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1 Introduction

Efficiency analysis examines the efficiency of decision-making units (DMUs) by using their
observed input and output values. Typically, a DMU is an individual unit consuming some
inputs and producing some outputs. For instance, DMUs can be public departments, such
as hospitals (e.g., Hynninen et al. 2011) and universities, or private companies. A DMU is
considered efficient if greater outputs cannot be produced with fewer inputs. Typical inputs
are monetary and human resources, whereas outputs can be, for example, treated patients by

hospitals or scientific publications by universities.

Data envelopment analysis (DEA; e.g., Cooper et al. 2000) is a non-parametric method for
efficiency analysis. DEA includes different kinds of model types, which determine the set of
possible input-output combinations. These combinations, i.e, portfolios, form the production
possibility set. All efficient combinations are in the boundary of the production possibility set
called the efficient frontier. The most central tools offered by DEA are efficiency scores that
measure how close the DMU is to the efficient frontier. The efficiency scores can be calculated
by using linear programming (LP) or integer linear programming (ILP), and thus they offer a

useful method for comparing the efficiency of DMUs.

The oldest and most typical DEA models are CCR. (for Charnes, Cooper and Rhodes; 1978)
and BCC (for Banker, Charnes and Cooper; 1984). Different models score the DM Us differently.
For example, the BCC model takes the scale of different input and output values into account,
unlike CCR. That is, the CCR model has constant returns to scale, whereas the BCC model
has variable returns to scale. In practise, this usually means that the largest and sometimes
the smallest DMUs have significantly better BCC efficiency scores than CCR scores.

In addition to standard DEA, the efficiency of DMUs can be compared by using ratio-based
efficiency analysis (REA; e.g., Salo and Punkka 2011), which also includes the standard CCR-
DEA efficiency score. REA offers methods, for example, for calculating ranking intervals for
individual DMUs and dominance relations among them. These usually characterize efficiencies

better than the efficiency scores.

In this study, we extend Green and Cook’s (2004) DEA theory for more general production
possibility sets. Especially, we consider DMU combinations in production possibility sets whose
shape somehow reflects possible portfolios. We introduce one specified production possibility set
for continuous portfolios and one for discrete portfolios and formulate the corresponding DEA

models. In addition, we formulate the linear programming dual in the general continuous case,



and show how preference information about relative values of different inputs and outputs can
be added to the model. Furthermore, we develop theory for generalizing the idea of dominance

in ratio-based efficiency analysis for portfolio production possibility sets.

2 Generalization of the input-oriented DEA

2.1 Input-oriented DEA

Let the set of DMUs be indexed by j € J = {1,...,m}, each consuming s different inputs and
producing n different outputs. The 7th input value of DMU j is denoted by x{ and the kth
output value by yi. The input and output values of DMU j form vectors 27 € R% and ¢/ € R}.
Here R} = {# € R®* | « > 0,2 # 0}, where > holds componentwise. The vectors of input
and output values form input and output matrices denoted by X := [z',...,2™] € RY™ and

Y = [y}, ...,y € RT™, respectively.

DMUs are compared to (linear) combinations of DMUs’ input and output values. The
combinations that are included in the comparison, is determined by the type of the DEA
model. The model type is denoted by f and the set of feasible DMU combination weights by
A,

Definition 1. The set of feasible DMU weights for DEA model type f is
A= {NeF7 | AN <af},

where T is either R or Z, and AY € R™™ and af € R" are a matriz and a vector determining

r linear constraints such that ¢/ € A for all j € J, where

e/ =10,...,0,1,0,...,0/" € R™.

j—1

The set A/ determines which consumption-production combinations can be achieved. This
attainable set is called the production possibility set. Different DEA models make different
assumptions of the production possibility set through the set A7.

Definition 2. The production possibility set for DEA model type f is

TH = {(z,y) € RE X R? | 2 > X\, y <Y for some A € AT},



Inequalities are used in Definition 2 instead of equalities in order to make also clearly
inefficient consumption—production combinations possible. When we want to highlight the sort
of the set F in Definition 1, we call the set A/ connected if F = R and discrete if F = Z. The
assumptions made in the definition of A/ ensure that calculations remain (I)LP problems and
(27,9y7) € T7 for all j € J. The most typical model types are CCR (for Charnes, Cooper and
Rhodes) and BCC (for Banker, Charnes and Cooper), where the set A/ is defined as follows:

AR = X eRT},

AP = Aeo ]| Y N =1}
j=1

That is, the CCR model includes all non-negative linear combinations of DMUs into the pro-
duction possibility set, whereas the BCC model includes only all convex combinations of DMUs.
The CCR and BCC models are the extremities of DEA models in the connected case, since
ACCR and ABCC are the largest and the smallest connected A/ that are possible by Definition
1.

The production possibility set can be divided into efficient and inefficient points. A point is
considered efficient if none of the inputs and outputs can be improved without worsening some
other input or output. All the efficient points are included in the boundary of the production

possibility set, which is called the efficient frontier. It also contains all ‘weakly efficient’ points.

Definition 3. The efficient frontier of the production possibility set T is
EATY) :={(z,y) e TV | ', y/) € T s.t. 2/ < z,9/ >y}
In DEA the efficiency of a DMU is considered in a relation to the efficient frontier. In an

input-oriented DEA model, the efficiency score is calculated by examining how much the input

values would have to decrease for the DMU to belong to the efficient frontier.

Definition 4. Input based f-efficiency score of DMU j is

Bl (27 ) = miﬂrg{a | Iz, y) € TV s.t. aa? > a1y <y}
ae

f-efficiency scores can be solved by using linear programming, since combining Definition 2

with Definition 4 gives
ET (a7 ) :mi]g{oz | ax? > X\ i <YAN€ A} (1)
aE
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Clearly, Ef(27,47) < 1, since ¢/ € A/, On the other hand, Ef(x7, 47) > 0 because A/ C
R and z*¥ € RS for all k£ € J. When using (1), the efficiency score can be calculated for
individual DMUs. In addition, we can easily extend it to comprising all combination DMUs in
the production possibility set; The f-efficiency score of any point (z,y) € T/ can be calculated
as the optimal value of the following (I)LP problem:

Ef(x,y) = mi){l «

s.t. zaa — XA >0
YA>y
aeRNeN.

