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1 Johdanto

Nayttamalla opettaminen tarkoittaa robotiikassa tapaa opettaa robotille liike-
tai toimintasarja siten, ettd kayttaja ensin nayttaa itse, kuinka toiminta
tehddén.[12] Havainnollistaminen voidaan tehdé joko liikuttamalla robotin
liikkuvia osia tai nayttamaélla itse omalla esimerkillidn toiminnan. Tama on
hyvin toteutettuna selvésti tehokkaampi tapa opettaa robotteja kuin esimer-
kiksi koordinaattipisteiden ja vastaavien syottdminen késin jirjestelméaén.

Téassa tyossa keskitytddn sithen, miten robotti voi oppia liikkeen saatuaan
esimerkkitoiminnan selville esimerkiksi kuvattuaan opettavan ihmisen liike-
sarjan tai tallennettuaan omien niveltenséa liikkeen. Tyossa ei puututa robot-
teihin sinénsé, vaan tarkastellaan asiaa matemaattisen mallin rakentamisen
kannalta. Robotiikka tuo mukanaan lisdhaasteen toimintojen oikeaan toista-
miseen muun muassa fysikaalisten rajoitusten takia.

Tyossa kidydadn 1api liike- tai toimintasarjojen toistamiseen kdytettévien mal-
lien ominaisuuksia ja toteutustapoja. Téllaisia ovat esimerkiksi ajan otta-
minen huomioon toistossa, stabiilisuus ja vaadittavan laskennan kompleksi-
suus. Ajan huomioiminen esimerkiksi tuottaa samalla mahdollisuuksia eri-
laisiin hidastamis- tai kiinniottoliikkeisiin, mutta monimutkaistaa toimintaa
héiriotilanteissa.

Verrattavana on kolme erilaista tapaa mallintaa toimintasarjoja. Ndiden mal-
lien ominaisuudet kiydaan vertaillen 1dpi. Ominaisuuksia esitelldan myés eri-
laisten esimerkkiliikeratojen avulla. Malleista on olemassa eri versioita ja na-
ma esitetdan vertaillen.

Lopuksi esitetdén yhteenveto eri malleista ja pohditaan minkélaisiin tilantei-
siin tai jérjestelmiin eri mallit voisivat parhaiten sopia. Malleille esitellaan
laajennusehdotuksia erinéisid ominaisuuksia varten. Liséksi esitellaan lyhyes-
ti muutama vaihtoehtoinen malli.



2 Liikeradan toistaminen ja robotiikka

Liikeradan toistaminen dynaamisessa systeemissa tarkoittaa yksinkertaisim-
millaan sita, ettd syotteenéd on paikkakoordinaatteja eri ajanhetkilla ja nais-
ta lasketaan kiihtyvyydet, joiden perusteella liikerata toistetaan. Téama ei
kuitenkaan ole mielekéista tai tehokasta, silla luotu malli patee vain tietys-
sé tapauksessa. Tallainen malli ei osaa késitelld minkdédnlaisia hairioita tai
muutoksia ohjattavan objektin tai maalin sijainnissa. Tamén takia on tar-
koituksenmukaista 16ytda malli, joka sisdltda jonkinlaisen ohjauksen.

Mallin syéte, eli liikerata, koostuu tavallisesti tasavélein poimituista koordi-
naateista. Nama koordinaatit voivat olla esimerkiksi kolme paikkakoordinaat-
tia, jolloin kaytossé on vain paikka avaruudessa ilman suuntausta tai jotakin
pintaa vasten kohdennettua voimaa. Vaihtoehtoisesti koordinaatit voivat olla
nivelten asentoja. Kuvassa 1 on esimerkki robottikddesta. Tasséd tapaukses-
sa robottikdden pihtien paikka voidaan ilmoittaa kolme paikkakoordinaatin
ja kolmen suuntauskoordinaatin avulla tai vaihtoehtoisesti kiiden viiden ni-
velen kulmien avulla. Tassé tyossa ei késitelld suuntauksia tai voimia, silld
esitettavat mallit voidaan tutkia riittavasti pelkistdan paikkakoordinaattien
kanssa.

