφ has an affect on the acceleration of angle φ, torque τθ affects the
acceleration of angle θ, and torque τψ contributes in the acceleration of angle ψ.

Hence, the PD controller for the quadcopter is chosen as, similarly as in [4],

T = (g +Kz,D (żd − ż) +Kz,P (zd − z)) m
CφCθ

,

τφ =
(

Kφ,D

(

φ̇d − φ̇
)

+Kφ,P (φd − φ)
)

Ixx,

τθ =
(

Kθ,D

(

θ̇d − θ̇
)

+Kθ,P (θd − θ)
)

Iyy,

τψ =
(

Kψ,D

(

ψ̇d − ψ̇
)

+Kψ,P (ψd − ψ)
)

Izz,

(23)

in which also the gravity g, and mass m and moments of inertia I of the quadcopter
are considered.

The correct angular velocities of rotors ωi can be calculated from Equations (7) and
(8) with values from Equation (23)

ω2

1
= T

4k
− τθ

2kl
−
τψ
4b

ω2

2
= T

4k
−

τφ
2kl

+
τψ
4b

ω2

3
= T

4k
+ τθ

2kl
−
τψ
4b

ω2

4
= T

4k
+

τφ
2kl

+
τψ
4b

(24)

The performance of the PD controller is tested by simulating the stabilisation of
a quadcopter. The PD controller parameters are presented in Table 2. The initial
condition of the quadcopter is for position ξ = [0 0 1]T in meters and for angles
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η = [10 10 10]T in degrees. The desired position for altitude is zd = 0. The purpose
of the stabilisation is stable hovering, thus ηd = [0 0 0]T.

Table 2: Parameters of the PD controller

Parameter Value
Kz,D 2.5
Kφ,D 1.75
Kθ,D 1.75
Kψ,D 1.75

Parameter Value
Kz,P 1.5
Kφ,P 6
Kθ,P 6
Kψ,P 6

The control inputs ωi, the positions ξ and the angles η during the simulation are
presented in Figures 5, 6, and 7. The altitude and the angles are stabilised to zero
value after 5 seconds. However, the positions x and y deviated from the zero values
because of the non-zero values of the angles. Before the quadcopter is stabilised
to hover, it has already moved over 1 meters in the direction of the positive x axis
and 0,5 meters in the direction of the negative y axis. This is because the control
method of the PD contoller does not consider the accelerations in the directions of
x and y. Thus, another control method should be constructed to give a control on
all of positions and angles of the quadcopter.
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Figure 5: Control inputs ωi
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5 Trajectory control

The purpose of trajectory control is to move the quadcopter from the original lo-
cation to the desired location by controlling the rotor velocities of the quadcopter.
Finding optimal trajectory for a quadcopter is a difficult task because of complex
dynamics. However, a simple control method is able to control the quadcopter
adequately. Thus, a heuristic approach is studied and developed here.

The basis of the development of a control method is the study of the interactions and
dependances between states, state derivatives and control inputs. These interactions
and dependances are defined by Equations (7), (8), (20) and (21) and presented in
Figure 8.

The given control inputs ωi define the total thrust T and the torques τφ, τθ and τψ.
The torques affect the angular accelerations depending on the current angles and
angular velocities. The angles η can be integrated from the angular velocities η̇,
which are integrated from the angular accelerations η̈. The linear accelerations ξ̈

depend on the total thrust T , the angles η and the linear velocities ξ̇. The linear
position ξ is integrated from the linear accelerations ξ̈ through the linear velocities
ξ̇.

Hence, to find proper control inputs ωi for given states ξ this line of thought has to
be done in reverse.

ω
���*

HHHj

T

τ

-

- η̈ η̇ η- -

IK

ξ̈ ξ̇ ξ- -
	

@
@

@I

Figure 8: Interactions between states, state derivatives, and control inputs

One method is to generate linear accelerations which accomplish the wanted trajec-
tory according to positions x, y and z for each time t. From Equation (21), three
equations are received

TB =





0
0
T



 = RT



m



ξ̈ +





0
0
g







+





Ax 0 0
0 Ay 0
0 0 Az



 ξ̇



 . (25)

in which ξ̈, ξ̇, and ψ are desired trajectory values as well as angles φ and θ and total
thrust T are unknown values to be solved.

