
Aalto-yliopisto
Perustieteiden korkeakoulu
Teknillisen fysiikan ja matematiikan tutkinto-ohjelma

Näyttämällä opettaminen: liikeratojen
toistamisen mallit

erikoistyö
17.10.2013

Lasse Lindqvist

Valvoja: Harri Ehtamo
Ohjaaja: Harri Ehtamo

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.
Muilta osin kaikki oikeudet pidätetään.

Sisältö
1 Johdanto 1

2 Liikeradan toistaminen ja robotiikka 2

3 Mallin ominaisuudet 2
3.1 Koordinaatiston valinta . 2
3.2 Ajan huomioiminen . 3
3.3 Stabiilisuus . 4
3.4 Laskennan kompleksisuus . 4

4 Dynaamiset alkeisliikkeet (DMP) 5
4.1 Malli . 5
4.2 DMP-C:n ominaisuudet . 7

4.2.1 Aika . 7
4.2.2 Stabiilisuus . 7
4.2.3 Ulottuvuudet . 7
4.2.4 Laskennallinen kompleksisuus 8
4.2.5 Varianssi . 8

4.3 Vertailu alkuperäiseen DMP:hen 9

5 Dynaamisten järjestelmien stabiili estimaattori (SEDS) 10
5.1 Malli . 10
5.2 SEDSin ominaisuudet . 12

5.2.1 Aika ja ulottuvuudet 12
5.2.2 Optimointi . 12
5.2.3 Stabiilisuus . 14

6 Rekurrentti neuroverkko parametriharhalla (RNNPB) 15
6.1 Malli . 15
6.2 RNNPB:n ominaisuudet . 15

6.2.1 Useat liikeradat . 15
6.2.2 Yleistäminen . 17
6.2.3 Muut neuroverkot . 17

7 Vaihtoehtoisia malleja 18

8 Vertailu 18

9 Yhteenveto 20

1 Johdanto

Näyttämällä opettaminen tarkoittaa robotiikassa tapaa opettaa robotille liike-
tai toimintasarja siten, että käyttäjä ensin näyttää itse, kuinka toiminta
tehdään.[12] Havainnollistaminen voidaan tehdä joko liikuttamalla robotin
liikkuvia osia tai näyttämällä itse omalla esimerkillään toiminnan. Tämä on
hyvin toteutettuna selvästi tehokkaampi tapa opettaa robotteja kuin esimer-
kiksi koordinaattipisteiden ja vastaavien syöttäminen käsin järjestelmään.

Tässä työssä keskitytään siihen, miten robotti voi oppia liikkeen saatuaan
esimerkkitoiminnan selville esimerkiksi kuvattuaan opettavan ihmisen liike-
sarjan tai tallennettuaan omien niveltensä liikkeen. Työssä ei puututa robot-
teihin sinänsä, vaan tarkastellaan asiaa matemaattisen mallin rakentamisen
kannalta. Robotiikka tuo mukanaan lisähaasteen toimintojen oikeaan toista-
miseen muun muassa fysikaalisten rajoitusten takia.

Työssä käydään läpi liike- tai toimintasarjojen toistamiseen käytettävien mal-
lien ominaisuuksia ja toteutustapoja. Tällaisia ovat esimerkiksi ajan otta-
minen huomioon toistossa, stabiilisuus ja vaadittavan laskennan kompleksi-
suus. Ajan huomioiminen esimerkiksi tuottaa samalla mahdollisuuksia eri-
laisiin hidastamis- tai kiinniottoliikkeisiin, mutta monimutkaistaa toimintaa
häiriötilanteissa.

Verrattavana on kolme erilaista tapaa mallintaa toimintasarjoja. Näiden mal-
lien ominaisuudet käydään vertaillen läpi. Ominaisuuksia esitellään myös eri-
laisten esimerkkiliikeratojen avulla. Malleista on olemassa eri versioita ja nä-
mä esitetään vertaillen.

Lopuksi esitetään yhteenveto eri malleista ja pohditaan minkälaisiin tilantei-
siin tai järjestelmiin eri mallit voisivat parhaiten sopia. Malleille esitellään
laajennusehdotuksia erinäisiä ominaisuuksia varten. Lisäksi esitellään lyhyes-
ti muutama vaihtoehtoinen malli.

2

2 Liikeradan toistaminen ja robotiikka

Liikeradan toistaminen dynaamisessa systeemissä tarkoittaa yksinkertaisim-
millaan sitä, että syötteenä on paikkakoordinaatteja eri ajanhetkillä ja näis-
tä lasketaan kiihtyvyydet, joiden perusteella liikerata toistetaan. Tämä ei
kuitenkaan ole mielekästä tai tehokasta, sillä luotu malli pätee vain tietys-
sä tapauksessa. Tällainen malli ei osaa käsitellä minkäänlaisia häiriöitä tai
muutoksia ohjattavan objektin tai maalin sijainnissa. Tämän takia on tar-
koituksenmukaista löytää malli, joka sisältää jonkinlaisen ohjauksen.

Mallin syöte, eli liikerata, koostuu tavallisesti tasavälein poimituista koordi-
naateista. Nämä koordinaatit voivat olla esimerkiksi kolme paikkakoordinaat-
tia, jolloin käytössä on vain paikka avaruudessa ilman suuntausta tai jotakin
pintaa vasten kohdennettua voimaa. Vaihtoehtoisesti koordinaatit voivat olla
nivelten asentoja. Kuvassa 1 on esimerkki robottikädestä. Tässä tapaukses-
sa robottikäden pihtien paikka voidaan ilmoittaa kolme paikkakoordinaatin
ja kolmen suuntauskoordinaatin avulla tai vaihtoehtoisesti käden viiden ni-
velen kulmien avulla. Tässä työssä ei käsitellä suuntauksia tai voimia, sillä
esitettävät mallit voidaan tutkia riittävästi pelkästään paikkakoordinaattien
kanssa.