(2)

For all points (x,y) in the efficient frontier, the efficiency score Ef(x,y) is equal to 1. The
optimization problem (2) is often called the envelopment form of the corresponding DEA model
(e.g., Cooper et al. 2000).

In addition to the efficiency score, the solution (a*, A*) to the LP problem (2) includes a
point that is in the efficient frontier. We call this point the reference point. For an inefficient
DMU, the reference point is also a feasible DMU combination that achieves at least the same

output with fewer inputs. Thus, also the reference points are usually interesting to consider.

Definition 5. Let (a*, \*) be the solution to the LP problem (2) for the point (x,y) € T. The

reference point of (x,y) is

Rp(z,y) == (XX, Y \*) € EATY).

Different DEA models treat DMUs with small and large scale differently. This property is
often called the returns to scale of the model (e.g, Cooper et al. 2000). The type of the returns
to scale is determined by the (in)equalities in the definition of the set A/, and it is reflected in
the shape of the efficient frontier. For example, the CCR model has constant returns to scale
because it has no constraints in the definition of A“®. As a consequence, the CCR efficient
frontier is straight in radial directions, and thus the scale of DMUs does not affect the efficiency
scores. The BCC model, instead, has variable returns to scale because of the equality constraint,
and its efficient frontier becomes ‘curved’ around some DMU points. Thus, the BCC model
compares DMU combinations in the same scale, and also the most efficient small-scale and
large-scale DMUs get good efficiency scores. The returns to scale can also be non-increasing or
non-decreasing when defining A/ such that only either inequality < or inequality > holds for
A. In the non-increasing case, the variable scale occurs only in large-scale DMUs, whereas in

the non-decreasing case, only in small-scale DMUs.



In the CCR and BCC cases, it is also typical to deal with another kind of optimization
problem for calculating the efficiency score, called the ratio form. In the ratio form, efficiency
is considered as a quotient, total output divided by total input, which is more intuitive way of
thinking efficiency. In the ratio form, the inputs and outputs are weighted instead of the DMUs,
and these weights are chosen such that the output—input ratio is maximized. In practise, the
ratio form is the linear programming dual of the envelopment form with a change of variables.
Thus, the efficiency score is the same in the both forms. For instance, the ratio forms of the
CCR and BCC models (e.g., Cooper et al. 2000) are

UT

max —m—

and

UT?J — Up
max ——=——
v, U, u0 VT

uTy — g
T k. S 17
v

v,u > 0,uy €R,

s.t. VkeJ (4)

respectively.

2.2 Portfolio production possibility sets

In the portfolio framework, DMUs are considered as ‘project proposals’ that can be combined
to form a portfolio. Usually, this portfolio forming has different kinds of constraints for the
chosen projects, for example budget constraints. These constraints should be reflected in the
production possibility set such that the set of feasible DMU weights A/ includes exactly all
suitable combinations of DMUs. Thus, the CCR and BCC models are not the most convenient

DEA models for measuring the efficiencies of DMUs in relation to portfolios.

Typically, a portfolio can include several individual DMUs as a whole, but only a limited
number of each DMU. For example, Green and Cook (2004) consider production possibility
sets for AX := {\ € [0,1)™} (‘K’ for Koopmans (1977)) and AF°" := {)\ € {0,1}™} (‘FCH’ for

Free Coordination Hull). They also mention more general production possibility sets, where a
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fixed number of ‘copies’ of each DMU are allowed and total number of DMUs in the portfolio
is limited. Two that kinds of sets are considered in this study, ‘CP’ for Continuous Portfolio
and ‘DP’ for Discrete Portfolio:

AP = NERT| D N <b A <¢, Vje T}

j=1

APP = XeZ | Y N <b A <q, Ve T}
j=1
where b > 1 and ¢; > 1 for all j € J to ensure that all individual DMUs belong to the
production possibility set. The sets A“Y and APY satisfy Definition 1, and thus the problem (2)
is a LP problem when f = CP, or an ILP problem when f = DP. Furthermore, Definition 1

also accepts adding constraints for the number of selected DM Us from a specified subset L C J,
ie., ZjGL A < ecp.

CP models always have non-increasing returns to scale, since A is limited only by constraints
with the inequality <. The CP efficiency score of a point (x,y) is always between its CCR and
BCC efficiency scores when (z,y) belongs to the corresponding production possibility sets.
This is since ABC c AP € AR wherefore TB¢C c T c T““R by Definition 2, and thus
EBCC(z,y) > EP(x,y) > E°“R(x,y) by (2). If the constraints in a CP model are not strict,
i.e., the constants b, cq,. .., ¢, are large enough, it does not really differ from the CCR model.
In addition, if b, c1, ..., ¢y, — 00, then TCP — TCCR,

An example of the CP production possibility set is presented in Figure 1. In this simple case,
four DMUs, A (2,3),B(4,4),C (7,6) and D (9,7), consume one input and produce one output.
Each of the DMUs has an upper bound ¢; =1, j = A, B,C, D, and the sum bound of DMUs
is b = 3. The figure includes the CP efficient frontier and composite DMUs obtained from
the individual DMUs by summing their input and output values, respectively. In addition, the
corresponding CCR and BCC efficient frontiers are presented in the figure. The CP, CCR and
BCC production possibility sets consist of the corresponding efficient frontier and the domain
under it. DMUs A, C' and D are BCC efficient, whereas only the DMU A is CP and CCR
efficient. In addition, the composite DMUs A+ B, A+ B+C, A+C+ D and B+ C+ D are
CP efficient.
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Figure 1: CP production possibility set - one input and one output

3 Dual representation

In this section, we formulate the ratio form for a general DEA model. This is done by using
Lagrangean dual formulation instead of the standard LP dual because it can be formulated for
more general DEA model all at once. In the ratio form, inputs and outputs are weighted instead
of DMUs, which offers a different perspective for DEA; The ratio form is not computationally
attractive for solving the efficiencies, but it offers a more intuitive interpretation for efficiency.
It also makes it possible to use preference information about relative values of different inputs

and outputs, and develop ratio-based efficiency analysis in the portfolio framework.