Roboteissa kiytetddn yleisesti suoraa kinematiikkaa, jolla robotin nivelten
asennoista voidaan laskea paikka ja suuntaukset kolmiulotteisessa avaruudes-
sa. Samoin kiytetadn kidanteiskinematiikkaa, kun lasketaan mahdolliset nivel-
ten asennot annetusta kolmiulotteisen avaruuden pisteesté ja suuntauksesta.|13]
Analyyttinen ratkaisu kdanteiskinematiikkaongelmaan on mahdollista 16yta&
vain viiden vapausasteen ongelmille ja kuuden vapausasteen erityistapauksil-
le, minké takia usein kiyténnossé robottikddet rakennetaan néita rajoituksia
noudattaen.|3]

3 Mallin ominaisuudet

3.1 Koordinaatiston valinta

Silla, kaytetadnko liikeradan toistamisessa kolmiulotteista koordinaatistoa
vai robottikdden omia nivelten asentoja, voi olla merkitysta suorituksen kan-
nalta. Reaalikoordinaatistossa liikkeet ovat useimmin sileitd. Nivelmaailmas-
sa liikkeet sen sijaan ovat tavallisesti derivaataltaan epajatkuvia, silld nivel
kiddntyy tavallisesti vain kahteen suuntaan ja kesken liikkeen yksittdinen ni-
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Kuva 1: Télla robottikddelld on viisi vapausastetta. Pihtien paikka voidaan
ilmoittaa kolmen paikkakoordinaatin ja kolmen suuntauskoordinaatin avulla
tai vaihtoehtoisesti eri nivelten kulmien avulla.

vel voi vaihtaa litkesuuntaansa péainvastaiseksi. Nivelavaruudessa operoidessa
pitaa siis pitaa huolta, etta valittu malli pystyy kéasitteleméan nopeat suun-
nanvaihdokset. Toisaalta reaalikoordinaatistossa on mahdollista kdyda niin,
ettd kun laskettu tavoitepiste eroaa esimerkkipisteesté tarpeeksi esimerkiksi
laskentaepétarkkuuksien takia, paadytdan hyvinkin erilaisiin nivelten asen-
toihin. Tamé& voi aiheuttaa muun muassa torméaysvaaran tai yrityksen teh-
dé mahdottomia liikkeitd. Kuvassa 2 on esitetty, kuinka sama piste voidaan
saavuttaa usealla eri tavalla.

3.2 Ajan huomioiminen

Malli voi ottaa huomioon ajan kulumisen liikkeessé. Toisaalta malli voi perus-
tua pelkéstddan paikka- ja nopeusvektoreihin. Aika voidaan ottaa huomioon
my6s valillisesti vaihemuuttujan avulla. Vaihe voi riippua suoraan pelkés-
taan ajasta, mutta se voi ottaa huomioon myo6s paikka- ja nopeusvektorit.
Ajan huomioiminen mahdollistaa sellaiset toiminnot kuten ajan keinotekoi-
sen nopeuttamisen tai hidastamisen, mutta mycs myos samojen paikka- ja
nopeuskoordinaattien lapikdymisen useaan kertaan eri tavoilla.



Kuva 2: Punaisella tdhtaimelld osoitettu maalipiste voidaan saavuttaa kah-
della erilaisella nivelten asennoilla.

3.3 Stabiilisuus

Usein liikkeelle maaritelldéan niin sanottu maalipiste, johon toteutettavan liik-
keen on tarkoitus padttya. Stabiilisuus tarkoittaa sita, ettd mahdollisista hai-
ridistd huolimatta lopulta paddytdan joka tapauksessa maalipisteeseen. Sta-
biilisuus voi olla lokaalia tai globaalia. Stabiilisuus on selvéstikin toivottava
ominaisuus mallissa. Vaihtelevan aloituspisteen lisdksi taytyy huomioida hai-
riot kesken liikkeen suorittamisen. Robottikési voi mahdollisesti siirtya ulkoi-
sen tai sisdisen héirion takia paikaltaan tai sen nopeus voi vaihdella tavoitel-
lusta. Pienet hairiot ovat luonnollisia jo liukulukulaskennan ja fyysisen ko-
koonpanon epétarkkuuden takia. Teollisuusroboteille onkin méaritelty stan-
dardissa ISO 9283:1998 toistettavuus, joka tarkoittaa paikan eroavaisuutta
toistojen paikan keskiarvosta. Toistettavuus kertoo siis kdytdnnossé, kuinka
suuria virheité robotin liikkeille on odotettavissa.|6]

3.4 Laskennan kompleksisuus

Laskenta voidaan suorittaa kahdella eri tavalla. Robotissa reaaliajassa tapah-
tuvalle laskennalle kompleksisuudella on vilid. Toisessa tapauksessa lasken-
ta voidaan suorittaa erikseen ennen kuin robotin on aika suorittaa liikkeita.
Talloin laskennan vaativuudelle ei ole yhta tiukkoja rajoituksia. Tavallisesti



voidaan ajatella, ettéd laskenta voidaan suorittaa rauhassa, ellei robotin pidé
toistaa reaaliajassa jotakin esimerkkié.

4 Dynaamiset alkeisliikkeet (DMP)

4.1 Malli

Eras malli liikeratojen toistamiseen on dynaamisten alkeisliikkeiden malli
(Dynamical Movement Primitives, DMP). Mallia ovat kehittineet etenkin
Stefan Schaal ja Auke Jan Ijspeert.[5] Malli, jota kisittelen téssé on Sylvain
Calinonin versio mallista.[2] Kutsutaan sitd nimelld DMP-C.