Roboteissa käytetään yleisesti suoraa kinematiikkaa, jolla robotin nivelten
asennoista voidaan laskea paikka ja suuntaukset kolmiulotteisessa avaruudes-
sa. Samoin käytetään käänteiskinematiikkaa, kun lasketaan mahdolliset nivel-
ten asennot annetusta kolmiulotteisen avaruuden pisteestä ja suuntauksesta.[13]
Analyyttinen ratkaisu käänteiskinematiikkaongelmaan on mahdollista löytää
vain viiden vapausasteen ongelmille ja kuuden vapausasteen erityistapauksil-
le, minkä takia usein käytännössä robottikädet rakennetaan näitä rajoituksia
noudattaen.[3]

3 Mallin ominaisuudet

3.1 Koordinaatiston valinta

Sillä, käytetäänkö liikeradan toistamisessa kolmiulotteista koordinaatistoa
vai robottikäden omia nivelten asentoja, voi olla merkitystä suorituksen kan-
nalta. Reaalikoordinaatistossa liikkeet ovat useimmin sileitä. Nivelmaailmas-
sa liikkeet sen sijaan ovat tavallisesti derivaataltaan epäjatkuvia, sillä nivel
kääntyy tavallisesti vain kahteen suuntaan ja kesken liikkeen yksittäinen ni-

3

Kuva 1: Tällä robottikädellä on viisi vapausastetta. Pihtien paikka voidaan
ilmoittaa kolmen paikkakoordinaatin ja kolmen suuntauskoordinaatin avulla
tai vaihtoehtoisesti eri nivelten kulmien avulla.

vel voi vaihtaa liikesuuntaansa päinvastaiseksi. Nivelavaruudessa operoidessa
pitää siis pitää huolta, että valittu malli pystyy käsittelemään nopeat suun-
nanvaihdokset. Toisaalta reaalikoordinaatistossa on mahdollista käydä niin,
että kun laskettu tavoitepiste eroaa esimerkkipisteestä tarpeeksi esimerkiksi
laskentaepätarkkuuksien takia, päädytään hyvinkin erilaisiin nivelten asen-
toihin. Tämä voi aiheuttaa muun muassa törmäysvaaran tai yrityksen teh-
dä mahdottomia liikkeitä. Kuvassa 2 on esitetty, kuinka sama piste voidaan
saavuttaa usealla eri tavalla.

3.2 Ajan huomioiminen

Malli voi ottaa huomioon ajan kulumisen liikkeessä. Toisaalta malli voi perus-
tua pelkästään paikka- ja nopeusvektoreihin. Aika voidaan ottaa huomioon
myös välillisesti vaihemuuttujan avulla. Vaihe voi riippua suoraan pelkäs-
tään ajasta, mutta se voi ottaa huomioon myös paikka- ja nopeusvektorit.
Ajan huomioiminen mahdollistaa sellaiset toiminnot kuten ajan keinotekoi-
sen nopeuttamisen tai hidastamisen, mutta myös myös samojen paikka- ja
nopeuskoordinaattien läpikäymisen useaan kertaan eri tavoilla.

4

Kuva 2: Punaisella tähtäimellä osoitettu maalipiste voidaan saavuttaa kah-
della erilaisella nivelten asennoilla.

3.3 Stabiilisuus

Usein liikkeelle määritellään niin sanottu maalipiste, johon toteutettavan liik-
keen on tarkoitus päättyä. Stabiilisuus tarkoittaa sitä, että mahdollisista häi-
riöistä huolimatta lopulta päädytään joka tapauksessa maalipisteeseen. Sta-
biilisuus voi olla lokaalia tai globaalia. Stabiilisuus on selvästikin toivottava
ominaisuus mallissa. Vaihtelevan aloituspisteen lisäksi täytyy huomioida häi-
riöt kesken liikkeen suorittamisen. Robottikäsi voi mahdollisesti siirtyä ulkoi-
sen tai sisäisen häiriön takia paikaltaan tai sen nopeus voi vaihdella tavoitel-
lusta. Pienet häiriöt ovat luonnollisia jo liukulukulaskennan ja fyysisen ko-
koonpanon epätarkkuuden takia. Teollisuusroboteille onkin määritelty stan-
dardissa ISO 9283:1998 toistettavuus, joka tarkoittaa paikan eroavaisuutta
toistojen paikan keskiarvosta. Toistettavuus kertoo siis käytännössä, kuinka
suuria virheitä robotin liikkeille on odotettavissa.[6]

3.4 Laskennan kompleksisuus

Laskenta voidaan suorittaa kahdella eri tavalla. Robotissa reaaliajassa tapah-
tuvalle laskennalle kompleksisuudella on väliä. Toisessa tapauksessa lasken-
ta voidaan suorittaa erikseen ennen kuin robotin on aika suorittaa liikkeitä.
Tällöin laskennan vaativuudelle ei ole yhtä tiukkoja rajoituksia. Tavallisesti

5

voidaan ajatella, että laskenta voidaan suorittaa rauhassa, ellei robotin pidä
toistaa reaaliajassa jotakin esimerkkiä.

