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1 Introduction

E�ciency analysis examines the e�ciency of decision-making units (DMUs) by using their

observed input and output values. Typically, a DMU is an individual unit consuming some

inputs and producing some outputs. For instance, DMUs can be public departments, such

as hospitals (e.g., Hynninen et al. 2011) and universities, or private companies. A DMU is

considered e�cient if greater outputs cannot be produced with fewer inputs. Typical inputs

are monetary and human resources, whereas outputs can be, for example, treated patients by

hospitals or scienti�c publications by universities.

Data envelopment analysis (DEA; e.g., Cooper et al. 2000) is a non-parametric method for

e�ciency analysis. DEA includes di�erent kinds of model types, which determine the set of

possible input�output combinations. These combinations, i.e, portfolios, form the production

possibility set. All e�cient combinations are in the boundary of the production possibility set

called the e�cient frontier. The most central tools o�ered by DEA are e�ciency scores that

measure how close the DMU is to the e�cient frontier. The e�ciency scores can be calculated

by using linear programming (LP) or integer linear programming (ILP), and thus they o�er a

useful method for comparing the e�ciency of DMUs.

The oldest and most typical DEA models are CCR (for Charnes, Cooper and Rhodes; 1978)

and BCC (for Banker, Charnes and Cooper; 1984). Di�erent models score the DMUs di�erently.

For example, the BCC model takes the scale of di�erent input and output values into account,

unlike CCR. That is, the CCR model has constant returns to scale, whereas the BCC model

has variable returns to scale. In practise, this usually means that the largest and sometimes

the smallest DMUs have signi�cantly better BCC e�ciency scores than CCR scores.

In addition to standard DEA, the e�ciency of DMUs can be compared by using ratio-based

e�ciency analysis (REA; e.g., Salo and Punkka 2011), which also includes the standard CCR-

DEA e�ciency score. REA o�ers methods, for example, for calculating ranking intervals for

individual DMUs and dominance relations among them. These usually characterize e�ciencies

better than the e�ciency scores.

In this study, we extend Green and Cook's (2004) DEA theory for more general production

possibility sets. Especially, we consider DMU combinations in production possibility sets whose

shape somehow re�ects possible portfolios. We introduce one speci�ed production possibility set

for continuous portfolios and one for discrete portfolios and formulate the corresponding DEA

models. In addition, we formulate the linear programming dual in the general continuous case,
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and show how preference information about relative values of di�erent inputs and outputs can

be added to the model. Furthermore, we develop theory for generalizing the idea of dominance

in ratio-based e�ciency analysis for portfolio production possibility sets.

2 Generalization of the input-oriented DEA

2.1 Input-oriented DEA

Let the set of DMUs be indexed by j ∈ J = {1, ...,m}, each consuming s di�erent inputs and

producing n di�erent outputs. The ith input value of DMU j is denoted by xj
i and the kth

output value by yjk. The input and output values of DMU j form vectors xj ∈ Rs
+ and yj ∈ Rn

+.

Here Rs
+ = {x ∈ Rs | x ≥ 0, x ̸= 0}, where ≥ holds componentwise. The vectors of input

and output values form input and output matrices denoted by X := [x1, ..., xm] ∈ Rs×m
+ and

Y := [y1, ..., ym] ∈ Rn×m
+ , respectively.

DMUs are compared to (linear) combinations of DMUs' input and output values. The

combinations that are included in the comparison, is determined by the type of the DEA

model. The model type is denoted by f and the set of feasible DMU combination weights by

Λf .

De�nition 1. The set of feasible DMU weights for DEA model type f is

Λf := {λ ∈ Fm
+ | Afλ ≤ af},

where F is either R or Z, and Af ∈ Rr×m and af ∈ Rr are a matrix and a vector determining

r linear constraints such that ej ∈ Λf for all j ∈ J , where

ej = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0]T ∈ Rm.

The set Λf determines which consumption�production combinations can be achieved. This

attainable set is called the production possibility set. Di�erent DEA models make di�erent

assumptions of the production possibility set through the set Λf .

De�nition 2. The production possibility set for DEA model type f is

T f := {(x, y) ∈ Rs
+ × Rn

+ | x ≥ Xλ, y ≤ Y λ for some λ ∈ Λf}.
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Inequalities are used in De�nition 2 instead of equalities in order to make also clearly

ine�cient consumption�production combinations possible. When we want to highlight the sort

of the set F in De�nition 1, we call the set Λf connected if F = R and discrete if F = Z. The
assumptions made in the de�nition of Λf ensure that calculations remain (I)LP problems and

(xj, yj) ∈ T f for all j ∈ J . The most typical model types are CCR (for Charnes, Cooper and

Rhodes) and BCC (for Banker, Charnes and Cooper), where the set Λf is de�ned as follows:

ΛCCR := {λ ∈ Rm
+},

ΛBCC := {λ ∈ [0, 1]m |
m∑
j=1

λj = 1}.