From this equation, the required angles φ and θ and the total thrust T for each time
t can be calculated, as shown in [5],
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φ = arcsin

(

dx Sψ − dy Cψ
d2x + d2y + (dz + g)2

)

,

θ = arctan

(

dxCψ + dy Sψ
dz + g

)

,

T = m (dx (SθCψCφ + SψSφ) + dy (SθSψCφ − CψSφ)+( dz + g )CθCφ) ,

(26)

in which
dx = ẍ+ Axẋ/m,

dy = ÿ + Ay ẏ/m,

dz = z̈ + Az ż/m.

(27)

When the values of the angles φ and θ are known, the angular velocities and ac-
celerations can be calculated from them with simple derivation. With the angular
velocities and accelerations, the torques τ can be solved from Equation (20). When
the torques and thrust are known, the control inputs ωi can be calculated from
Equation (24).

5.1 Heuristic method for trajectory generation

The generation of proper accelerations ξ̈ is difficult because the composition of the
third and fourth derivatives of the position, jerk and jounce, has to be reasonable.
The influence of the jounce values is visible in the composition of the control inputs
ωi. High jounce values will mean high control input values and thus the jounces
have to be considered closely when generating the accelerations.

A heuristic method can be used to generate jounce values. The method utilises a
symmetric structure in jouce function f(t) to control the derivatives. One influencial
part of the function is defined by three sine functions as following

f(t) =











a sin
(

1

b
π t
)

, 0 ≤ t ≤ b,

−a sin
(

1

b
π t− π

)

, b ≤ t ≤ 3b,

a sin
(

1

b
π t− 3π

)

, 3b ≤ t ≤ 4b.

(28)

The structure of the function is visualised in Figure 9. The sine functions are used
to give a smooth function. These three sine functions form a function in which
the first half increases acceleration to certain value and then the second half of the
function decreases it back to zero. This acceleration generates constant velocity.
Mirror image of the function can be used to decelerate the velocity back to zero.
The final position depends on the parameters a and b of the sine functions, presented
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in Equation (28), and the time c between the accelerating part and the decelerating
part, the mirror image, of the jounce.
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Figure 9: Heuristic method for the generation of jounce functions

Unfortunately, the method does not give optimal trajectories. Thus, a dynamic
optimisation model and a suitable algorithm would be needed to calculate optimally
the trajectory of the quadcopter. However, the method presented is easy to use to
generate proper values of jounce which will achieve the wanted trajectory.

The functionality of the method is studied with an example simulation. Jounce of
position x is created according to Equation (28) with parameters a = 1, b = 0.5
and c = 2. The position x and its derivatives derived from the planned jounce are
presented in Figure 10. The jounce could also be generated simultaneously for y and
z. However, in this example, only position x is considered because the relationship
between the jounce of position x and the control inputs ω1 and ω3, controlling the
angle θ, is more visible.
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Figure 10: Planned position x and its derivatives with given jounce

The simulation of the example case is performed with previously given accelerations
and velocities of position x. The planned value of angle ψ is zero for each time t.
First, the required angles φ and θ and thrust T are solved from Equation (26) for
each time t. The angular velocities and accelerations are calculated from the solved
angles with derivation. Then, the torques are solved using the angular velocities
and accelerations. Finally, the control inputs are solved. Then, the simulation is
performed with given control inputs.

The calculated control inputs are presented in Figure 11. The simulated positions
ξ are presented in Figure 12 and the simulated angles η in Figure 13. According
to Figure 12, the simulated position x is the same as the planned position x in
Figure 10(e) and the values of the positions y and z stay as zeroes. The angle θ
increases during the acceleration and then stabilises to a constant value to gener-
ate the constant acceleration required to compensate the drag force caused by the
planned constant velocity. Finally, the angle is changed to the opposite direction to
decelerate the quadcopter to a halt.