4 Dynaamiset alkeisliikkeet (DMP)

4.1 Malli

Eräs malli liikeratojen toistamiseen on dynaamisten alkeisliikkeiden malli
(Dynamical Movement Primitives, DMP). Mallia ovat kehittäneet etenkin
Stefan Schaal ja Auke Jan Ijspeert.[5] Malli, jota käsittelen tässä on Sylvain
Calinonin versio mallista.[2] Kutsutaan sitä nimellä DMP-C.

DMP-C perustuu siihen, että tavoiteltava liikerata jaetaan ennalta valitta-
vaan määrään attraktoreita. Nämä attraktorit jaetaan tavallisesti tasaisin
aikavälein, niin että yksi on heti alussa ja yksi lopussa. Kun aika etenee eri
attraktorit vetävät liikettä puoleensa toisen asteen dynamiikan mukaisesti.
Näin päästään asteittain alusta loppuun. Lisäämällä attraktoreiden määrää
järjestelmä saadaan mielivaltaisen tarkaksi. Mallin formaali määrittely esi-
tellään seuraavasti.[2]

ẍ =
N∑
i=1

hi(t)[kpi(µi − x)− kvẋ] (1)

Kiihtyvyys kullakin ajanhetkellä kullekin koordinaatille lasketaan kaavan (1)
avulla. Käytännössä kaava on painotettu summa harmonisten oskillaattorei-
den vaikutuksista. Oskillaattoreiden keskipisteet eli attraktorit ovat µi ja ne
määrätään esimerkkiaineiston perusteella yksinkertaisimmillaan pienimmän
neliösumman menetelmällä.[2]

Kertoimet kv ja kpi ovat kullekin attraktorille ominaiset vakiot, joista kv va-
litaan siten, että jousi on kriittisesti vaimentunut. kpi voi vaihdella attrakto-
rista toiseen, jos halutaan ottaa huomioon aineiston varianssi useamman esi-
merkin tapauksessa. Tässä työssä käsitellään yksinkertaisuuden vuoksi vain
tapausta, jossa molemmat kertoimet ovat vakioita.[2]

Painokertoimet hi(t) normalisoidaan yhteen ja ne määritellään normaalija-

6

kauman avulla

hi(t) =
N(t;µi, σi)∑N
i=1N(t;µi, σi)

. (2)

Normaalijakaumien odotusarvot on jaettu tasavälein aika-avaruuteen. Va-
rianssiparametrit määritellään käänteisesti attraktorien määrään verrannol-
lisena. Tavallisesti voidaan asettaa esimerkiksi niin, että jakaumat ovat yhden
keskihajonnan päässä toisistaan.[2]

Kuva 3: Vasemmalla ylhäällä: esimerkkireitti harmaalla ja toteutettu reitti
mustalla sekä attraktorien paikat x-y-koordinaatistossa. Oikealla ylhäällä:
attraktorien voimakkuudet ajan funktiona. Alhaalla: attraktorien paikat x-
ja y-koordinaatistoissa.

Kuvassa 3 on esitetty esimerkin avulla, kuinka DMP-C käytännössä toimii.
Kuvan vasemmassa yläkulmassa on esitetty malliliikerata harmaalla viivalla
ja sen lopullinen toteutus mustalla viivalla. Laskennassa on käytetty pää-
tepisteiden lisäksi yhteensä kuutta attraktoria. Liike alkaa liikkeen oikeas-
ta yläkulmasta ja päättyy vasempaan alakulmaan. Attraktorien voimakkuu-
det muuttuvat ajan funktiona. Kuvan alarivillä on vielä esitetty attraktorien
keskipisteet kussakin koordinaatissa. Tämä sisältää saman informaation kuin
liikeratakartan soikiomaiset attraktorit.

7

4.2 DMP-C:n ominaisuudet

4.2.1 Aika

DMP-C tiedostaa ajan. Aika toteutetaan tavallisesti vaiheena. Mallissa on
vaiheelle s aikariippuvuus

t =
ln(s)

α
, (3)

missä α on jokin vakio. Aikaa voidaan siten hallita tämän vaiheen kautta.
Periaatteessa tekoäly voisi tunnistaa tilanteen, jossa vaihe pitää pysäyttää
esimerkiksi sen takia, että reitille on tullut este. Vaihe pysäytettäisiin jolloin
liikerata pysähtyisi päällä olevaan attraktoriin. Kun vaiheen annetaan edetä,
liike voisi taas jatkua normaalisti. Mikäli vaihetta ei pysäytettäisi, järjestelmä
pyrkisi jatkamaan liikettä ja esimerkiksi kuvan 3 tapauksessa S-kuvion alempi
lenkki saattaisi jäädä väliin, kun vaihe ohittaisi nämä attraktorit robotin
ollessa jumissa.

Vaihe voidaan myös muokata sykliseksi.[2] Tämä voidaan toteuttaa esimer-
kiksi modulaariaritmetiikalla vai syklisen funktion avulla. Syklisellä vaiheella
voidaan taas toteuttaa syklisiä liikkeitä kuten rummutusta tai raajojen liik-
keitä kävelyssä.