3.1 Ratio form

As in the CCR case, the linear programming duality makes it possible to calculate the f-
efficiency score alternatively as a problem in which the output—input ratio is maximized. In
what follows, we assume that A/ is connected, since the optimum value of the Lagrangean dual

in discrete cases is not necessarily equal to the optimum value of the original LP problem.

Theorem 1. Let Af be a connected set. Then, the optimal value Ef of the minimization
problem (2) is equal to the optimal value of the following mazimization problem:
UT?J — Ug

max
vuuo vl

T
Y\ —
ot DIATI0 g gye (5)
oTXN

v,u > 0,uy € R.

Proof. First, the Lagrangean dual formulation (e.g., Bertsimas and Tsitsiklis 1997) gives
y|)]
A )

=k

are the dual vector, the constraint matrix and the constraint vector in the problem (2), respec-

Ef = max min [oz —l—pT(b — A
p20 a€R eAS

z —X

, A=
0 Y

v
where p =
1

tively. By calculating the matrix products above, we get

. 0 -X
E/ = max min [oz + [ vt T ]( .
v,u>0 aeR NEAS Y 0 Y

N

= max min [a +0—viza+ " XN+ ply —0— uTY)\}
v,1>0 aeR,NEAS

T . T : T T
- 1 - XA = Y]
max [u y+min{(1 - v z)e] + min [y p YAl (6)
If 1 —vTx # 0 in the optimum, then ming,er[(1 — vT2)a] = —oo, which clearly does not

maximize (6). Thus, we get a new equality constraint 7z = 1. The another minimization can
be removed by introducing a new variable jo := minycs [ XA — pTY A]. Because ju is defined

as a minimum value, we get a new inequality constraint: py < v7X\ — uTY X\, YA € AS. After
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these changes we have

BT = max u"y + 1o
V[, 1o

st. vz =1
VIXAN—p"Y N> g, YA e A
v, i Z 07“0 e R.

(7)

Finally, we make a change of variables v = -7, 1 = —— and po = —r2. This scaling makes the

first constraint hold automatically, and thus it can be removed. The change of variables leads

to
T JR—
B = e U0
V,U,UQ vt
site VTXA —ufY A > —ug, VYA e AN (8)

v,u > 0,uy € R.

This is the same as the problem (5), which can be seen by adding u” Y\ and dividing by v7 X\

in both sides of the inequality constraint. O]

In the problem (5) in Theorem 1, we have to assume that the denominators v’z and v7 X\
are nonzero. If these assumptions do not hold, (5) can always be replaced with (8) or (7). The
problem of the form (7) is often called the multiplier form of the DEA model (e.g., Cooper et
al. 2000).

In (5), we are looking for the best feasible weights for inputs and outputs to maximize the
ratio of total output and total input. In addition to input and output weight vectors v and u, the
ratio includes a scalar weight g for shifting the total output. The inequality constraint means
that the shifted output—input ratio is scaled so that it is less or equal to 1 for all input—output
combinations (XA, Y')\), where A € A/,

The problem (5) has infinitely many constraints, but it is sufficient to deal only with the
constraints in which \ is an extreme point of the set A7.

Corollary 1. Let A be connected and bounded. Then, in the inequality constraint of the
problem (5), VA € A can be replaced with VX € ext(AV).

Proof. Assume that the constraint holds for all X' € ext(Af) and let A € A/ \ ext(Af). Then,

A can be represented as a convex combination of some extreme points:

K K
A=)t Meext(N), 64>0, Y h=1 k=1 K
k=1 k=1

11



Because the constraint holds for all extreme points, we have

Ty)\k;_
. TXAkuogl or uTY)\k_UOSUTX)\k, kzl,,K
v

By multiplying the latter inequalities with ¢; and summing them over £ from 1 to K, we get
K K
Z(tkuTY)\k — tkuo) S Z tkUTX)\k
k= k=1

1
K K K
uTYZtk)\k — g Ztk < UTXZtk)\k
k=1 k=1

k=1 —
uWIY A —uy < of X\
T
Y-
YA wp
vt XA
Thus, the inequality constraint also holds for all A € A/ \ ext(A’) resulting that it is sufficient

to assume the constraint only in the extreme points. O]

Corollary 1 reduces the number of constraints in the problem (5) to a finite number when
the set A/ is bounded. For example, |ext(ABCC)| = m and |ext(A“P)| = O(2™). Even if the
number of constraints is finite in the CP case, it increases rapidly when the number of DMUs
increases. Thus, Corollary 1 does not in the general case result in computationally attractive

optimization models.

By Corollary 1, the only difference between the general problem (5) and the BCC problem
(4) is, in which points their constraints hold. Because the constraint of (5) holds in ext(A7)
and the constraint of (4) in the DMU points, (5) can be seen as a BCC problem with the points
{(X\,YA) | A € ext(Af)} as DMUs. That is, T/ over J is equivalent to TB“C over ext(A/).
This is a generalization of Green and Cook’s result (2004) in which they show that T¥ over .J

TBCC

is equivalent to over 27 (the power set of .J).

If the set A/ is unbounded, it can be approximated by a sequence of bounded sets. Thus,
the argumentation in the proof of Corollary 1 also holds for unbounded A/ when the points

that are ‘arbitrarily far’ from the origin are considered as extreme points.

After introducing Corollary 1, it is quite straightforward to see that Theorem 1 also contains
the DEA models CCR and BCC as its special cases. It can be reduced to the CCR and BCC

12



cases in the following way. When f = CCR, we can choose A = te*, ¢t > 0, k = 1,...,m.