DMP-C perustuu siihen, ettd tavoiteltava liikerata jaetaan ennalta valitta-
vaan maardaan attraktoreita. Namé attraktorit jaetaan tavallisesti tasaisin
aikavélein, niin ettd yksi on heti alussa ja yksi lopussa. Kun aika etenee eri
attraktorit vetédvat liikettd puoleensa toisen asteen dynamiikan mukaisesti.
Néin passtaan asteittain alusta loppuun. Lisdamaélld attraktoreiden magraa
jarjestelmé saadaan mielivaltaisen tarkaksi. Mallin formaali méarittely esi-
telladn seuraavasti.|2|

N

B =Y hi(t)[kpi(p; — x) — kvi] (1)

i=1

Kiihtyvyys kullakin ajanhetkelld kullekin koordinaatille lasketaan kaavan (1)
avulla. Kdytdnnossé kaava on painotettu summa harmonisten oskillaattorei-
den vaikutuksista. Oskillaattoreiden keskipisteet eli attraktorit ovat p; ja ne
maarataan esimerkkiaineiston perusteella yksinkertaisimmillaan pienimmén
nelidsumman menetelmallé. 2]

Kertoimet kv ja kp; ovat kullekin attraktorille ominaiset vakiot, joista kv va-
litaan siten, ettd jousi on kriittisesti vaimentunut. kp; voi vaihdella attrakto-
rista toiseen, jos halutaan ottaa huomioon aineiston varianssi useamman esi-
merkin tapauksessa. Téssa tyossa kasitellddn yksinkertaisuuden vuoksi vain
tapausta, jossa molemmat kertoimet ovat vakioita.|2]

Painokertoimet h;(¢) normalisoidaan yhteen ja ne mééritelldén normaalija-



kauman avulla
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Normaalijakaumien odotusarvot on jaettu tasavilein aika-avaruuteen. Va-
rianssiparametrit magritelladn kiéédnteisesti attraktorien méaardaan verrannol-
lisena. Tavallisesti voidaan asettaa esimerkiksi niin, etta jakaumat ovat yhden

keskihajonnan padssé toisistaan.|2]
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Kuva 3: Vasemmalla ylhaalla: esimerkkireitti harmaalla ja toteutettu reitti
mustalla seké attraktorien paikat x-y-koordinaatistossa. Oikealla ylhaalla:
attraktorien voimakkuudet ajan funktiona. Alhaalla: attraktorien paikat x-

ja y-koordinaatistoissa.

Kuvassa 3 on esitetty esimerkin avulla, kuinka DMP-C kiytdnndssa toimii.
Kuvan vasemmassa ylakulmassa on esitetty malliliikerata harmaalla viivalla
ja sen lopullinen toteutus mustalla viivalla. Laskennassa on kiytetty péaa-
tepisteiden lisdksi yhteensd kuutta attraktoria. Liike alkaa liikkeen oikeas-
ta yldkulmasta ja paittyy vasempaan alakulmaan. Attraktorien voimakkuu-
det muuttuvat ajan funktiona. Kuvan alarivilla on vield esitetty attraktorien
keskipisteet kussakin koordinaatissa. Tamaé sisaltad saman informaation kuin

liikeratakartan soikiomaiset attraktorit.



4.2 DMP-C:n ominaisuudet
4.2.1 Aika

DMP-C tiedostaa ajan. Aika toteutetaan tavallisesti vaiheena. Mallissa on
vaiheelle s aikariippuvuus

t= ) (3)

missd « on jokin vakio. Aikaa voidaan siten hallita tdmé&n vaiheen kautta.
Periaatteessa tekodly voisi tunnistaa tilanteen, jossa vaihe pitdd pysayttaa
esimerkiksi sen takia, etté reitille on tullut este. Vaihe pyséytettaisiin jolloin
litkerata pysahtyisi paélla olevaan attraktoriin. Kun vaiheen annetaan edeté,
liike voisi taas jatkua normaalisti. Mikali vaihetta ei pysédytettéisi, jarjestelmé
pyrkisi jatkamaan liiketté ja esimerkiksi kuvan 3 tapauksessa S-kuvion alempi
lenkki saattaisi jaada véliin, kun vaihe ohittaisi ndméa attraktorit robotin
ollessa jumissa.

Vaihe voidaan my6s muokata sykliseksi.[2] TAmé voidaan toteuttaa esimer-
kiksi modulaariaritmetiikalla vai syklisen funktion avulla. Syklisella vaiheella
voidaan taas toteuttaa syklisia liikkeitd kuten rummutusta tai raajojen liik-
keita kévelyssa.