That is, the CCR model includes all non-negative linear combinations of DMUs into the pro-

duction possibility set, whereas the BCC model includes only all convex combinations of DMUs.

The CCR and BCC models are the extremities of DEA models in the connected case, since

ΛCCR and ΛBCC are the largest and the smallest connected Λf that are possible by De�nition

1.

The production possibility set can be divided into e�cient and ine�cient points. A point is

considered e�cient if none of the inputs and outputs can be improved without worsening some

other input or output. All the e�cient points are included in the boundary of the production

possibility set, which is called the e�cient frontier. It also contains all `weakly e�cient' points.

De�nition 3. The e�cient frontier of the production possibility set T f is

Ef(T f ) := {(x, y) ∈ T f | @(x′, y′) ∈ T f s.t. x′ < x, y′ > y}.

In DEA, the e�ciency of a DMU is considered in a relation to the e�cient frontier. In an

input-oriented DEA model, the e�ciency score is calculated by examining how much the input

values would have to decrease for the DMU to belong to the e�cient frontier.

De�nition 4. Input based f-e�ciency score of DMU j is

Êf (xj, yj) := min
α∈R

{α | ∃(x, y) ∈ T f s.t. αxj ≥ x, yj ≤ y}.

f -e�ciency scores can be solved by using linear programming, since combining De�nition 2

with De�nition 4 gives

Êf (xj, yj) = min
α∈R

{α | αxj ≥ Xλ, yj ≤ Y λ, λ ∈ Λf}. (1)
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Clearly, Êf (xj, yj) ≤ 1, since ej ∈ Λf . On the other hand, Êf (xj, yj) > 0 because Λf ⊂
Rm

+ and xk ∈ Rs
+ for all k ∈ J . When using (1), the e�ciency score can be calculated for

individual DMUs. In addition, we can easily extend it to comprising all combination DMUs in

the production possibility set; The f -e�ciency score of any point (x, y) ∈ T f can be calculated

as the optimal value of the following (I)LP problem:

Êf (x, y) = min
α,λ

α

s.t. xα−Xλ ≥ 0

Y λ ≥ y

α ∈ R, λ ∈Λf .

(2)

For all points (x, y) in the e�cient frontier, the e�ciency score Êf (x, y) is equal to 1. The

optimization problem (2) is often called the envelopment form of the corresponding DEA model

(e.g., Cooper et al. 2000).

In addition to the e�ciency score, the solution (α∗, λ∗) to the LP problem (2) includes a

point that is in the e�cient frontier. We call this point the reference point. For an ine�cient

DMU, the reference point is also a feasible DMU combination that achieves at least the same

output with fewer inputs. Thus, also the reference points are usually interesting to consider.

De�nition 5. Let (α∗, λ∗) be the solution to the LP problem (2) for the point (x, y) ∈ T f . The

reference point of (x, y) is

Rp(x, y) := (Xλ∗, Y λ∗) ∈ Ef(T f ).

Di�erent DEA models treat DMUs with small and large scale di�erently. This property is

often called the returns to scale of the model (e.g, Cooper et al. 2000). The type of the returns

to scale is determined by the (in)equalities in the de�nition of the set Λf , and it is re�ected in

the shape of the e�cient frontier. For example, the CCR model has constant returns to scale

because it has no constraints in the de�nition of ΛCCR. As a consequence, the CCR e�cient

frontier is straight in radial directions, and thus the scale of DMUs does not a�ect the e�ciency

scores. The BCC model, instead, has variable returns to scale because of the equality constraint,

and its e�cient frontier becomes `curved' around some DMU points. Thus, the BCC model

compares DMU combinations in the same scale, and also the most e�cient small-scale and

large-scale DMUs get good e�ciency scores. The returns to scale can also be non-increasing or

non-decreasing when de�ning Λf such that only either inequality ≤ or inequality ≥ holds for

λ. In the non-increasing case, the variable scale occurs only in large-scale DMUs, whereas in

the non-decreasing case, only in small-scale DMUs.
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In the CCR and BCC cases, it is also typical to deal with another kind of optimization

problem for calculating the e�ciency score, called the ratio form. In the ratio form, e�ciency

is considered as a quotient, total output divided by total input, which is more intuitive way of

thinking e�ciency. In the ratio form, the inputs and outputs are weighted instead of the DMUs,

and these weights are chosen such that the output�input ratio is maximized. In practise, the

ratio form is the linear programming dual of the envelopment form with a change of variables.

Thus, the e�ciency score is the same in the both forms. For instance, the ratio forms of the

CCR and BCC models (e.g., Cooper et al. 2000) are

max
v,u

uTy

vTx

s.t.
uTyk

vTxk
≤ 1, ∀k ∈ J

v, u ≥ 0

(3)

and

max
v,u,u0

uTy − u0

vTx

s.t.
uTyk − u0

vTxk
≤ 1, ∀k ∈ J

v, u ≥ 0, u0 ∈R,

(4)

respectively.