4.2.2 Stabiilisuus

DMP-C on globaalisti stabiili. Tämän näkee siitä, että viimeinen attraktori
dominoi aina lopussa samalla kun muut kuihtuvat pois. Täten järjestelmä
tuntee kiihtyvyyttä lopussa vain toistettavan liikeradan viimeistä pistettä
kohti. Tämä takaa konvergoinnin maalipisteeseen. Mikäli suorituksessa käy-
tetään jonkinlaista heurestiikkaa vaiheen päättelemiseen suoraan ajan kaut-
ta määrittelemisen sijasta, voi käydä niin, ettei vaihe etene loppuun saakka.
Normaalisti voidaan kuitenkin olettaa vaiheen etenevän loppuun saakka.

4.2.3 Ulottuvuudet

DMP-C:ssä ulottuvuudet ovat riippumattomia. Sillä, käytetäänkö reaalikoor-
dinaatistoa vai nivelkoordinaatistoa, ei ole väliä mallin kannalta. Nivelkoordi-
naatistossa ulottuvuuksia olisi enemmän, mutta samalla laskenta tarkentuisi,

8

Kuva 4: Vasemmalla: laskenta-aika datapisteiden funktiona. Oikealla:
laskenta-aika attraktorien funktiona. Molemmat ovat käytännössä lineaari-
sia riippuvuuksia käytetyllä alueella.

jos muut tekijät pysyisivät samoina. Käytännössä kummankaan koordinaa-
tiston valinnan ei pitäisi aiheuttaa hankaluuksia.

4.2.4 Laskennallinen kompleksisuus

DMP-C:n laskennallinen kompleksisuus on suunnilleen O(nmp), missä n on
datapisteiden, m attraktorien ja p ulottuvuuksien määrä. Tämä tulee siitä,
kun lasketaan jokaiselle toiston datapisteelle kiihtyvyys ja kiihtyvyyden las-
kennassa tarvitaan jokaisen attraktorin painokerrointa. Lisäksi tämä kaikki
käydään läpi jokaiselle ulottuvuudelle. Kuvassa 4 on esitetty laskenta-ajan
riippuvuus datapisteiden määrästä ja attraktorien määrästä riippuvana ko-
keellisesti.

4.2.5 Varianssi

DMP-C ottaa oletuksena huomioon usean esimerkkiliikeradan vaihtelut eri
kohdissa liikerataa. Tätä tietoa voidaan käyttää hyväksi, jos liikeradan tois-
toon halutaan lisätä potentiaaliin perustuva väistöjärjestelmä. Toinen jär-
jestelmä voi havainnoida uhkia liikkelle ja muodostaa jonkinlaisen luotaan
työntävän potentiaalin näiden ympärille. Mitä enemmän vaihtelua tietyssä
osassa esimerkkiliikerataa on ollut, sitä helpommin uhkalle annetaan periksi
liikeradan noudattamisen sijasta.

9

4.3 Vertailu alkuperäiseen DMP:hen

DMP-C eroaa Stefan Schaalin ja Auke Jan Ijspeertin DMP:stä (DMP-S)
osittain. DMP-S on määritelty myös toisen asteen jousisysteeminä[5]

τ ÿ = αz(βz(g − y)− ẏ) + f. (4)

Tässä g on maalipiste ja y paikkakoordinaatti. αz ja βz ovat jousisysteemin
vakioita, jotka valitaan niin, että systeemi on kriittinen. τ on aikavakio, joka
voidaan käytännössä piilottaa muihin vakioihin. Funktiota f(x) kutsutaan
pakotustermiksi ja se määritellään[5]

f(x) =

∑N
i=1 Ψi(x)ωi∑N
i=1 Ψi(x)

x(g − y0), (5)

N:llä gaussisella kantafunktiolla

Ψi(x) = exp(− 1

2σ2
i

(x− ci)2). (6)

Kaavassa (6) σi ja ci ovat vakioita, jotka määrittelevät kantafunktioiden le-
veyden ja paikan. Kaavassa (5) y0 on alkuperäinen tila hetkellä t = 0.[5]

DMP-S eroaa DMP-C:stä etenkin maalipisteen huomioimisen suhteen. DMP-
S:ssä maalipiste löytyy pakotustermistä. Termiä kerrotaan maalinpisteen ja
aloituspisteen erotuksella. Siten aloituspiste itsessään vaikuttaa rataan koko
liikeradan ajan.[5] Tämä ominaisuus aiheuttaa eräänlaisen skaalauksen mal-
lissa. Esimerkiksi yksinkertaista siniaaltoa toistettaessa aloituspisteen siir-
täminen pisteestä y = 1 pisteeseen y = 2 kaksinkertaistaisi suoraan toiston
amplitudin. Tässä muodossa malli säilyttäisi siten liikeradan muodon parem-
min kuin paikkakoordinaatit.

10

5 Dynaamisten järjestelmien stabiili estimaat-
tori (SEDS)

5.1 Malli

Dynaamisten järjestelmien stabiili estimaattori (Stable Estimator of Dyna-
mical Systems, SEDS)[8] on metodi, jossa liike mallinnetaan epälineaarisena
aikainvarianttina dynaamisena systeeminä. Mallin esittelivät ensimmäisenä
S. Mohammad Khansari-Zadeh ja Aude Billard.

Malli määritellään tilamuuttujan ξ avulla differentiaaliyhtälönä

ξ̇ = f(ξ, θ) =
K∑
k=1

P (k)P (ξ|k)∑K
i=1 P (i)P (ξ|i)

(Σk
ξ̇ξ

(Σk
ξ)

−1ξ + µk
ξ̇
− Σk

ξ̇ξ
(Σk

ξ)
−1µkξ). (7)

Tämä voidaan merkitä muotoon

ξ̇ = f(ξ, θ) =
K∑
k=1

hk(ξ)(Akξ + bk). (8)

Tässä θ:lla on merkitty opittavia parametreja

θ = {π1..πK , µ1..µK ,Σ1..ΣK} (9)

Kuvassa 5 on esitetty optimoitavien parametrien konkreettista merkitystä.
hk kertoo käytännössä, miten voimakkaasti kukin osa on kullakin hetkellä
voimassa. (Akξ + bk) edustaa kukin gaussista funktiota.