4.2.2 Stabiilisuus

DMP-C on globaalisti stabiili. Tamén nékee siitéd, ettd viimeinen attraktori
dominoi aina lopussa samalla kun muut kuihtuvat pois. Téten jérjestelmé
tuntee kiihtyvyyttd lopussa vain toistettavan liikeradan viimeistd pistetté
kohti. Téma takaa konvergoinnin maalipisteeseen. Mikéli suorituksessa kéay-
tetddn jonkinlaista heurestiikkaa vaiheen paéttelemiseen suoraan ajan kaut-
ta méaarittelemisen sijasta, voi kiyda niin, ettei vaihe etene loppuun saakka.
Normaalisti voidaan kuitenkin olettaa vaiheen etenevan loppuun saakka.

4.2.3 Ulottuvuudet

DMP-C:ssé ulottuvuudet ovat riippumattomia. Silla, kiytetaénko reaalikoor-
dinaatistoa vai nivelkoordinaatistoa, ei ole véilid mallin kannalta. Nivelkoordi-
naatistossa ulottuvuuksia olisi enemman, mutta samalla laskenta tarkentuisi,
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Kuva 4: Vasemmalla: laskenta-aika datapisteiden funktiona. Oikealla:
laskenta-aika attraktorien funktiona. Molemmat ovat kiytdnnossé lineaari-
sia riippuvuuksia kiytetylla alueella.

jos muut tekijat pysyisivit samoina. Kéytdnnossa kummankaan koordinaa-
tiston valinnan ei pitéisi aiheuttaa hankaluuksia.

4.2.4 Laskennallinen kompleksisuus

DMP-C:n laskennallinen kompleksisuus on suunnilleen O(nmp), missi n on
datapisteiden, m attraktorien ja p ulottuvuuksien maara. Tamé tulee siité,
kun lasketaan jokaiselle toiston datapisteelle kiihtyvyys ja kiihtyvyyden las-
kennassa tarvitaan jokaisen attraktorin painokerrointa. Liséksi tdméa kaikki
kiydasan lapi jokaiselle ulottuvuudelle. Kuvassa 4 on esitetty laskenta-ajan
riippuvuus datapisteiden maarasta ja attraktorien méarasta riippuvana ko-
keellisesti.

4.2.5 Varianssi

DMP-C ottaa oletuksena huomioon usean esimerkkiliikeradan vaihtelut eri
kohdissa liikerataa. Téta tietoa voidaan kiyttda hyvaksi, jos liikeradan tois-
toon halutaan lisdtd potentiaaliin perustuva vaistojarjestelmé. Toinen jar-
jestelmé voi havainnoida uhkia liikkelle ja muodostaa jonkinlaisen luotaan
tyontéavan potentiaalin ndiden ympérille. Mitd enemmén vaihtelua tietyssé
osassa esimerkkiliikerataa on ollut, sitd helpommin uhkalle annetaan periksi
liikkeradan noudattamisen sijasta.



4.3 Vertailu alkuperaiseen DMP:hen

DMP-C eroaa Stefan Schaalin ja Auke Jan Ijspeertin DMP:std (DMP-S)
osittain. DMP-S on mééritelty myos toisen asteen jousisysteeminé|5|

Ty:o‘z(ﬁz(.g_y)_y)—i_f‘ (4)

Téassé g on maalipiste ja y paikkakoordinaatti. a, ja (8, ovat jousisysteemin
vakioita, jotka valitaan niin, ettd systeemi on kriittinen. 7 on aikavakio, joka
voidaan kdytédnnossd piilottaa muihin vakioihin. Funktiota f(z) kutsutaan
pakotustermiksi ja se méaaritellaan|5|

f(x) ST (9 — o), (5)

N:11a gaussisella kantafunktiolla

W) = expl—5 o (x — ). ()

Kaavassa (6) o; ja ¢; ovat vakioita, jotka madrittelevit kantafunktioiden le-
veyden ja paikan. Kaavassa (5) yo on alkuperéinen tila hetkelld ¢ = 0.[5]

DMP-S eroaa DMP-C:sté etenkin maalipisteen huomioimisen suhteen. DMP-
S:ssé maalipiste 10ytyy pakotustermisté. Termié kerrotaan maalinpisteen ja
aloituspisteen erotuksella. Siten aloituspiste itsessdédn vaikuttaa rataan koko
liikkeradan ajan.[5] TAmé& ominaisuus aiheuttaa erdénlaisen skaalauksen mal-
lissa. Esimerkiksi yksinkertaista siniaaltoa toistettaessa aloituspisteen siir-
tdminen pisteestd y = 1 pisteeseen y = 2 kaksinkertaistaisi suoraan toiston
amplitudin. Téssd muodossa malli séilyttéisi siten litkeradan muodon parem-
min kuin paikkakoordinaatit.