Then, the inequality constraint changes as follows:

T k
Yieb —
Y2 "Wy 450, k=1,....m

v Xted T
tuly* —u
#Sl, t>0, k=1,...,m
v x
Tk 1
U?J—guo
—— <1, t>0, k=1,...,m.
vl a” -
When ¢t — 0, we see that ug > 0. When £ — oo, instead, we get
T, k
u'y
<1, k=1,...,m.
vlah —

Finally, because the only constraint left containing ug is ug > 0, and the optimization problem
is the maximization

UT@J — Ug

max ————

v,u,u0 VT

up must be equal to 0 in the optimum. Thus, we ended up to the ratio form of the standard
CCR model (3). The BCC model (4), instead, can be derived directly from (5) by choosing the

extreme points of ABCC: X =¢F k=1,...,m.

In general, Theorem 1 does not hold for discrete A7. However, the problem (5) gives a lower
bound for (2), since the minimum value of an ILP problem is always greater or equal to the

optimum value of its Lagrangean dual relaxation (e.g., Bertsimas and Tsitsiklis 1997).

3.2 Preference information in ratio form

The ratio form (5) allows us to include preference information about the relative values of
inputs and outputs in the model. Because it consists of weighted sums of inputs and outputs,
these weights can easily be limited with linear constraints (e.g., Salo and Punkka 2011). For
example, if one unit of output 1 is considered to be at least as valuable as a unit of output 2 but
not more valuable than three units of output 2, then the constraints us < uy < 3uy must hold.
There is no need to limit the variable ug in this context, since it corresponds to the constraints

of A/ in the envelopment form.

Definition 6. The set of feasible input and output weights are
S, = {veR’|v#0,0>0, 4,0 <0},
Sy = {veR"|u#0,u>0,A,u <0},

13



respectively, where A, and A, are coefficient matrices determining how valuable different

amounts of inputs and outputs are.

After introducing the sets of feasible input and output weights in Definition 6, the ratio
form (5) can be written as follows:
UTy — U
max ———-
v,u,u0 v
T
w YA — up
— Ty, =L
v XA
A <0,A,u<0
v,u > 0,u9 € R.

s.t. VYA e A (9)

The problem (9) is difficult to solve, since it is not a LP problem. However, it can be converted

back into its envelopment form which is a LP problem.

Corollary 2. The optimum value of the problem (9) is equal to the optimum value of the

following minimization problem:

min o
Q,\,0,T

s.t. va— XA+ Alo >0
Y)\—FAZTZ@/
aeRNXeAN o,7>0.

(10)

Proof. The claim is easier to show by starting from the problem (10). By following the same

steps for the optimum value o* as in the proof of Theorem 1, we get:

)

. i [ LT < 0 r —X AT 0
(6] = max min |« —
v,u>0 a,\o,7 v H Yy 0 Y 0 Ag

4 Q9 > 0

= max min [a —vlra + v XN =T Ao 4+ py — pfTY N — ,U,TA?;T}

v, u1>0 a, Ao, 7
_ T - T T T < [T AT
= max [u y+1(§1€1£[(1 v x)a]+§r€1}8 V' X\ —p Y)\]+r;121(r)1[ v A, o]
[T AT
+ min (" AL, (11)

If the vector —vTAT has a strictly negative component in the optimum, then

min, o [-vT ATo] = —oo, which clearly does not maximize (11). Thus, —vTAT > 07 and
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—vTATo = 0 in the optimum. The inequality —v7 AT > 0T is equivalent to A,v < 0, which
is equivalent to A,v < 0, where v is chosen such that v = —. Analogously, from the term
min;>o [—p’ AT7] we get Ayu < 0 when p = —#=. The rest of the proof continues in the same

way as in Theorem 1, which leads to (9). O

In practise, the efficiency scores with preference information can easily be solved using the
LP problem (10). It can also be used when A/ is discrete, but its interpretation is not as clear

as in the connected case, since the equivalence between (2) and (5) does not necessarily hold.

4 Portfolio dominance

In this section, we formulate a more general concept of efficiency in portfolio production pos-
sibility sets, and generalize the efficiency ratio from the previous section. This allows us to
develop ratio-based efficiency analysis in the portfolio framework proceeding in the same way
as Salo and Punkka (2011) with standard REA. Especially, we introduce the concept of portfolio

dominance, which is a generalization of the DMU dominance analyzed by Salo and Punkka.

When dealing with all feasible DMU combinations, we call an individual point of the pro-

duction possibility set a portfolio. Also the DMU points are called portfolios.
Definition 7. A portfolio is any point p = (z,y) € T7.

Thus, the efficient portfolio frontier is determined by Definition 3, and the efficiency score
of a portfolio can be calculated using (2) or (10) depending on if preference information about

inputs and outputs is included. Furthermore, Definition 5 determines the reference portfolio

for any portfolio.

We continue considering the same feasible weights (v,u,ug) as in the problem (9). That
is, the weights v and u can contain preference information about relative values of inputs and

outputs, whereas the scalar weight v is free.

Definition 8. The general set of feasible weights s

S = {(v,u,up) € S, x S, x R}.

15



In this context, we could also introduce some constraints for the scalar weight uy. This would
be sensible if the new constraints somehow reflected the shape of the production possibility set.
In the CCR case, for example, the weight ug is always 0 in the optimum of (9), and thus uy =0
is a natural constraint. Adding this constraint leads to standard ratio-based efficiency analysis
(e.g., Salo and Punkka 2011).

After introducing the set of feasible weights, the shifted output—input ratio maximized in

the problem (9) can be represented as a function of (z,y) € T/ and (v, u,u) € S.

Definition 9. Let p = (z,y) € TY, (v,u,ug) € S and vz > 0. The generalized efficiency ratio
E:T/ xS —Ris .
Uy — U
Ey(v,u,up) = Ty
However, since ug is free, this ratio can be negative or zero in some points of S, which has
no sensible meaning. Especially, the efficiency ratios of two different portfolios are not directly
comparable when they have negative values. Therefore, we restrict the domain S to such points

in which the generalized efficiency ratio is positive.

Definition 10. The set of feasible weights for portfolio p € T is

Sy = {(v,u,up) € S| Ep(v,u,ug) > 0}.

When considering the generalized efficiency ratio E,(v,u,ug) restricted to Sp, it achieves

any feasible values of the shifted output—input ratio in which the shifted output is positive.