2.2 Portfolio production possibility sets

In the portfolio framework, DMUs are considered as `project proposals' that can be combined

to form a portfolio. Usually, this portfolio forming has di�erent kinds of constraints for the

chosen projects, for example budget constraints. These constraints should be re�ected in the

production possibility set such that the set of feasible DMU weights Λf includes exactly all

suitable combinations of DMUs. Thus, the CCR and BCC models are not the most convenient

DEA models for measuring the e�ciencies of DMUs in relation to portfolios.

Typically, a portfolio can include several individual DMUs as a whole, but only a limited

number of each DMU. For example, Green and Cook (2004) consider production possibility

sets for ΛK := {λ ∈ [0, 1]m} (`K' for Koopmans (1977)) and ΛFCH := {λ ∈ {0, 1}m} (`FCH' for

Free Coordination Hull). They also mention more general production possibility sets, where a
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�xed number of `copies' of each DMU are allowed and total number of DMUs in the portfolio

is limited. Two that kinds of sets are considered in this study, `CP' for Continuous Portfolio

and `DP' for Discrete Portfolio:

ΛCP := {λ ∈ Rm
+ |

m∑
j=1

λj ≤ b, λj ≤ cj, ∀j ∈ J},

ΛDP := {λ ∈ Zm
+ |

m∑
j=1

λj ≤ b, λj ≤ cj, ∀j ∈ J},

where b ≥ 1 and cj ≥ 1 for all j ∈ J to ensure that all individual DMUs belong to the

production possibility set. The sets ΛCP and ΛDP satisfy De�nition 1, and thus the problem (2)

is a LP problem when f = CP, or an ILP problem when f = DP. Furthermore, De�nition 1

also accepts adding constraints for the number of selected DMUs from a speci�ed subset L ⊂ J ,

i.e.,
∑

j∈L λj ≤ cL.

CP models always have non-increasing returns to scale, since λ is limited only by constraints

with the inequality ≤. The CP e�ciency score of a point (x, y) is always between its CCR and

BCC e�ciency scores when (x, y) belongs to the corresponding production possibility sets.

This is since ΛBCC ⊂ ΛCP ⊂ ΛCCR, wherefore TBCC ⊂ TCP ⊂ TCCR by De�nition 2, and thus

ÊBCC(x, y) ≥ ÊCP(x, y) ≥ ÊCCR(x, y) by (2). If the constraints in a CP model are not strict,

i.e., the constants b, c1, . . . , cm are large enough, it does not really di�er from the CCR model.

In addition, if b, c1, . . . , cm → ∞, then TCP → TCCR.

An example of the CP production possibility set is presented in Figure 1. In this simple case,

four DMUs, A (2, 3), B (4, 4), C (7, 6) and D (9, 7), consume one input and produce one output.

Each of the DMUs has an upper bound cj = 1, j = A,B,C,D, and the sum bound of DMUs

is b = 3. The �gure includes the CP e�cient frontier and composite DMUs obtained from

the individual DMUs by summing their input and output values, respectively. In addition, the

corresponding CCR and BCC e�cient frontiers are presented in the �gure. The CP, CCR and

BCC production possibility sets consist of the corresponding e�cient frontier and the domain

under it. DMUs A, C and D are BCC e�cient, whereas only the DMU A is CP and CCR

e�cient. In addition, the composite DMUs A+B, A+B +C, A+C +D and B +C +D are

CP e�cient.
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Figure 1: CP production possibility set - one input and one output

3 Dual representation

In this section, we formulate the ratio form for a general DEA model. This is done by using

Lagrangean dual formulation instead of the standard LP dual because it can be formulated for

more general DEA model all at once. In the ratio form, inputs and outputs are weighted instead

of DMUs, which o�ers a di�erent perspective for DEA; The ratio form is not computationally

attractive for solving the e�ciencies, but it o�ers a more intuitive interpretation for e�ciency.

It also makes it possible to use preference information about relative values of di�erent inputs

and outputs, and develop ratio-based e�ciency analysis in the portfolio framework.
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3.1 Ratio form

As in the CCR case, the linear programming duality makes it possible to calculate the f -

e�ciency score alternatively as a problem in which the output�input ratio is maximized. In

what follows, we assume that Λf is connected, since the optimum value of the Lagrangean dual

in discrete cases is not necessarily equal to the optimum value of the original LP problem.

Theorem 1. Let Λf be a connected set. Then, the optimal value Êf of the minimization

problem (2) is equal to the optimal value of the following maximization problem:

max
v,u,u0

uTy − u0

vTx

s.t.
uTY λ− u0

vTXλ
≤ 1, ∀λ ∈ Λf

v, u ≥ 0, u0 ∈ R.