10

5 Dynaamisten jarjestelmien stabiili estimaat-
tori (SEDS)

5.1 Malli

Dynaamisten jirjestelmien stabiili estimaattori (Stable Estimator of Dyna-
mical Systems, SEDS)|[8| on metodi, jossa litke mallinnetaan epélineaarisena

aikainvarianttina dynaamisena systeemind. Mallin esittelivit ensimmaisena
S. Mohammad Khansari-Zadeh ja Aude Billard.

Malli maéritelldan tilamuuttujan £ avulla differentiaaliyhtdlona

K

E=rien=> Zﬂ@f;ﬂ%) (S5 (56 M+ sk = SE(SD b (1)

Tama voidaan merkitd muotoon

=

£=f(£,0)=> M)A+ M) (8)

k=1

Téssa :1la on merkitty opittavia parametreja

0= {x'. 7% pt.pf 2.2k} 9)

Kuvassa 5 on esitetty optimoitavien parametrien konkreettista merkitysta.
h* kertoo kiytinnossd, miten voimakkaasti kukin osa on kullakin hetkells
voimassa. (AF¢ + bF) edustaa kukin gaussista funktiota.

Lyapunovin stabiilisuusteoreeman avulla saadaan systeemiin kaksi rajoituseh-
toa

(a) 1t = SE(SH ™ (uf - €°) (10)
ja

(b) B (Z6) ™+ (251 (Zg)" <0, (11)
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Kuva 5: Ylhéélld: havaintokuva painokerrointen h* havainnollistamiseksi. Al-
haalla: havaintokuva muiden osien havainnollistamiseksi.

Némaé ehdot takaavat sen, ettd tehtdvin ratkaisu on globaalisti stabiili.[§]

Téata systeemia voidaan optimoida esimerkiksi pienimmén neliGsumman me-
netelmélld (SEDS-MSE) tai suurimman uskottavuuden menetelmalld (SEDS-
Likelihood). Malli mahdollistaa suoraan mielivaltaisen monen esimerkkiliike-
radan kiyton. Mikéli mallia optimoidaan suurimman uskottavuuden mene-
telmalla, optimointitehtéviksi saadaan

N T

min 7(60) =~ 37 3" log P 116 (12)

n=1 t=0

rajoitusehdoilla

'u’g = D5 (38) " (g — €)

SE(EH T+ (55T <0

Yk w0 Vkel.K (13)
0<nh<1

\Zszl 7Tk - 1
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5.2 SEDSin ominaisuudet
5.2.1 Aika ja ulottuvuudet

SEDS tuottaa ratkaisuna aikainvariantin tuloksen. Tamén liséksi ratkaisu on
paikka-avaruudessa. Tamaé johtaa siihen, ettéd ratkaisuna saatava liikerata ei
voi kilydd samassa pisteessé kahdesti. Siten SEDS ei voi tuottaa esimerkiksi
kahdeksikon muotoista rataa. Tdmé on mahdollista ohittaa muuttamalla sys-
teemi toisen kertaluvun differentiaaliyhtéloksi, joka voidaan edelleen muuttaa
ensimmaéisen kertaluvun differentiaaliyhtéloryhméksi.[8] Toinen vaihtoehto
olisi lisété systeemin vaihemuuttuja.[§]

Menetelmé on rakenteeltaan moniulotteinen. Yhdessa ulottuvuudessa SEDS
ei ole mielekés vaihtoehto, silld se sallii lilkkeen vain yhteen suuntaan ja vain
monotonisten funktioiden toistaminen on mahdollista. Siksi SEDSié kayttées-
sa kaikki ulottuvuudet kannattaakin késitelld samalla, jotta tédsta rajoitteesta
paasee eroon.

5.2.2 Optimointi

SEDS ei itsessédn ota kantaa siihen, milld algoritmilla itse optimointi toteu-
tetaan. Optimointialgoritmin valinta voi vaikuttaa lopputulokseen ja eri al-
goritmeilla on hyvét ja huonot puolensa. Billard ja Khansari-Zadeh kayttivit
itse toistetun nelidllisen ohjelmoinnin menetelméé julkaisussaan. 8|

Optimoidessa taytyy ensin valita haluttu méaréa gaussisia funktioita. Tekijat
kiyttivit bayesilaista informaatiokriteerid tata varten (Bayesian Information
Criterion, BIC).[8] Téll4 tavoin myds tdmé vaihe voidaan automatisoida.

Kéytettdessd SEDSin suurimman uskottavuuden menetelméé estimoitavien
parametrien médri on K (1 + 3d + 1d?), missid K on gaussisten funktioiden
médird ja priorit 7% on kokoa 1, odotusarvot u* kokoa 2d ja kovarianssit ¥
kokoa d(2d+1). Laskemalla odotusarvot rajoitusehdoista saatavilla lausek-
keilla muiden parametrien arvoista estimoitavien parametrien maéraksi saa-
daan véhennettyd K (1 + 2d(d + 1)).