The shape of the calculated control inputs ω1 and ω3 in Figure 11 are similar to
planned jounce in Figure 10(a). The shape of the simulated angle θ follows the
shape of the planned acceleration ẍ. The shapes of the control inputs and the
angles differ from the planned values of the jounce and the acceleration because the
drag force, caused by the velocity, has to be compensated.
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Figure 13: Angles φ, θ, and ψ

The method can also be used even if there are unmodeled linear forces, wind for
example, which affect the linear accelerations and consequently the position of the
quadcopter. If the trajectory is calculated in shorter distances, it is possible to
correct the trajectory with new calculation from the current, but inaccurate, location
to the next checkpoint. Example of this method is presented in Figure 14. The
arrows with dash lines indicate the planned trajectory in the x, y-plane and the
solid arrows indicate the realised trajectory. The black squares mark the start and
the finish positions and the white squares mark the checkpoints for the trajectory.
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The control inputs are calculated from the current location of the quadcopter to the
next checkpoint but because of random and unmodelled forces the realised position,
marked with X, differs from the planned. If the quadcopter is close enough to the
target checkpoint, the target checkpoint is changed to the next one and new control
inputs are calculated. After repeating this and going through all of the checkpoints,
the quadcopter reaches the final destination.

Figure 14: Example of checkpoint flight pattern with external disturbances

The biggest weakness in the proposed method is that it works as shown only if the
quadcopter starts from a stable attitude, the angles φ and θ and their derivatives
are zeros, and there are no external forces influencing the attitude during the flight.
Small deviations in the angles can result into a huge deviation in the trajectory. One
way to solve this problem is to stabilise the quadcopter at each checkpoint with a
PD controller proposed earlier or by using the heuristic method to angles. However,
if the angular disturbances are continuous, the benefit from temporary stabilisation
is only momentary.

5.2 Integrated PD controller

Another method to take into account the possible deviations in the angles, is to
integrate a PD controller into the heuristic method. This is a simplified version of
the proposed control method in [5]. The required values dx, dy, and dz in Equation
(26) are given by the PD controller considering the deviations between the current
and desired values (subscript d) of the positions ξ, velocities ξ̇, and accelerations ξ̈.

dx = Kx,P (xd − x) + Kx,D (ẋd − ẋ) + Kx,DD (ẍd − ẍ) ,

dy = Ky,P (yd − y) + Ky,D (ẏd − ẏ) + Ky,DD (ÿd − ÿ) ,

dz = Kz,P (zd − z) + Kz,D (żd − ż) + Kz,DD (z̈d − z̈) .

(29)

Then, the commanded angles φc and θc and thrust T are given by Equation (26).
The torques τ are controlled by the PD controller in Equation (30), same as in
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Equation (23). The control inputs can be solved with the calculated thrust and
torques by using Equation (24)

τφ =
(

Kφ,P (φc − φ) +Kφ,D

(

φ̇c − φ̇
))

Ixx,

τθ =
(

Kθ,P (θc − θ) +Kθ,D

(

θ̇c − θ̇
))

Iyy,

τψ =
(

Kψ,P (ψd − ψ) +Kψ,D

(

ψ̇d − ψ̇
))

Izz.

(30)

The performance of the PD controller is demonstrated with an example case in
which for all positions x, y and z and their derivatives the values are same as in
Figure 10. The simulation is performed with the PD parameters presented in Table
3.