(5)

Proof. First, the Lagrangean dual formulation (e.g., Bertsimas and Tsitsiklis 1997) gives

Êf = max
p≥0

min
α∈R,λ∈Λf

[
α+ pT

(
b− A

[
α

λ

])]
,

where p =

[
ν

µ

]
, A =

[
x −X

0 Y

]
, b =

[
0

y

]

are the dual vector, the constraint matrix and the constraint vector in the problem (2), respec-

tively. By calculating the matrix products above, we get

Êf = max
ν,µ≥0

min
α∈R,λ∈Λf

[
α+ [ νT µT ]

([
0

y

]
−

[
x −X

0 Y

][
α

λ

])]
= max

ν,µ≥0
min

α∈R,λ∈Λf

[
α+ 0− νTxα + νTXλ+ µTy − 0− µTY λ

]
= max

ν,µ≥0

[
µTy +min

α∈R
[(1− νTx)α] + min

λ∈Λf
[νTXλ− µTY λ]

]
. (6)

If 1 − νTx ̸= 0 in the optimum, then minα∈R[(1 − νTx)α] = −∞, which clearly does not

maximize (6). Thus, we get a new equality constraint νTx = 1. The another minimization can

be removed by introducing a new variable µ0 := minλ∈Λf [νTXλ−µTY λ]. Because µ0 is de�ned

as a minimum value, we get a new inequality constraint: µ0 ≤ νTXλ− µTY λ, ∀λ ∈ Λf . After
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these changes we have

Êf = max
ν,µ,µ0

µTy + µ0

s.t. νTx = 1

νTXλ− µTY λ ≥ µ0, ∀λ ∈ Λf

ν, µ ≥ 0, µ0 ∈ R.

(7)

Finally, we make a change of variables ν = v
vT x

, µ = u
vT x

and µ0 =
−u0

vT x
. This scaling makes the

�rst constraint hold automatically, and thus it can be removed. The change of variables leads

to

Êf = max
v,u,u0

uTy − u0

vTx

s.t. vTXλ− uTY λ ≥ −u0, ∀λ ∈ Λf

v, u ≥ 0, u0 ∈ R.

(8)

This is the same as the problem (5), which can be seen by adding uTY λ and dividing by vTXλ

in both sides of the inequality constraint.

In the problem (5) in Theorem 1, we have to assume that the denominators vTx and vTXλ

are nonzero. If these assumptions do not hold, (5) can always be replaced with (8) or (7). The

problem of the form (7) is often called the multiplier form of the DEA model (e.g., Cooper et

al. 2000).

In (5), we are looking for the best feasible weights for inputs and outputs to maximize the

ratio of total output and total input. In addition to input and output weight vectors v and u, the

ratio includes a scalar weight u0 for shifting the total output. The inequality constraint means

that the shifted output�input ratio is scaled so that it is less or equal to 1 for all input�output

combinations (Xλ, Y λ), where λ ∈ Λf .

The problem (5) has in�nitely many constraints, but it is su�cient to deal only with the

constraints in which λ is an extreme point of the set Λf .

Corollary 1. Let Λf be connected and bounded. Then, in the inequality constraint of the

problem (5), ∀λ ∈ Λf can be replaced with ∀λ ∈ ext(Λf ).

Proof. Assume that the constraint holds for all λ′ ∈ ext(Λf ) and let λ ∈ Λf \ ext(Λf ). Then,

λ can be represented as a convex combination of some extreme points:

λ =
K∑
k=1

tkλ
k, λk ∈ ext(Λf ), tk > 0,

K∑
k=1

tk = 1, k = 1, . . . , K.
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Because the constraint holds for all extreme points, we have

uTY λk − u0

vTXλk
≤ 1 or uTY λk − u0 ≤ vTXλk, k = 1, . . . , K.

By multiplying the latter inequalities with tk and summing them over k from 1 to K, we get

K∑
k=1

(tku
TY λk − tku0) ≤

K∑
k=1

tkv
TXλk

uTY
K∑
k=1

tkλ
k − u0

K∑
k=1

tk ≤ vTX
K∑
k=1

tkλ
k

uTY λ− u0 ≤ vTXλ

uTY λ− u0

vTXλ
≤ 1.

Thus, the inequality constraint also holds for all λ ∈ Λf \ ext(Λf ) resulting that it is su�cient

to assume the constraint only in the extreme points.

Corollary 1 reduces the number of constraints in the problem (5) to a �nite number when

the set Λf is bounded. For example, |ext(ΛBCC)| = m and |ext(ΛCP)| = O(2m). Even if the

number of constraints is �nite in the CP case, it increases rapidly when the number of DMUs

increases. Thus, Corollary 1 does not in the general case result in computationally attractive

optimization models.

By Corollary 1, the only di�erence between the general problem (5) and the BCC problem

(4) is, in which points their constraints hold. Because the constraint of (5) holds in ext(Λf )

and the constraint of (4) in the DMU points, (5) can be seen as a BCC problem with the points

{(Xλ, Y λ) | λ ∈ ext(Λf )} as DMUs. That is, T f over J is equivalent to TBCC over ext(Λf ).