SEDSin pienimmén neliosumman menetelméssé parametrien maara saadaan
vield alhaisemmaksi arvoon K(1 + 2d(d +1)).[8]

Koska optimoitavana on yleinen epélineaarinen optimointitehtava, ei ole ta-
keita siitd ettd loydettéava ratkaisu on globaali optimi. Ratkaisumenetelméat
ovat tavallisesti hyvin herkkié parametrien alkuarvoille. Kédytdnnon seuraus
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Kuva 6: Optimointitehtdvan ratkaisu juuttuu usein paikalliseen optimiin.
Téssé stabiilisuusehdot aiheuttivat ongelmia globaalin optimin 16ytamisessa.
Vihreélld on esitetty tavoiteltava liikerata ja siniselld mallin antama liikerata.
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Streamlines of the madel
T

Kuva 7: Kaikista mahdollisista aloituspisteistd paadytédan maaliin.

tastd on se, ettd aina SEDS ei kykene 16ytdméén ratkaisua, joka seuraisi an-
nettua liikerataa halutun tarkasti. Kuvassa 6 on esitetty yksi ratkaisu, kun
annettu liikerata on ollut kulmikas. Alkuvaiheessa liikerataa ratkaisu nou-
dattaa haluttua reittid, mutta loppupédssé ratkaisu oikaisee maalipisteeseen
kulkematta kunnolla rataa lapi.

5.2.3 Stabiilisuus

SEDS eroaa muista gaussisista sekamalleista (Gaussian Mixture Models) juu-
ri siind, ettd se takaa globaalin stabiilisuuden. Muista menetelmista Gaus-
sian Process Regression, Locally Weighted Projection Regression ja Gaussian
Mixture Regression eivit takaa edes lokaalia stabiilisuutta. Binary Merging
takaa ainakin lokaalin asymptoottisen stabiilisuuden. Kuvassa 7 on esitetty
mallilla saatu tulos, kun esimerkkind on kolme C-kirjaimen muotoista liike-
rataa maalipisteeseen. Nahdéaan, ettd vaikka aloituspiste olisi mielivaltainen,
paadytaan silti aina lopulta maalipisteeseen.
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6 Rekurrentti neuroverkko parametriharhalla
(RNNPB)

6.1 Malli

Rekurrentti neuroverkko parametriharhalla (Recurrent Neural Network with
Parametric Bias, RNNPB) on neuroverkkoihin perustuva ldhtokohta liikera-
tojen mallintamiseen. RNNPB on arkkitehtuuriltaan samanlainen kuin ta-
vallinen Jordan-tyyppinen toistuva neuroverkko. RNNPB:ssé on lisdtty vain
parametriharhasolmuja syotekerrokseen.

Kuvassa 8 on esitetty kuvaus menetelmén arkkitehtuurista (a) oppimisvai-
heesta ja (b) vuorovaikutusvaiheessa. Oppimisvaiheessa RNNPB harjoitetaan
kiytadnnossa harjoitusaineistolla eli esimerkki liikeradoilla. Vuorovaikutusvai-
heessa menetelmé tuottaa ulostuloja sisdédntulojen perusteella. Tavallisille
sisadn- ja ulostulosolmuille suoritetaan kahdenlaisia operaatioita: suljetun sil-
mukan ja avoimen silmukan operaatioita. Lisdksi arkkitehtuuriin kuuluu kon-
tekstisolmuja ¢; seké sisddantulo etta ulostulokerroksissa. Menetelmén nimi tu-
lee parametriharhasolmuista p;, joita on sisdéntulokerroksessa. Naita solmuja
voi manipuloida monipuolisten kiytosten opettamiseksi ja tuottamiseksi.[7]

Harjoitusaineiston ominaisuudet hankitaan backpropagation through time -
algoritmilla (BPTT). Samalla jokaisen yksittdisen aikasarjan tietyt ominai-
suudet koodataan harhaparametrien arvoihin. Oppimis- ja tunnistusproses-
seissa harhaparametriarvot lasketaan iteratiivisesti kiyttamalld virhettd en-
nustetun ja tavoitellun sarjan valilla.[7]

6.2 RNNPB:n ominaisuudet
6.2.1 Useat liitkeradat

RNNPB mahdollistaa siirtymisen usean eri liikkeen vililla. Tamé luo se-
k& mahdollisuuksia ettd ongelmia. Toisaalta menetelméd voidaan ulkoisesti
ohjata liikeradalta toiselle. Toisaalta taas malli voi ajautua ongelmiin liian
monen erilaisen liikkeen kanssa. Menetelmé voi harhautua liikkeelta toiselle
tahattomasti. Se, miten liikkeesté toiseen voi vaihtaa, riippuu liikkeen pysy-
vyydesta. Myos silld, missd vaiheessa liiketté ollaan, on vélia.|7]