The efficiency score E(p) of the portfolio p calculated with (9) or (10) is the maximum
value of E,(v,u,ug) over S,. The generalized efficiency ratio includes more information about
portfolio efficiencies than the corresponding efficiency score, since it notices all feasible weights,

not only those weights in which the ratio achieves its maximum.

The generalized efficiency ratio allows us to determine a dominance relation between two
portfolios. In this case, the concept of dominance is sensible only when both portfolios have

positive efficiency ratios.
Definition 11. A portfolio p € T/ dominates another portfolio ¢ € T if and only if

E,(v,u,up) > E,(v,u, up) for all (v,u,up) € S, NSy,

E,(v,u,up) > E,(v,u, up) for some (v, u,up) € S, N S,.
This dominance is denoted by p > q.
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If p > q, the efficiency ratio of portfolio p is at least as high as that of portfolio ¢ for all
feasible weights, and moreover, there exist some weights for which its efficiency ratio is strictly
higher. By definition, the relation > is clearly an irreflexive and asymmetric binary relation in
T7. In addition, if p = ¢, then S, C S,, which makes also the transitivity of = easy to see.

Thus, > is a strict partial order.

Definition 11 catches only the most obvious dominance relations among portfolios because
the scalar weight u is not limited more than necessary. For example, if portfolio ¢ has higher
output values than portfolio p, we cannot have p > ¢, no matter how much higher input values
¢ has. When adding more constraints for ug, the set of feasible weights S becomes smaller, and
thus new dominances may appear. In our case, when the weight g is not limited, Definition
11 can be reduced to a form in which outputs and inputs are considered independently. Before

proving this, we need the following lemma.
Lemma 1. Let z,2’ > 0,y,y > 0.

/
<y

Ify<y oraxz>4d, then ? /uo for some ug € {ug € R | y —ug >0,y —ug > 0}.
T T

Proof. First, we prove the case y < ¢/. If x > 2/, we can choose ug = 0, and the claim clearly

20! y—x)! .
follows. Then, assume x < z’ and choose ug = =55="". This leads to

y—u 1202y -2y —ay) l-aytay Y-y
T o 2¢ — x Cx 2 —x 20—z
and
yomuy 1@ —a)y - ey —wxy) 120y -2y Y —y
Y 4 20 — x o 22—z T2 —x

Thus,y_xﬂ<y/;—,“°anduoe{uoeR]y—u0>0,y’—u0>0}.

Then, we prove the case x > /. If y < ¢/, we can choose any ug < 0, and the claim clearly

follows. Then, assume y > ¢ and choose uy = =242 Thjg leads to

r—x’

y—uo_1(x—x’)y—(xy’—x’y—xx’)_1xy—xy'+xx’_y—y'+x’>0
r r—a o T —a =g
and
v —uy  1(v—2)y —(vy —2'y—x2') 1 -2y +a'y+ar’ y—y+z
oz x—a o x—a = a
Thus,%<3”/;—,"°anduoe{uoeR|y—u0>0,y’—u0>0}. O
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Theorem 2. Let p = (2P,4?), ¢ = (29,y9) € T/. Then, p = q is equivalent to the conjunction
of the following three conditions:

uTy? > uwTy? for allu € S, (12)
vla? < o't for allv € S, (13)
uly? > uly? or vTa? <vTx?  for some (v,u) € S, X S, (14)

Proof. First, assume that (12), (13) or (14) does not hold. This implies that either u”y? = u”'y4
and vT 2P = 0724 for all (v,u) € S, X S, or there exists (v,u) € S, x S, such that u?y? < uly?

T,p_ T,q9—
or vz > vTx? In the former case, Uy;;puo ==t ;"’ququo for all (v, u,up) € S,NS,, and thus p ¥ q.

In the latter case, we apply Lemma 1 for x = vTa?, y = uTy?, 2/ = vT2% and v’ = vTy?, which
<

uTyl—ug
vl xa

uTyP—ug

gives that there exists ug € {ug € R [ u"y? —ug > 0,u”y?—ug > 0} such that “4—

Since (v, u,up) € S, NS, we have p ¥ ¢.

Then, assume that (12), (13) and (14) hold. (12) and (13) clearly imply that % >
“T;/Tq—x—q% for all (v,u,up) € S, NS;. On the other hand, (14) gives a point (v,u) € S, x S, for
Ly—ug clearly holds when uy < 0. Thus, p > q. =

vl xa

which the strict inequality “Tv%f;“(’ > =
By Theorem 2, the dominance between two portfolios in Definition 11 can easily be deter-
mined by linear programming.

Corollary 3. Let p = (27, y?), ¢ = (z9,49) € TY. Then, p = q is equivalent to the conjunction
of the following three conditions:

minu” (y” — y*) > 0, (15)
UESy,
m%va(xp —27) <0, (16)
VEDY
TP — 41 inovl (2P — 14 1
max u (y y)>00r$gjv (xP —27) < 0. (17)

First, if (15) and (16) hold and at least another of them has a strict inequality, then p
dominates ¢. Second, if (15) or (16) does not hold, p does not dominate ¢g. Third, if the equality
holds in both (15) and (16), then the condition (17) determines the dominance. Furthermore,
if we want to compute the whole dominance structure for a finite number of portfolios, for
example, for the DMU points, the asymmetricity and transitivity properties can be applied.

Thus, we do not need to compare all actual pairs of portfolios.
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5 Application to analysis of healthcare units

In this section, we apply our portfolio DEA model to efficiency analysis of healthcare units. We
use the same data as Hynninen et al. (2011) in their analysis. The data consists of real observed
data about healthcare units in Finland provided by THL (National Institute for Health and
Welfare).

The part of the data set we are considering includes 33 DMUs that have three inputs and
one output. The inputs are ‘number of dentists’, ‘number of dental hygienists’ and ‘number of
dental assistants’, whereas the output is ‘weighted sum of operations completed’ in which the
operations are weighted by cost factors to take account varying expenses between operation
types. DMUs are categorized based on the output variable ‘weighted sum of operations com-
pleted’” such that DMUs in category A have output more than 200 000, in category C less than
100 000, and category B contains the rest of the DMUs. The DMU C12 has been left out from

the analysis, since its input values are 0. The data is presented in Appendix 1.