Lyapunovin stabiilisuusteoreeman avulla saadaan systeemiin kaksi rajoituseh-
toa

(a) µk
ξ̇

= Σk
ξ̇ξ

(Σk
ξ)

−1(µkξ − ξ∗) (10)

ja

(b) Σk
ξ̇ξ

(Σk
ξ)

−1 + (Σk
ξ)

−1(Σk
ξ̇ξ

)T ≺ 0. (11)

11

Kuva 5: Ylhäällä: havaintokuva painokerrointen hk havainnollistamiseksi. Al-
haalla: havaintokuva muiden osien havainnollistamiseksi.

Nämä ehdot takaavat sen, että tehtävän ratkaisu on globaalisti stabiili.[8]

Tätä systeemiä voidaan optimoida esimerkiksi pienimmän neliösumman me-
netelmällä (SEDS-MSE) tai suurimman uskottavuuden menetelmällä (SEDS-
Likelihood). Malli mahdollistaa suoraan mielivaltaisen monen esimerkkiliike-
radan käytön. Mikäli mallia optimoidaan suurimman uskottavuuden mene-
telmällä, optimointitehtäväksi saadaan

min J(θ) = −1

τ

N∑
n=1

Tn∑
t=0

logP ([ξt,n; ˙ξt,n]|θ) (12)

rajoitusehdoilla

µk
ξ̇

= Σk
ξ̇ξ

(Σk
ξ)

−1(µkξ − ξ∗)
Σk
ξ̇ξ

(Σk
ξ)

−1 + (Σk
ξ)

−1(Σk
ξ̇ξ

)T ≺ 0

Σk � 0 ∀k ∈ 1..K

0 < πk ≤ 1∑K
k=1 π

k = 1

(13)

12

5.2 SEDSin ominaisuudet

5.2.1 Aika ja ulottuvuudet

SEDS tuottaa ratkaisuna aikainvariantin tuloksen. Tämän lisäksi ratkaisu on
paikka-avaruudessa. Tämä johtaa siihen, että ratkaisuna saatava liikerata ei
voi käydä samassa pisteessä kahdesti. Siten SEDS ei voi tuottaa esimerkiksi
kahdeksikon muotoista rataa. Tämä on mahdollista ohittaa muuttamalla sys-
teemi toisen kertaluvun differentiaaliyhtälöksi, joka voidaan edelleen muuttaa
ensimmäisen kertaluvun differentiaaliyhtälöryhmäksi.[8] Toinen vaihtoehto
olisi lisätä systeemin vaihemuuttuja.[8]

Menetelmä on rakenteeltaan moniulotteinen. Yhdessä ulottuvuudessa SEDS
ei ole mielekäs vaihtoehto, sillä se sallii liikkeen vain yhteen suuntaan ja vain
monotonisten funktioiden toistaminen on mahdollista. Siksi SEDSiä käyttäes-
sä kaikki ulottuvuudet kannattaakin käsitellä samalla, jotta tästä rajoitteesta
pääsee eroon.

5.2.2 Optimointi

SEDS ei itsessään ota kantaa siihen, millä algoritmilla itse optimointi toteu-
tetaan. Optimointialgoritmin valinta voi vaikuttaa lopputulokseen ja eri al-
goritmeilla on hyvät ja huonot puolensa. Billard ja Khansari-Zadeh käyttivät
itse toistetun neliöllisen ohjelmoinnin menetelmää julkaisussaan.[8]

Optimoidessa täytyy ensin valita haluttu määrä gaussisia funktioita. Tekijät
käyttivät bayesilaista informaatiokriteeriä tätä varten (Bayesian Information
Criterion, BIC).[8] Tällä tavoin myös tämä vaihe voidaan automatisoida.

Käytettäessä SEDSin suurimman uskottavuuden menetelmää estimoitavien
parametrien määrä on K(1 + 3d + 1d2), missä K on gaussisten funktioiden
määrä ja priorit πk on kokoa 1, odotusarvot µk kokoa 2d ja kovarianssit Σk

kokoa d(2d+1). Laskemalla odotusarvot rajoitusehdoista saatavilla lausek-
keilla muiden parametrien arvoista estimoitavien parametrien määräksi saa-
daan vähennettyä K(1 + 2d(d+ 1)).

SEDSin pienimmän neliösumman menetelmässä parametrien määrä saadaan
vielä alhaisemmaksi arvoon K(1 + 3

2
d(d+ 1)).[8]

Koska optimoitavana on yleinen epälineaarinen optimointitehtävä, ei ole ta-
keita siitä että löydettävä ratkaisu on globaali optimi. Ratkaisumenetelmät
ovat tavallisesti hyvin herkkiä parametrien alkuarvoille. Käytännön seuraus

13

Kuva 6: Optimointitehtävän ratkaisu juuttuu usein paikalliseen optimiin.
Tässä stabiilisuusehdot aiheuttivat ongelmia globaalin optimin löytämisessä.
Vihreällä on esitetty tavoiteltava liikerata ja sinisellä mallin antama liikerata.