Muita useiden liikkeiden oppimiseen kiytettédvid metodeja ovat MOSAIC
(Wolpert ja Kawato, 1998) ja
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Kuva 8: Kuvaus RNNPB:n (a) oppimis- ja (b) vuorovaikutusvaiheesta.
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6.2.2 Yleistaminen

RNNPB on neuroverkkomalli, minka takia sille ei ole johdettu tiettyja teo-
reettisia ominaisuuksia. Simulaatioilla on voitu osoittaa, ettdi RNNPB on
melko stabiili héiriditd vastaan liikkeen valinnassa. Malli kykenee yleista-
méan siniaaltoisen liikkeen taajuuden, mutta amplitudin yleistdmisessa teho
on rajattu.|4]

6.2.3 Muut neuroverkot

Tavallisesti viiveneuroverkkoratkaisut (Time Delay Neuro Networks) vaativat
hyvin suuren maérian neuroneita ja oppimisaikaa, silld ne on tarkoitettu sai-
lyttaméan kaikki aikasarja-aineisto syotekerroksessa. RNNPB kayttaa itsejar-
jestaytyvad kontekstuaalista informaatiota kontekstikerroksessa, joten se pys-
tyi selviytyméén erdéssi testissid objektin lyomisesta vain 42 neuronilla.[10]

Tavallisesti neuroverkkoratkaisuilla on ongelmia pitkdn aikavélin riippuvuk-
sia vaativissa mallinnuksissa, koska virhesignaaleja ei pystyta tehokkaasti vé-
littdmaan BPTT-algoritmilla mahdollisten epélineaarisuuksien takia. Erés
mahdollinen ratkaisu ongelmaan on Long Short-Term Memory (LSTM) -
metodi. Muita samantyyppisié vaihtoehtoja ovat kaikutilaverkot (Echo sta-
te networks) ja nestetilakoneet (liquid state machines). On osoitettu, etté
kaikutilaverkko pystyy onnistuneesti oppimaan Mackeyn-Glassin kaoottisen
aikasarjan, mikd on tunnettu perustesti aikasarjan ennustamisessa.|9|

On esitetty malleja, joissa yhdistetddn useita eri kerroksia neuroverkkomal-
leja yhteen. Tavallisesti ongelmana on skaalautuessa ilmeentyvit stabiili-
suusongelmat. Niin sanottu RNN experts -malli pyrkii vélttamé&an taman.
Yksinkertaistettuna mallissa jokaisellla tasolla eri neuroverkot kilpailevat toi-
siaan vastaan ja korkeimmilla tasoilla aikavakiot ovat pienemmét. Alemmat
tasot oppivat yksittaisia liikkeitd, kun korkeammat tasot voivat oppia néi-
den primitiivisten osien abstraktioita. Myos muita samankaltaisia malleja on.
Neuroverkkoratkaisun skaalautumisominaisuudet méarittelevéit pitkalti mal-
lin kelpoisuuden skaalautuviin ongelmiin. On toivottavaa, ettd oppimispro-
sessi on stabiili suurellakin méérallda moduuleita.|9]
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7 Vaihtoehtoisia malleja

Nayttamalla opettamisen mallit voidaan jakaa kahteen lajiin: insinodrilah-
toisiin ja biologialdhtdisiin malleihin. Insindorilahtoisissa tavoissa keskity-
taan kehittdmaan algoritmeja, jotka ovat yleisid esityksia taidoista. Namé
voidaan edelleen jakaa symboliseen koodaukseen ja liikeradan koodaukseen.
Biologiset mallit hakevat inspiraationsa eldinten tavasta imitoida asioita.|1]

Téssé tyossa esitetyistd malleista DMP-C ja SEDS voidaan laskea insinoori-
lahtoisiksi malleiksi. RNNPB on neuroverkkomallina sen sijaan erdassé mie-
lessé biologiseen perustaan nojaava.|1]

Alexander Skoglund, Boyko Iliev ja Rainer Palm ovat kiyttédneet sumeaa mal-
lintamista seké liikkeiden havaitsemiseen ettéd niiden toteuttamiseen. Tamé
onnistui siitd huolimatta, ettd mallina olevan ihmisen ja liikkeen toistavan
robotin anatomiassa oli eroavaisuuksia.|[11]

Monet mallit yhdistavit nykyéadan peilisolut ja robottien ohjauksen. Mallit
auttavat seké selittdmadn peilisoluja eldimisséd ettd kayttadméadan tata tietoa
ohjauksessa. Myos evoluutiota on yhdistetty tdhén.|1]

Useat eri tutkijat ovat kayttaneet Markovin piilomalleja tilastopohjaisen op-
pimisen perusteena. Markovin piilomallit ovat sopivan robusteja aika- ja paik-
kavarianteille signaaleille.[1]

8 Vertailu

Esitellyt kolme mallia ovat hyvin erilaiset. DMP-C perustuu toisen asteen dy-
namiikkaan, SEDS epélineaariseen optimointiin ja RNNPB neuroverkkoihin.
Tésté syystd myos mallien ominaisuudet eroavat paljon.