First, we compare efficiency scores calculated using different DEA models. We have chosen
five different CP models in our analysis, and these are compared with each others and the CCR
and BCC models. In these CP models, every DMU has the same upper bound ¢; = ¢, j =
1,...,33. The upper bounds ¢ and the sum bounds b of the CP models are presented in Table
1.

Table 1: Different CP models
Bound | CP1 CP2 CP3 CP4 CP5

c 1 1 1 2 1
b 1 1.1 2 2 00

The only difference between the model CP1 and the BCC model is that CP1 has an inequal-
ity < instead of the equality in the sum bound constraint. Mainly for this reason, the model
CP1 also occurs in the literature with the name NIRS for non-increasing returns to scale (e.g.,
Green and Cook 2004). The model CP5, instead, is the same as the model ‘K’ mentioned in
section 2.2.

The efficiency scores have been calculated both without and with preference information

about relative values of the input weights. When dealing with preference information, we have
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used the same weight restrictions as Hynninen et al. (2011), but we do not take a stance on if

these restrictions are sensible. The restriction constraints are

dentists dentists hygienists
< QOB 5 < S 5 and 0.5 < YBIOSH g
assistants hygienists assistants

(18)

The efficiency scores of the DMUs in different models are presented in Appendices 2 and
3. These efficiency scores mainly behave in the same way in both restricted and non-restricted
case. The only significant difference is that some DMUs are efficient in the non-restricted case
and inefficient in the restricted case. This shows that the chosen restriction constraints have

effect on the results.

For simplicity, we compare the efficiency scores of different models only in the restricted
case because it has fewer efficient DMUs. To be more illustrative, these efficiency scores are also
presented as percents (rounded down) in Table 2. Three DMUs, B2, B8 and C2, are efficient
in every model, and these all have middle scale. In addition, DMUs A1, A2 and C17 are BCC
efficient, and A1 and A2 CP1 efficient. The results give a good example that variable returns
to scale (e.g., BCC) gives higher efficiency scores for small-scale DMUs than non-increasing
returns to scale (e.g., CP): BCC scores are equal to CP1 scores for DMUs with large scale
(A1-B2), but clearly higher for small-scale DMUs (C3-C17).

When increasing the upper bounds b and ¢ and moving from CP1 to CP5, only the efficiency
scores of the largest DMUs change. This is because all CP models have non-increasing returns
to scale, and thus only large-scale DMUs are scored differently by these models. In the model
CP2, the upper bound b (1.1) is only a little higher than in CP1 (1.0), but even this little
change makes the largest DMUs A1l and A2 inefficient.

The only DMU whose efficiency score remarkably differs in the models CP2-CP5, is the
largest DMU Al. Its CP2 efficiency score 0.9668 is 38 % better than its CP5 score 0.699. The
model CP4 can score a DMU better or worse than CP5: Al has better CP4 score (0.7085)
than CP5 score (0.699), whereas A2 has better CP5 score (0.9755) than CP4 score (0.9737).
Anyway, CP4 and CP5 scores do not significantly differ from the corresponding CCR scores.
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Table 2: Efficiency scores (%) in different models with weight restrictions

DMU | BCC CP1 CP2 CP3 CP4 CP5 CCR
Al 100 100 96 79 70 69 68
A2 100 100 99 98 97 97 96

A3 72 72 71 70 69 70 69
A4 78 78 78 7 e 7 "
A5 82 82 81 80 80 80 80

A6 58 58 58 58 57 58 57
A7 66 66 66 65 65 65 65

B1 99 99 99 98 98 98 98
B2 100 100 100 100 100 100 100
B3 88 88 88 88 88 88 88
B4 99 99 98 98 98 98 98
B5 96 96 96 96 96 96 96
B6 74 73 73 73 73 73 73
B7 81 81 81 81 81 81 81
B8 100 100 100 100 100 100 100
B9 81 81 81 81 81 81 81
B10 88 87 87 87 87 87 87
Cl1 84 83 83 83 83 83 83
C2 100 100 100 100 100 100 100
C3 84 82 82 82 82 82 82
C4 " 75 75 75 75 75 75
C5 83 80 80 80 80 80 80
C6 85 82 82 82 82 82 82
C7 78 75 75 75 75 75 75

C8 92 90 90 90 90 90 90
C9 63 59 59 59 59 59 59
C10 83 78 78 78 78 78 78
Cl11 90 84 84 84 84 84 84
C13 7 71 71 71 71 71 71
Cl4 91 82 82 82 82 82 82
C15 86 75 75 75 75 75 75
C16 95 80 80 80 80 80 80
C17 100 87 87 87 87 87 87

Then, we compare reference portfolios in the models CP1-CP5 and CCR. For simplicity,
this is done in the non-restricted case. Most DMUs have no differences in their reference
portfolios with different models, but the largest DMUs do. The preference portfolios of four
largest DMUs, A1-A4, are presented in Table 3. The effect of the constraints in different CP
models can be seen, for example, by considering the reference portfolios of the DMU Al. In the
CCR model, the reference portfolio of A1 consists of 3.22 copies of the DMU B2 and 1.35 copies
of the DMU B4. When moving to the model CP5 by adding the constraint that a portfolio
cannot contain more than one copy of each DMU, the reference portfolio of A1l gets three new
DMUs, A2, B8 and C2. The DMUs B2, B4 and B8 are included in this portfolio as a whole.
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Table 3: Reference portfolios of four largest DMUs when there are no weight restrictions