This is a generalization of Green and Cook's result (2004) in which they show that TK over J

is equivalent to TBCC over 2J (the power set of J).

If the set Λf is unbounded, it can be approximated by a sequence of bounded sets. Thus,

the argumentation in the proof of Corollary 1 also holds for unbounded Λf when the points

that are `arbitrarily far' from the origin are considered as extreme points.

After introducing Corollary 1, it is quite straightforward to see that Theorem 1 also contains

the DEA models CCR and BCC as its special cases. It can be reduced to the CCR and BCC
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cases in the following way. When f = CCR, we can choose λ = tek, t > 0, k = 1, . . . ,m.

Then, the inequality constraint changes as follows:

uTY tek − u0

vTXtek
≤ 1, t > 0, k = 1, . . . ,m

tuTyk − u0

tvTxk
≤ 1, t > 0, k = 1, . . . ,m

uTyk − 1

t
u0

vTxk
≤ 1, t > 0, k = 1, . . . ,m.

When t → 0, we see that u0 ≥ 0. When t → ∞, instead, we get

uTyk

vTxk
≤ 1, k = 1, . . . ,m.

Finally, because the only constraint left containing u0 is u0 ≥ 0, and the optimization problem

is the maximization

max
v,u,u0

uTy − u0

vTx
,

u0 must be equal to 0 in the optimum. Thus, we ended up to the ratio form of the standard

CCR model (3). The BCC model (4), instead, can be derived directly from (5) by choosing the

extreme points of ΛBCC: λ = ek, k = 1, . . . ,m.

In general, Theorem 1 does not hold for discrete Λf . However, the problem (5) gives a lower

bound for (2), since the minimum value of an ILP problem is always greater or equal to the

optimum value of its Lagrangean dual relaxation (e.g., Bertsimas and Tsitsiklis 1997).

3.2 Preference information in ratio form

The ratio form (5) allows us to include preference information about the relative values of

inputs and outputs in the model. Because it consists of weighted sums of inputs and outputs,

these weights can easily be limited with linear constraints (e.g., Salo and Punkka 2011). For

example, if one unit of output 1 is considered to be at least as valuable as a unit of output 2 but

not more valuable than three units of output 2, then the constraints u2 ≤ u1 ≤ 3u2 must hold.

There is no need to limit the variable u0 in this context, since it corresponds to the constraints

of Λf in the envelopment form.

De�nition 6. The set of feasible input and output weights are

Sv = {v ∈ Rs | v ̸= 0, v ≥ 0, Avv ≤ 0},
Su = {u ∈ Rn |u ̸= 0, u ≥ 0, Auu ≤ 0},
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respectively, where Av and Au are coe�cient matrices determining how valuable di�erent

amounts of inputs and outputs are.

After introducing the sets of feasible input and output weights in De�nition 6, the ratio

form (5) can be written as follows:

max
v,u,u0

uTy − u0

vTx

s.t.
uTY λ− u0

vTXλ
≤ 1, ∀λ ∈ Λf

Avv ≤ 0, Auu ≤ 0

v, u ≥ 0, u0 ∈ R.

(9)

The problem (9) is di�cult to solve, since it is not a LP problem. However, it can be converted

back into its envelopment form which is a LP problem.

Corollary 2. The optimum value of the problem (9) is equal to the optimum value of the

following minimization problem:

min
α,λ,σ,τ

α

s.t. xα−Xλ+ AT
v σ ≥ 0

Y λ+ AT
u τ ≥ y

α ∈ R, λ ∈ Λf , σ, τ ≥ 0.

(10)

Proof. The claim is easier to show by starting from the problem (10). By following the same

steps for the optimum value α∗ as in the proof of Theorem 1, we get:

α∗ = max
ν,µ≥0

min
α,λ,σ,τ

[
α+ [ νT µT ]

([
0

y

]
−

[
x −X AT

v 0

0 Y 0 AT
u

]
α

λ

σ

τ

)]

= max
ν, µ≥0

min
α,λ,σ,τ

[
α− νTxα + νTXλ− νTAT

v σ + µTy − µTY λ− µTAT
u τ

]
= max

ν, µ≥0

[
µTy +min

α∈R
[(1− νTx)α] + min

λ∈Λf
[νTXλ− µTY λ] + min

σ≥0
[−νTAT

v σ]

+min
τ≥0

[−µTAT
u τ ]

]
. (11)

If the vector −νTAT
v has a strictly negative component in the optimum, then

minσ≥0 [−νTAT
v σ] = −∞, which clearly does not maximize (11). Thus, −νTAT

v ≥ 0T and
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−νTAT
v σ = 0 in the optimum. The inequality −νTAT

v ≥ 0T is equivalent to Avν ≤ 0, which

is equivalent to Avv ≤ 0, where v is chosen such that ν = v
vT x

. Analogously, from the term

minτ≥0 [−µTAT
u τ ] we get Auu ≤ 0 when µ = u

vT x
. The rest of the proof continues in the same

way as in Theorem 1, which leads to (9).