14

Kuva 7: Kaikista mahdollisista aloituspisteistä päädytään maaliin.

tästä on se, että aina SEDS ei kykene löytämään ratkaisua, joka seuraisi an-
nettua liikerataa halutun tarkasti. Kuvassa 6 on esitetty yksi ratkaisu, kun
annettu liikerata on ollut kulmikas. Alkuvaiheessa liikerataa ratkaisu nou-
dattaa haluttua reittiä, mutta loppupäässä ratkaisu oikaisee maalipisteeseen
kulkematta kunnolla rataa läpi.

5.2.3 Stabiilisuus

SEDS eroaa muista gaussisista sekamalleista (Gaussian Mixture Models) juu-
ri siinä, että se takaa globaalin stabiilisuuden. Muista menetelmistä Gaus-
sian Process Regression, Locally Weighted Projection Regression ja Gaussian
Mixture Regression eivät takaa edes lokaalia stabiilisuutta. Binary Merging
takaa ainakin lokaalin asymptoottisen stabiilisuuden. Kuvassa 7 on esitetty
mallilla saatu tulos, kun esimerkkinä on kolme C-kirjaimen muotoista liike-
rataa maalipisteeseen. Nähdään, että vaikka aloituspiste olisi mielivaltainen,
päädytään silti aina lopulta maalipisteeseen.

15

6 Rekurrentti neuroverkko parametriharhalla
(RNNPB)

6.1 Malli

Rekurrentti neuroverkko parametriharhalla (Recurrent Neural Network with
Parametric Bias, RNNPB) on neuroverkkoihin perustuva lähtökohta liikera-
tojen mallintamiseen. RNNPB on arkkitehtuuriltaan samanlainen kuin ta-
vallinen Jordan-tyyppinen toistuva neuroverkko. RNNPB:ssä on lisätty vain
parametriharhasolmuja syötekerrokseen.

Kuvassa 8 on esitetty kuvaus menetelmän arkkitehtuurista (a) oppimisvai-
heesta ja (b) vuorovaikutusvaiheessa. Oppimisvaiheessa RNNPB harjoitetaan
käytännössä harjoitusaineistolla eli esimerkki liikeradoilla. Vuorovaikutusvai-
heessa menetelmä tuottaa ulostuloja sisääntulojen perusteella. Tavallisille
sisään- ja ulostulosolmuille suoritetaan kahdenlaisia operaatioita: suljetun sil-
mukan ja avoimen silmukan operaatioita. Lisäksi arkkitehtuuriin kuuluu kon-
tekstisolmuja ci sekä sisääntulo että ulostulokerroksissa. Menetelmän nimi tu-
lee parametriharhasolmuista pt, joita on sisääntulokerroksessa. Näitä solmuja
voi manipuloida monipuolisten käytösten opettamiseksi ja tuottamiseksi.[7]

Harjoitusaineiston ominaisuudet hankitaan backpropagation through time -
algoritmilla (BPTT). Samalla jokaisen yksittäisen aikasarjan tietyt ominai-
suudet koodataan harhaparametrien arvoihin. Oppimis- ja tunnistusproses-
seissa harhaparametriarvot lasketaan iteratiivisesti käyttämällä virhettä en-
nustetun ja tavoitellun sarjan välillä.[7]

6.2 RNNPB:n ominaisuudet

6.2.1 Useat liikeradat

RNNPB mahdollistaa siirtymisen usean eri liikkeen välillä. Tämä luo se-
kä mahdollisuuksia että ongelmia. Toisaalta menetelmää voidaan ulkoisesti
ohjata liikeradalta toiselle. Toisaalta taas malli voi ajautua ongelmiin liian
monen erilaisen liikkeen kanssa. Menetelmä voi harhautua liikkeeltä toiselle
tahattomasti. Se, miten liikkeestä toiseen voi vaihtaa, riippuu liikkeen pysy-
vyydestä. Myös sillä, missä vaiheessa liikettä ollaan, on väliä.[7]

Muita useiden liikkeiden oppimiseen käytettäviä metodeja ovat MOSAIC
(Wolpert ja Kawato, 1998) ja

16

Kuva 8: Kuvaus RNNPB:n (a) oppimis- ja (b) vuorovaikutusvaiheesta.

17

6.2.2 Yleistäminen

RNNPB on neuroverkkomalli, minkä takia sille ei ole johdettu tiettyjä teo-
reettisia ominaisuuksia. Simulaatioilla on voitu osoittaa, että RNNPB on
melko stabiili häiriöitä vastaan liikkeen valinnassa. Malli kykenee yleistä-
mään siniaaltoisen liikkeen taajuuden, mutta amplitudin yleistämisessä teho
on rajattu.[4]

6.2.3 Muut neuroverkot

Tavallisesti viiveneuroverkkoratkaisut (Time Delay Neuro Networks) vaativat
hyvin suuren määrän neuroneita ja oppimisaikaa, sillä ne on tarkoitettu säi-
lyttämään kaikki aikasarja-aineisto syötekerroksessa. RNNPB käyttää itsejär-
jestäytyvää kontekstuaalista informaatiota kontekstikerroksessa, joten se pys-
tyi selviytymään eräässä testissä objektin lyömisestä vain 42 neuronilla.[10]