Model Al A2
CCR 3.22B2+1.35B4 1.79B2+-0.61B4
CP5 | 0.69A2+B2+B4+B8+0.64C2 B2+B4+0.28B8+0.66C2
CP4 1.80A2+0.04A5+0.17B4 0.29A2+1.28B2+0.44B4
CP3 | 0.28A1+A2+0.15A54+0.57B2 0.36A2-+B2+0.50B4-+0.14C2
CP2 0.89A1+0.21A2 0.93A2+0.13B2+0.04B4
CP1 Al A2
Model A3 A4
CCR 1.33B2+4-0.87B4 0.80B2+0.95B4
CP5 B2+B4+0.16B8+0.26C2 0.80B2+0.95B4
CP4 0.14A2+1.08B2+0.78B4 0.80B2+0.95B4
CP3 | 0.16A2+B2+0.80B4-+0.04C2 0.80B2+0.95B4
CP2 0.75A2+0.04A5+0.31B4 0.45A2+0.03A5+0.63B4
CP1 0.76A2+0.12A5+0.12B4 0.46A2+0.10A5+0.44B4

In the models, CP1-CP4, instead, the total number of DMU copies is limited, and these
limits are achieved in the corresponding optimums. Thus, the reference portfolios of A1 mainly
consist of the largest DMUs in these models. When the constraints in the model get tighter,
fewer small DMUs are included in the reference portfolio. In the model CP1, the reference
portfolio of A1 finally contains only the DMU A1 itself. That is, A1l is efficient in this model.

Finally, we compare the number of dominating DMUs determined by Definition 11 and the
standard REA (e.g., Salo and Punkka 2011). In the former case, the scalar weight u, is free,
whereas the latter case includes the restriction ug = 0. The number of dominated DMUs has
been calculated for each DMU both without and with preference information (18). The results

are presented in Appendix 4.

The results show how the free-scalar-weight (FSW) case accepts only the most obvious
dominance relations, whereas REA dominances occur quite a lot; When there is no preference
information, REA includes 25 dominated DMUs, whereas only 7 DMUs are dominated in the
FSW case. When including the preference information, more dominance relations appear, and
the corresponding numbers are 30 and 14. In addition, the scale of DMUs affects differently the
REA and FSW dominances, which can be seen, especially, when the preference information is
included; In the REA case, DMUs in large (A1-A7) and small scale (C4-C17) have significantly
more dominating DMUs than in middle scale, whereas the scale has no remarkable effect in the
FSW case.
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6 Conclusions

In this study, we have extended DEA theory for more general production possibility sets. The
efficiency scores can be defined and calculated as a (I)LP problem for many kinds of DEA
models using the envelopment form. The solution to this problem also suggests a strictly
more efficient DMU combination for an inefficient DMU or portfolio. In the case of connected
production possibility set, DEA models also have a ratio form that allows us to access input
and output weights. Through the ratio form, preference information about relative values of
inputs and outputs can easily be added as linear constraints also in the envelopment form of
the model. In addition, we have considered general DEA efficiency in the REA framework by

defining generalized efficiency ratio and introducing the concept of dominance.

We have mainly focused on the connected production possibility sets, since the ratio form
is not sensible in discrete cases because it is not equivalent to the envelopment form. Thus,
it would be of interest to examine the DEA theory more carefully for discrete production
possibility sets. For example, we have seen that preference information about relative values
of inputs and outputs can also be included in the discrete case, but its effects has not been
analyzed. Also, discrete portfolio DEA models possibly have observable correspondences with

portfolio decision analysis (e.g, Liesio et al. 2008).

In addition, the concept of dominance could possibly be extended to reflect the shape of the
production possibility set by restricting the free scalar weight. This is since the non-restricted
weight catches only the most obvious dominance relations, whereas the zero weight totally
ignores different scales of DMUs. Especially, restricting the weight correctly would lead to
extend REA in the BCC case. However, restricting the weight sensibly seems to be difficult,
particularly, if solving the dominance is wanted to remain a LP problem. Finally, it would be of
interest to examine how the results change when building the theory on output-oriented DEA

instead of input-oriented.
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Appendix 1: Data set

Input and output values of each DMU; ‘Dentists’> number of dentists, ‘Hygienists’: number
of dental hygienists, ‘Assistants’> number of dental assistants, ‘W. Sum’: weighted sum of

operations completed.

Input Output

DMU Dentists |Hygienists|Assistants |W. Sum

Al 153 72.2 325.3| 720093
A2 61 29.3 97.8| 383983
A3 74.3 335 125.4 335847
A4 52.8 22.1 83.1 255905
A5 51.5 15 82| 242502
Ab 69 22 99| 232321
A7 46.4 19.4 104.2| 206113
B1 28.2 16.4 45 186201
B2 25.4 13.5 42.4 171424
B3 24.8 14 41 147874
B4 225 7 27.5 124524
B5 20.9 7.9 20.8 121078
Bo 23.5 12 38 114151
B7 19.6 9.3 34.7 105407
B8 17 7 21 101510
B9 20.9 8 27.3 101301
B10 201 5.7 29.9 100976
C1 20.3 5.3 23.3 91062
c2 11.1 9.6 28 90271
c3 16.5 6 30.5 85070
c4 18.5 6 32.5 84606
C5 16.8 5.8 26.4 80949
Co 16 6.6 22.3 80322
c7 17.2 6 28.3 78929
Cc8 12.3 8.6 19.2 74428
c9 20 7 31 71949
C10 14.2 7 17 66338
c11 13.8 5.8 15.1 65953
C13 15 4 21 60085
c14 9.7 5.8 12.5 49912
C15 10.5 5 13 48061
Cle 8 2 18 39455
ci7 5.4 4.2 9.5 33247
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Appendix 2: Efficiency scores without preference information

Efficiency scores of each DMU in different DEA models without preference information.