Table 3: Parameters of the PD controller

Variable Parameter value
i Ki,P Ki,D Ki,DD

x 1.85 0.75 1.00
y 8.55 0.75 1.00
z 1.85 0.75 1.00
φ 3.00 0.75 -
θ 3.00 0.75 -
ψ 3.00 0.75 -

The results of the simulation are presented Figures 15 - 17. The simulated control
inputs are presented in Figure 15, the simulated positions in Figure 16 and the
simulated angles in Figure 17. The position of the quadcopter is close to the planned
position after 6 seconds but the position keeps fluctuating close to the planned values
for several seconds. The angles variate greatly during the simulation to achieve the
wanted positions, velocities, and accelerations. The values of the control inputs
oscillated during the acceleration but then their behaviour became more stable.
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The proposed integrated PD controller performed well in the example case. However,
the performance of the controller is highly depended on the parameter values. If the
parameter values are small, the controller will not respond quickly enough to follow
the planned trajectory. If the parameter values are substantial, the quadcopter can
not perform the required drastic changes in the angular velocities of the rotor and
the control inputs, calculated from Equation (24), can be infeasible with certain
torques. Thus, the use of equations considering the torques and the control inputs
requires a method to calculate the best feasible torques, and from them the best
control inputs. Another possible method would be to variate the PD parameters
according to the current positions and angles and their derivatives but it is extremely
difficult.
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6 Conclusion

This paper studied mathematical modelling and control of a quadcopter. The math-
ematical model of quadcopter dynamics was presented and the differential equations
were derived from the Newton-Euler and the Euler-Lagrange equations. The model
was verified by simulating the flight of a quadcopter with Matlab. Stabilisation of
attitude of the quadcopter was done by utilising a PD controller. A heuristic method
was developed to control the trajectory of the quadcopter. The PD contoller was
integrated into the heuristic method for better response to disturbances in the flight
conditions of the quadcopter.

The simulation proved the presented mathematical model to be realistic in modelling
the position and attitude of the quadcopter. The simulation results also showed
that the PD controller was efficient in stabilising the quadcopter to the desired
altitude and attitude. However, the PD controller did not considered positions x
and y. Thus, the values of x and y variated from their original values during the
stabilisation process. This was a result of the deviation of the roll and pitch angles
from zero values.

According to the simulation results, the proposed heuristic method produced good
flight trajectories. The heuristic method required only three parameters to generate
the values for the jounce of the position. The position and its other derivatives were
calculated from the jounce values. The total thrust and the pitch and roll angles to
achieve given accelerations were solved from the linear differential equations. Then,
the torques were determined by the angular accelerations and angular velocities
calculated from the angles. Finally, the required control inputs were solved from the
total thrust and the torques. The simulation results indicated that the quadcopter
could be controlled accurately with the control inputs given by the method.

The proposed heuristic method does not consider unmodelled disturbances, such
as wind, and thus the PD controller was integrated into the control method. The
integrated PD controller operated well in the example simulation. The quadcopter
followed the given trajectory and began to stabilise after reaching the final desti-
nation. However, the PD controller can perform poorly if the parameter values are
not properly selected and are too small or high.

The presented mathematical model only consists of the basic structures of the quad-
copter dynamics. Several aerodynamical effects were excluded which can lead to
unrealiable behaviour. Also the electric motors spinning the fours rotors were not
modelled. The behaviour of a motor is easily included in the model but would re-
quire estimation of the parameter values of the motor. The position and attitude
information was assumed to be accurate in the model and the simulations. However,
the measuring devices in real life are not perfectly accurate as random variations
and errors occur. Hence, the effects of imprecise information to the flight of the
quadcopter should be studied as well. Also methods to enhance the accuracy of the
measurements should be researched and implemented to improve all aspects required
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for robust quadcopter manoeuvres.

The presented model and control methods were tested only with simulations. Real
experimental prototype of a quadcopter should be constructed to achieve more real-
istic and reliable results. Even though the construction of a real quadcopter and the
estimation of all the model parameters are laborious tasks, a real quadcopter would
bring significant benefits to the research. With a real propotype, the theoretical
framework and the simulation results could be compared to real-life measurements.
This paper did not include these higlighted matters in the study but presented
the basics of quadcopter modelling and control. This paper can thus be used as a
stepping-stone for future research in more complex modelling of the quadcopter.
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