Tavallisesti neuroverkkoratkaisuilla on ongelmia pitkän aikavälin riippuvuk-
sia vaativissa mallinnuksissa, koska virhesignaaleja ei pystytä tehokkaasti vä-
littämään BPTT-algoritmilla mahdollisten epälineaarisuuksien takia. Eräs
mahdollinen ratkaisu ongelmaan on Long Short-Term Memory (LSTM) -
metodi. Muita samantyyppisiä vaihtoehtoja ovat kaikutilaverkot (Echo sta-
te networks) ja nestetilakoneet (liquid state machines). On osoitettu, että
kaikutilaverkko pystyy onnistuneesti oppimaan Mackeyn-Glassin kaoottisen
aikasarjan, mikä on tunnettu perustesti aikasarjan ennustamisessa.[9]

On esitetty malleja, joissa yhdistetään useita eri kerroksia neuroverkkomal-
leja yhteen. Tavallisesti ongelmana on skaalautuessa ilmeentyvät stabiili-
suusongelmat. Niin sanottu RNN experts -malli pyrkii välttämään tämän.
Yksinkertaistettuna mallissa jokaisellla tasolla eri neuroverkot kilpailevat toi-
siaan vastaan ja korkeimmilla tasoilla aikavakiot ovat pienemmät. Alemmat
tasot oppivat yksittäisiä liikkeitä, kun korkeammat tasot voivat oppia näi-
den primitiivisten osien abstraktioita. Myös muita samankaltaisia malleja on.
Neuroverkkoratkaisun skaalautumisominaisuudet määrittelevät pitkälti mal-
lin kelpoisuuden skaalautuviin ongelmiin. On toivottavaa, että oppimispro-
sessi on stabiili suurellakin määrällä moduuleita.[9]

18

7 Vaihtoehtoisia malleja

Näyttämällä opettamisen mallit voidaan jakaa kahteen lajiin: insinööriläh-
töisiin ja biologialähtöisiin malleihin. Insinöörilähtöisissä tavoissa keskity-
tään kehittämään algoritmeja, jotka ovat yleisiä esityksiä taidoista. Nämä
voidaan edelleen jakaa symboliseen koodaukseen ja liikeradan koodaukseen.
Biologiset mallit hakevat inspiraationsa eläinten tavasta imitoida asioita.[1]

Tässä työssä esitetyistä malleista DMP-C ja SEDS voidaan laskea insinööri-
lähtöisiksi malleiksi. RNNPB on neuroverkkomallina sen sijaan eräässä mie-
lessä biologiseen perustaan nojaava.[1]

Alexander Skoglund, Boyko Iliev ja Rainer Palm ovat käyttäneet sumeaa mal-
lintamista sekä liikkeiden havaitsemiseen että niiden toteuttamiseen. Tämä
onnistui siitä huolimatta, että mallina olevan ihmisen ja liikkeen toistavan
robotin anatomiassa oli eroavaisuuksia.[11]

Monet mallit yhdistävät nykyään peilisolut ja robottien ohjauksen. Mallit
auttavat sekä selittämään peilisoluja eläimissä että käyttämään tätä tietoa
ohjauksessa. Myös evoluutiota on yhdistetty tähän.[1]

Useat eri tutkijat ovat käyttäneet Markovin piilomalleja tilastopohjaisen op-
pimisen perusteena. Markovin piilomallit ovat sopivan robusteja aika- ja paik-
kavarianteille signaaleille.[1]

8 Vertailu

Esitellyt kolme mallia ovat hyvin erilaiset. DMP-C perustuu toisen asteen dy-
namiikkaan, SEDS epälineaariseen optimointiin ja RNNPB neuroverkkoihin.
Tästä syystä myös mallien ominaisuudet eroavat paljon.

Malleista DMP-C ja SEDS ovat globaalisti stabiileja. RNNPB sen sijaan ei
pysty takaamaan stabiilisuutta. Stabiilisuus ei välttämättä ole tarpeellista,
jos tarkoituksena on toistaa vain liikeradan yleisiä ominaisuuksia, kuten muo-
toja. Esimerkiksi allekirjoituksen toistamisessa loppupisteellä ei ole niinkään
väliä: merkitseviä ovat kirjainten kaaret. Sen sijaan vaikkapa objektin siirtä-
misessä paikasta toiseen loppupaikka on merkittävässä asemassa ja tällaisessa
tehtävässä on hyvä käyttää stabiilia mallia.

Malleista vain DMP-C on aikariippuvainen. Aikariippuvuus mahdollistaa mo-
nia toimintatapoja virhetilanteissa. Kuvassa 9 on esitetty kolme vaihtoehtois-
ta tapaa käsitellä hetkittäinen jumiutuminen DMP-C:n avulla. Ylhäällä esi-

19

tetyt tavat ovat tavallisimpia. Vasemmalla ylhäällä mallin sisäinen kello jat-
kaa etenemistä jumiutumisen aikanakin, jolloin liikerata ohittaa tällä välillä
olleet liikeradan osat. Oikealla ylhäällä mallin sisäinen kello pysähtyy. Täl-
löin kaikki liikeradan osat käydään tavallisesti läpi, mutta liike on ajallisesti
jäljessä esimerkkiliikettä. Alhaalla käytetään kahta sisäistä kelloa. Toinen kel-
loista pysäytetään ja toista ei. Päästäessä jatkamaan taas liikettä oikea aika
otetaan asteittain kiinni, jolloin kaikki halutut liikkeen osat käydään läpi ja
lopulta liike on myös ajallisesti oikeassa. Tämä vaihtoehto vaatii muun muas-
sa virhetilanteen tunnistamista sekä valintaa siitä, kuinka nopeasti aikaero
halutaan kuroa kiinni, joten tilanne monimutkaistuu.