In practise, the e�ciency scores with preference information can easily be solved using the

LP problem (10). It can also be used when Λf is discrete, but its interpretation is not as clear

as in the connected case, since the equivalence between (2) and (5) does not necessarily hold.

4 Portfolio dominance

In this section, we formulate a more general concept of e�ciency in portfolio production pos-

sibility sets, and generalize the e�ciency ratio from the previous section. This allows us to

develop ratio-based e�ciency analysis in the portfolio framework proceeding in the same way

as Salo and Punkka (2011) with standard REA. Especially, we introduce the concept of portfolio

dominance, which is a generalization of the DMU dominance analyzed by Salo and Punkka.

When dealing with all feasible DMU combinations, we call an individual point of the pro-

duction possibility set a portfolio. Also the DMU points are called portfolios.

De�nition 7. A portfolio is any point p = (x, y) ∈ T f .

Thus, the e�cient portfolio frontier is determined by De�nition 3, and the e�ciency score

of a portfolio can be calculated using (2) or (10) depending on if preference information about

inputs and outputs is included. Furthermore, De�nition 5 determines the reference portfolio

for any portfolio.

We continue considering the same feasible weights (v, u, u0) as in the problem (9). That

is, the weights v and u can contain preference information about relative values of inputs and

outputs, whereas the scalar weight u0 is free.

De�nition 8. The general set of feasible weights is

S := {(v, u, u0) ∈ Sv × Su × R}.
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In this context, we could also introduce some constraints for the scalar weight u0. This would

be sensible if the new constraints somehow re�ected the shape of the production possibility set.

In the CCR case, for example, the weight u0 is always 0 in the optimum of (9), and thus u0 = 0

is a natural constraint. Adding this constraint leads to standard ratio-based e�ciency analysis

(e.g., Salo and Punkka 2011).

After introducing the set of feasible weights, the shifted output�input ratio maximized in

the problem (9) can be represented as a function of (x, y) ∈ T f and (v, u, u0) ∈ S.

De�nition 9. Let p = (x, y) ∈ T f , (v, u, u0) ∈ S and vTx > 0. The generalized e�ciency ratio

E : T f × S → R is

Ep(v, u, u0) =
uTy − u0

vTx
.

However, since u0 is free, this ratio can be negative or zero in some points of S, which has

no sensible meaning. Especially, the e�ciency ratios of two di�erent portfolios are not directly

comparable when they have negative values. Therefore, we restrict the domain S to such points

in which the generalized e�ciency ratio is positive.

De�nition 10. The set of feasible weights for portfolio p ∈ T f is

Sp := {(v, u, u0) ∈ S | Ep(v, u, u0) > 0}.

When considering the generalized e�ciency ratio Ep(v, u, u0) restricted to Sp, it achieves

any feasible values of the shifted output�input ratio in which the shifted output is positive.

The e�ciency score Ê(p) of the portfolio p calculated with (9) or (10) is the maximum

value of Ep(v, u, u0) over Sp. The generalized e�ciency ratio includes more information about

portfolio e�ciencies than the corresponding e�ciency score, since it notices all feasible weights,

not only those weights in which the ratio achieves its maximum.

The generalized e�ciency ratio allows us to determine a dominance relation between two

portfolios. In this case, the concept of dominance is sensible only when both portfolios have

positive e�ciency ratios.

De�nition 11. A portfolio p ∈ T f dominates another portfolio q ∈ T f if and only if

Ep(v, u, u0) ≥ Eq(v, u, u0) for all (v, u, u0) ∈ Sp ∩ Sq,

Ep(v, u, u0) > Eq(v, u, u0) for some (v, u, u0) ∈ Sp ∩ Sq.

This dominance is denoted by p ≻ q.
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If p ≻ q, the e�ciency ratio of portfolio p is at least as high as that of portfolio q for all

feasible weights, and moreover, there exist some weights for which its e�ciency ratio is strictly

higher. By de�nition, the relation ≻ is clearly an irre�exive and asymmetric binary relation in

T f . In addition, if p ≻ q, then Sq ⊂ Sp, which makes also the transitivity of ≻ easy to see.

Thus, ≻ is a strict partial order.

De�nition 11 catches only the most obvious dominance relations among portfolios because

the scalar weight u0 is not limited more than necessary. For example, if portfolio q has higher

output values than portfolio p, we cannot have p ≻ q, no matter how much higher input values

q has. When adding more constraints for u0, the set of feasible weights S becomes smaller, and

thus new dominances may appear. In our case, when the weight u0 is not limited, De�nition

11 can be reduced to a form in which outputs and inputs are considered independently. Before

proving this, we need the following lemma.