DEA model

pmMu  [Bcc [em [cp2 [cp3 |cpa |cps |ccr

Al 1 1 09727 0.8243 0.7536 0.7457  0.733
A2 1 1 09981 0.9847 0.9811 0.9833 0.9734
A3 0.7435 0.7435 07372 0721 07201 07205  0.717
A4 0.8177 0.8177 0.8085 0.7911 07911 07911 0.7911
AS 1 1 09904 0.9211 0.9077 0.8956  0.882
A6 0.6895 0.6895 0.6758 0.6162 0.6037 0.6135  0.6037
A7 07362 07362 07336 0.7254 0.7254 07254  0.7254
B1 1 1 09989 0.9978 0.9978 0.9978  0.9978
B2 1 1 1 1 1 1 1
B3 0.8884 0.8873 0.8873 0.8873 0.8873 0.8873  0.8873
B4 1 1 1 1 1 1 1
B5 09849 0.9814 09814 0.9814 0.9814 0.9814  0.9814
B6 07451 07329 07329 0.7329 07329 07329  0.7329
B7 0.8464 0.8358 0.8358 0.8358 0.8358 0.8358  0.8358
B8 1 1 1 1 1 1 1
BO 0.83 0.8227 0.8227 0.8227 0.8227 0.8227 0.8227
B10 09853 0.9853 0.9797 0.9684 0.9684 0.9684  0.9684
c1 09912 0.9562 0.9562 0.9562 0.9562 0.9562  0.9562
c2 1 1 1 1 1 1 1
c3 0.8978 0.8853 0.8853 0.8853 0.8853 0.8853  0.8853
c4 0.8261 0.8156 0.8156 0.8156 0.8156 0.8156  0.8156
s 0.857  0.842  0.842  0.842  0.842 0842  0.842
C6 0.8554 0.8268 0.8268 0.8268 0.8268 0.8268  0.8268
c7 0.8136 0.7991 07991 0.7991 07991 0.7991  0.7991
8 09454  0.9231 09231 09231 009231 09231 0.9231
o 0.6426 0.6258 0.6258 0.6258 0.6258 0.6258  0.6258
10 0.8867 0.8073 0.8073 0.8073 0.8073 0.8073  0.8073
c11 0.994 0.9036 09036 0.9036 0.9036 0.9036  0.9036
13 09068 0.8211 0.8211 0.8211 0.8211 0.8211 0.8211
Cc14 09846 0.8481 0.8481 0.8481 0.8481 0.8481  0.8481
15 09428 0.7659 0.7659 0.7659 0.7659  0.7659  0.7659
C16 1 1 1 1 1 1 1
c17 1 0893 0893 0893 0893  0.893  0.893
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Appendix 3: Efficiency scores with preference information

Efficiency scores of each DMU in different DEA models with preference information.

DEA model

pmMu  [Bcc [em [cp2 [cp3 |cpa |cps |ccr

Al 1 1 09668 0.7921 0.7085  0.699  0.6857
A2 1 1 09974 0.9802 0.9737 0.9755 0.9662
A3 07203 07203 0718 0.7057 0.6986 0.7019  0.6986
A4 0.789  0.789 0.7857 0.7741 0.7728 0.7741  0.7728
AS 0.8236  0.8236 0.8199  0.8097 0.8085 0.8097  0.8085
A6 05892 0.5892 0.5865 0.5803 0.5796 0.5803  0.5796
A7 0.6645 0.6645 0.6613 0.6581 0.6575 0.6581 0.6575
B1 09997 0.9997  0.993 0.9896 0.9896 0.9896  0.9896
B2 1 1 1 1 1 1 1
B3 0.8852 0.8834 0.8834 0.8834 0.8834 0.8834  0.8834
B4 09946 0.9946 0987  0.987 00987 0987  0.987
B5 09657  0.964 0964 0964  0.964 0964  0.964
B6 07401 07324 07324 07324 07324 07324  0.7324
B7 0.819 0.8129 08129 08129 0.8129 0.8129  0.8129
B8 1 1 1 1 1 1 1
BO 08192 0.8176 0.8176 0.8176 0.8176 0.8176 0.8176
B10 0.8832 0.8782 0.8782 0.8782 0.8782 0.8782  0.8782
c1 0.8475 0.8353 0.8353 0.8353 0.8353 0.8353  0.8353
c2 1 1 1 1 1 1 1
c3 0.8454 0.8221 0.8221 0.8221 0.8221 0.8221 0.8221
c4 0.7763 0.7543 07543 0.7543 0.7543 0.7543  0.7543
s 0.8311 0.8025 0.8025 0.8025 0.8025 0.8025 0.8025
C6 0.8506  0.8224 0.8224 0.8224 0.8224 0.8224  0.8224
c7 0.7857 0.7559 0.7559 0.7559 0.7559 0.7559  0.7559
8 092909 0.9017 09017 0.9017 0.9017 0.9017  0.9017
o 0.6316  0.599 0599  0.599 0599 0599  0.599
10 08322 0.7819 07819 0.7819 0.7819 0.7819  0.7819
c11 0.908 0.8479 0.8479 0.8479 0.8479 0.8479  0.8479
13 0.7787 07158 07158 0.7158 0.7158 0.7158  0.7158
Cc14 09156  0.8297 0.8297 0.8297 0.8297 0.8297  0.8297
15 0.8674 0.7595 0.7595 0.7595 0.7595 0.7595  0.7595
C16 09573 0.8018 0.8018 0.8018 0.8018 0.8018  0.8018
c17 1 08709 0.8709 0.8709 0.8709 0.8709  0.8709
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Appendix 4: Number of dominating DMUs

Number of dominating DMUs for each in four different cases; ‘REA’: REA, without preference
information; ‘FSW’: free scalar weight, without preference information; ‘REA - PI’: REA, with

preference information; ‘FSW - PI’: free scalar weight, with preference information.

Dominance model

DMU  |REA l[rsw  [REA-PI |FSW-PI

Al 16 0 28 0
A2 0 0 2 0
A3 17 1 26 1
A4 0 17 0
AS 0 14 0
A6 20 1 31 3
A7 19 0 30 1
B1 0 0 1 0
B2 0 0 0 0
B3 4 0 7 0
B4 0 0 1 0
BS 0 0 2 0
B6 10 2 23 2
B7 6 0 9 0
B8 0 0 0 0
BO 5 1 9 1
B10 1 0 7 1
c1 1 0 6 1
c2 0 0 0 0
c3 3 0 10 2
ca 6 1 22 4
cs 4 0 15 1
C6 5 0 9 0
c7 7 1 21 4
8 3 0 6 0
co 20 5 30 10
C10 7 0 15 0
c11 2 0 6 0
c13 5 0 25 1
C14 5 0 9 0
C15 8 0 17 1
C16 0 0 18 0
c17 3 0 9 0
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