Malleista DMP-C on laskennallisesti kevyin. Se ei tarvitse raskaita epälineaa-
risten tehtävien ratkaisumenetelmiä toisin kuin SEDS. Neuroverkkoratkaisu-
na myös RNNPB vaatii melko raskaita laskutoimituksia. Jos laskenta toteu-
tetaan niin sanotusti offline-laskentana muualla kuin robotissa itsessään, tällä
ei välttämättä ole väliä. Kaikissa metodeissa laskentaa voidaan aina keventää
vähentämällä aineistoa. Datapisteistä voidaan jättää esimerkiksi merkittävä
osa käyttämättä tilanteesta riippuen.

Kuva 9: Vasemmalla ylhäällä: edetään kuin aika olisi jatkanut etenemistään
normaalisti. Oikealla ylhäällä: pysäytetään aika. Alhaalla: otetaan rytmi pa-
loittain kiinni.

20

9 Yhteenveto

Työssä esiteltiin ensiksi yleisiä periaatteita liikeratojen toistamisesta robotin
avulla. Robottien asettamia rajoituksia ja merkitystä malleille käytiin läpi.

Erilaisista liikeratojen toistamisen malleista esiteltiin kolme: DMP-C, SEDS
ja RNNPB. Näiden ominaisuudet esiteltiin ja niiden merkitystä pohdittiin.
Myös vaihtoehtoisia malleja käytiin lyhyesti läpi. Valituista kolmesta mallis-
ta DMP-C on luultavasti yksinkertaisin ja mielekkäin toteuttaa ensimmäise-
nä kokeiluna. Malli toimii mielivaltaisilla liikeradoilla ja mahdollistaa myös
erilaiset laajennukset ajan käsittelyn suhteen.

Malleja ajatellessa on hyvä aina kokeilla niitä myös käytännössä. Tässä käy-
täntö tarkoittaisi simulaatioiden lisäksi myös implementoimista robottiin ja
käytännön kokeita liikeratojen toistamisessa. Tässä työssä rajoituttiin vain
mallien tarkasteluun matemaattisina olioina. Malleja on kokeiltu myös em-
piirisesti niiden kehittäjien toimesta.

21

Viitteet
[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot pro-

gramming by demonstration. Handbook of Robotics, . chapter 59, 2008,
2008.

[2] S. Calinon, I. Sardellitti, and D. G. Caldwell. Learning-based control
strategy for safe human-robot interaction exploiting task and robot re-
dundancies. In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), pages 249–254, Taipei, Taiwan, October 2010.

[3] John J. Craig. Introduction to robotics: Mechanics and control, 2005.

[4] Raymond H. Cuijpers, Floran Stuijt, and Ida G. Sprinkhuizen-Kuyper.
Generalisation of action sequences in rnnpb networks with mirror pro-
perties. In ESANN, 2009.

[5] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and S. Schaal. Dyna-
mical movement primitives: Learning attractor models formotor beha-
viors. Neural Computation, (25):328–373, 2013.

[6] Manipulating industrial robots - Performance criteria and related test
methods, ISO 9283:1998, 1998.

[7] Masato Ito, Kuniaki Noda, Yukiko Hoshino, and Jun Tani. Dynamic and
interactive generation of object handling behaviors by a small humanoid
robot using a dynamic neural network model, 2006.

[8] S. Mohammad Khansari-Zadeh and Aude Billard. Learning stable non-
linear dynamical systems with gaussian mixture models. IEEE Tran-
saction on Robotics, (27):943–957, 2011.

[9] J. Namikawa and J. Tani. A model for learning to segment temporal
sequences, utilizing a mixture of RNN experts together with adaptive
variance. ArXiv e-prints, June 2007.

[10] Tetsuya Ogata, Hayato Ohba, Jun Tani, Kazunori Komatani, and Hiros-
hi G. Okuno. Extracting multi-modal dynamics of objects using rnnpb,
2005.

[11] Alexander Skoglund, Boyko Iliev, and Rainer Palm. Programming-by-
demonstration of reaching motions-a next-state-planner approach. Ro-
bot. Auton. Syst., 58(5):607–621, May 2010.

[12] Wikipedia. Programming by demonstration — wikipedia, the free
encyclopedia, 2013. [Online; Luettu 25.9.2013].

22

[13] Wikipedia. Robot kinematics — wikipedia, the free encyclopedia, 2013.
[Online; Luettu 25.9.2013].

	Johdanto
	Liikeradan toistaminen ja robotiikka
	Mallin ominaisuudet
	Koordinaatiston valinta
	Ajan huomioiminen
	Stabiilisuus
	Laskennan kompleksisuus

	Dynaamiset alkeisliikkeet (DMP)
	Malli
	DMP-C:n ominaisuudet
	Aika
	Stabiilisuus
	Ulottuvuudet
	Laskennallinen kompleksisuus
	Varianssi

	Vertailu alkuperäiseen DMP:hen

	Dynaamisten järjestelmien stabiili estimaattori (SEDS)
	Malli
	SEDSin ominaisuudet
	Aika ja ulottuvuudet
	Optimointi
	Stabiilisuus

	Rekurrentti neuroverkko parametriharhalla (RNNPB)
	Malli
	RNNPB:n ominaisuudet
	Useat liikeradat
	Yleistäminen
	Muut neuroverkot

	Vaihtoehtoisia malleja
	Vertailu
	Yhteenveto