Lemma 1. Let x, x′ > 0, y, y′ ≥ 0.

If y < y′ or x > x′, then
y − u0

x
<

y′ − u0

x′ for some u0 ∈ {u0 ∈ R | y − u0 > 0, y′ − u0 > 0}.

Proof. First, we prove the case y < y′. If x ≥ x′, we can choose u0 = 0, and the claim clearly

follows. Then, assume x < x′ and choose u0 =
2x′y−xy′

2x′−x
. This leads to

y − u0

x
=

1

x

(2x′ − x)y − (2x′y − xy′)

2x′ − x
=

1

x

−xy + xy′

2x′ − x
=

y′ − y

2x′ − x
> 0

and
y′ − u0

x′ =
1

x′
(2x′ − x)y′ − (2x′y − xy′)

2x′ − x
=

1

x′
2x′y′ − 2x′y

2x′ − x
= 2

y′ − y

2x′ − x
.

Thus, y−u0

x
< y′−u0

x′ and u0 ∈ {u0 ∈ R | y − u0 > 0, y′ − u0 > 0}.

Then, we prove the case x > x′. If y ≤ y′, we can choose any u0 < 0, and the claim clearly

follows. Then, assume y > y′ and choose u0 =
xy′−x′y−xx′

x−x′ . This leads to

y − u0

x
=

1

x

(x− x′)y − (xy′ − x′y − xx′)

x− x′ =
1

x

xy − xy′ + xx′

x− x′ =
y − y′ + x′

x− x′ > 0

and

y′ − u0

x′ =
1

x′
(x− x′)y′ − (xy′ − x′y − xx′)

x− x′ =
1

x′
−x′y′ + x′y + xx′

x− x′ =
y − y′ + x

x− x′ .

Thus, y−u0

x
< y′−u0

x′ and u0 ∈ {u0 ∈ R | y − u0 > 0, y′ − u0 > 0}.
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Theorem 2. Let p = (xp, yp), q = (xq, yq) ∈ T f . Then, p ≻ q is equivalent to the conjunction

of the following three conditions:

uTyp ≥ uTyq for all u ∈ Su, (12)

vTxp ≤ vTxq for all v ∈ Sv, (13)

uTyp > uTyq or vTxp < vTxq for some (v, u) ∈ Sv × Su. (14)

Proof. First, assume that (12), (13) or (14) does not hold. This implies that either uTyp = uTyq

and vTxp = vTxq for all (v, u) ∈ Sv ×Su, or there exists (v, u) ∈ Sv ×Su such that uTyp < uTyq

or vTxp > vTxq. In the former case, uT yp−u0

vT xp = uT yq−u0

vT xq for all (v, u, u0) ∈ Sp∩Sq, and thus p ̸≻ q.

In the latter case, we apply Lemma 1 for x = vTxp, y = uTyp, x′ = vTxq and y′ = uTyq, which

gives that there exists u0 ∈ {u0 ∈ R | uTyp−u0 > 0, uTyq−u0 > 0} such that uT yp−u0

vT xp < uT yq−u0

vT xq .

Since (v, u, u0) ∈ Sp ∩ Sq, we have p ̸≻ q.

Then, assume that (12), (13) and (14) hold. (12) and (13) clearly imply that uT yp−u0

vT xp ≥
uT yq−u0

vT xq for all (v, u, u0) ∈ Sp ∩ Sq. On the other hand, (14) gives a point (v, u) ∈ Sv × Su for

which the strict inequality uT yp−u0

vT xp > uT yq−u0

vT xq clearly holds when u0 < 0. Thus, p ≻ q.

By Theorem 2, the dominance between two portfolios in De�nition 11 can easily be deter-

mined by linear programming.

Corollary 3. Let p = (xp, yp), q = (xq, yq) ∈ T f . Then, p ≻ q is equivalent to the conjunction

of the following three conditions:

min
u∈Su

uT (yp − yq) ≥ 0, (15)

max
v∈Sv

vT (xp − xq) ≤ 0, (16)

max
u∈Su

uT (yp − yq) > 0 or min
v∈Sv

vT (xp − xq) < 0. (17)

First, if (15) and (16) hold and at least another of them has a strict inequality, then p

dominates q. Second, if (15) or (16) does not hold, p does not dominate q. Third, if the equality

holds in both (15) and (16), then the condition (17) determines the dominance. Furthermore,

if we want to compute the whole dominance structure for a �nite number of portfolios, for

example, for the DMU points, the asymmetricity and transitivity properties can be applied.

Thus, we do not need to compare all actual pairs of portfolios.
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5 Application to analysis of healthcare units

In this section, we apply our portfolio DEA model to e�ciency analysis of healthcare units. We

use the same data as Hynninen et al. (2011) in their analysis. The data consists of real observed

data about healthcare units in Finland provided by THL (National Institute for Health and

Welfare).