Malleista DMP-C ja SEDS ovat globaalisti stabiileja. RNNPB sen sijaan ei
pysty takaamaan stabiilisuutta. Stabiilisuus ei valttdmatta ole tarpeellista,
jos tarkoituksena on toistaa vain liikeradan yleisid ominaisuuksia, kuten muo-
toja. Esimerkiksi allekirjoituksen toistamisessa loppupisteellé ei ole niinkdan
vélia: merkitsevid ovat kirjainten kaaret. Sen sijaan vaikkapa objektin siirté-
misesséa paikasta toiseen loppupaikka on merkittivisséa asemassa ja téllaisessa
tehtavissa on hyva kiyttaa stabiilia mallia.

Malleista vain DMP-C on aikariippuvainen. Aikariippuvuus mahdollistaa mo-
nia toimintatapoja virhetilanteissa. Kuvassa 9 on esitetty kolme vaihtoehtois-
ta tapaa kasitella hetkittdinen jumiutuminen DMP-C:n avulla. Y1lh&alla esi-
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tetyt tavat ovat tavallisimpia. Vasemmalla ylhaélla mallin sisdinen kello jat-
kaa etenemistéd jumiutumisen aikanakin, jolloin liikerata ohittaa télla valilla
olleet liikeradan osat. Oikealla ylh&illa mallin sisdinen kello pyséhtyy. Tal-
16in kaikki liikeradan osat kiydasan tavallisesti lapi, mutta liike on ajallisesti
jéljessa esimerkkiliikettd. Alhaalla kiytetdan kahta sisiisté kelloa. Toinen kel-
loista pysaytetdan ja toista ei. Padstdesséd jatkamaan taas liiketta oikea aika
otetaan asteittain kiinni, jolloin kaikki halutut liikkeen osat kdydéan lépi ja
lopulta liike on myos ajallisesti oikeassa. Tama vaihtoehto vaatii muun muas-
sa virhetilanteen tunnistamista seké valintaa siitd, kuinka nopeasti aikaero
halutaan kuroa kiinni, joten tilanne monimutkaistuu.

Malleista DMP-C on laskennallisesti kevyin. Se ei tarvitse raskaita epélineaa-
risten tehtévien ratkaisumenetelmié toisin kuin SEDS. Neuroverkkoratkaisu-
na myos RNNPB vaatii melko raskaita laskutoimituksia. Jos laskenta toteu-
tetaan niin sanotusti offline-laskentana muualla kuin robotissa itsessaan, talla
ei valttamatta ole vilid. Kaikissa metodeissa laskentaa voidaan aina keventaé
vahentamalla aineistoa. Datapisteistd voidaan jattaa esimerkiksi merkittava
osa kiayttamatta tilanteesta riippuen.

1EL ' | ' ' d : ' | ' ' d
o 2000 4000 B000 8000 10000 o 2000 4000 BO0D 8000 10000
t t

15 T T T T T T T T

o 200 400 600 800 1000 1200 1400 1600 1800 2000

Kuva 9: Vasemmalla ylhaélla: edetdan kuin aika olisi jatkanut etenemistaan
normaalisti. Oikealla ylh&alla: pysaytetddn aika. Alhaalla: otetaan rytmi pa-
loittain kiinni.
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9 Yhteenveto

Tyossa esiteltiin ensiksi yleisia periaatteita liikeratojen toistamisesta robotin
avulla. Robottien asettamia rajoituksia ja merkitystd malleille kdytiin 1api.

Erilaisista liikeratojen toistamisen malleista esiteltiin kolme: DMP-C, SEDS
ja RNNPB. Néiden ominaisuudet esiteltiin ja niiden merkitystd pohdittiin.
Myo6s vaihtoehtoisia malleja kdytiin lyhyesti lapi. Valituista kolmesta mallis-
ta DMP-C on luultavasti yksinkertaisin ja mielekkéin toteuttaa ensimmaise-
na kokeiluna. Malli toimii mielivaltaisilla liikeradoilla ja mahdollistaa myés
erilaiset laajennukset ajan kasittelyn suhteen.

Malleja ajatellessa on hyvé aina kokeilla niitd myos kaytannossa. Téssa kay-
tanto tarkoittaisi simulaatioiden lisdksi myos implementoimista robottiin ja
kiytdnnon kokeita liikeratojen toistamisessa. Téssa tyOssa rajoituttiin vain
mallien tarkasteluun matemaattisina olioina. Malleja on kokeiltu myos em-
piirisesti niiden kehittéjien toimesta.
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