The part of the data set we are considering includes 33 DMUs that have three inputs and

one output. The inputs are `number of dentists', `number of dental hygienists' and `number of

dental assistants', whereas the output is `weighted sum of operations completed' in which the

operations are weighted by cost factors to take account varying expenses between operation

types. DMUs are categorized based on the output variable `weighted sum of operations com-

pleted' such that DMUs in category A have output more than 200 000, in category C less than

100 000, and category B contains the rest of the DMUs. The DMU C12 has been left out from

the analysis, since its input values are 0. The data is presented in Appendix 1.

First, we compare e�ciency scores calculated using di�erent DEA models. We have chosen

�ve di�erent CP models in our analysis, and these are compared with each others and the CCR

and BCC models. In these CP models, every DMU has the same upper bound cj = c, j =

1, . . . , 33. The upper bounds c and the sum bounds b of the CP models are presented in Table

1.

Table 1: Di�erent CP models

Bound CP1 CP2 CP3 CP4 CP5

c 1 1 1 2 1

b 1 1.1 2 2 ∞

The only di�erence between the model CP1 and the BCC model is that CP1 has an inequal-

ity ≤ instead of the equality in the sum bound constraint. Mainly for this reason, the model

CP1 also occurs in the literature with the name NIRS for non-increasing returns to scale (e.g.,

Green and Cook 2004). The model CP5, instead, is the same as the model `K' mentioned in

section 2.2.

The e�ciency scores have been calculated both without and with preference information

about relative values of the input weights. When dealing with preference information, we have
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used the same weight restrictions as Hynninen et al. (2011), but we do not take a stance on if

these restrictions are sensible. The restriction constraints are

1 ≤ dentists

assistants
≤ 5, 1 ≤ dentists

hygienists
≤ 5 and 0.5 ≤ hygienists

assistants
≤ 5. (18)

The e�ciency scores of the DMUs in di�erent models are presented in Appendices 2 and

3. These e�ciency scores mainly behave in the same way in both restricted and non-restricted

case. The only signi�cant di�erence is that some DMUs are e�cient in the non-restricted case

and ine�cient in the restricted case. This shows that the chosen restriction constraints have

e�ect on the results.

For simplicity, we compare the e�ciency scores of di�erent models only in the restricted

case because it has fewer e�cient DMUs. To be more illustrative, these e�ciency scores are also

presented as percents (rounded down) in Table 2. Three DMUs, B2, B8 and C2, are e�cient

in every model, and these all have middle scale. In addition, DMUs A1, A2 and C17 are BCC

e�cient, and A1 and A2 CP1 e�cient. The results give a good example that variable returns

to scale (e.g., BCC) gives higher e�ciency scores for small-scale DMUs than non-increasing

returns to scale (e.g., CP): BCC scores are equal to CP1 scores for DMUs with large scale

(A1�B2), but clearly higher for small-scale DMUs (C3�C17).

When increasing the upper bounds b and c and moving from CP1 to CP5, only the e�ciency

scores of the largest DMUs change. This is because all CP models have non-increasing returns

to scale, and thus only large-scale DMUs are scored di�erently by these models. In the model

CP2, the upper bound b (1.1) is only a little higher than in CP1 (1.0), but even this little

change makes the largest DMUs A1 and A2 ine�cient.

The only DMU whose e�ciency score remarkably di�ers in the models CP2�CP5, is the

largest DMU A1. Its CP2 e�ciency score 0.9668 is 38 % better than its CP5 score 0.699. The

model CP4 can score a DMU better or worse than CP5: A1 has better CP4 score (0.7085)

than CP5 score (0.699), whereas A2 has better CP5 score (0.9755) than CP4 score (0.9737).

Anyway, CP4 and CP5 scores do not signi�cantly di�er from the corresponding CCR scores.
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Table 2: E�ciency scores (%) in di�erent models with weight restrictions

DMU BCC CP1 CP2 CP3 CP4 CP5 CCR

A1 100 100 96 79 70 69 68

A2 100 100 99 98 97 97 96

A3 72 72 71 70 69 70 69

A4 78 78 78 77 77 77 77

A5 82 82 81 80 80 80 80

A6 58 58 58 58 57 58 57

A7 66 66 66 65 65 65 65

B1 99 99 99 98 98 98 98

B2 100 100 100 100 100 100 100

B3 88 88 88 88 88 88 88

B4 99 99 98 98 98 98 98

B5 96 96 96 96 96 96 96

B6 74 73 73 73 73 73 73

B7 81 81 81 81 81 81 81

B8 100 100 100 100 100 100 100

B9 81 81 81 81 81 81 81

B10 88 87 87 87 87 87 87

C1 84 83 83 83 83 83 83

C2 100 100 100 100 100 100 100

C3 84 82 82 82 82 82 82

C4 77 75 75 75 75 75 75

C5 83 80 80 80 80 80 80

C6 85 82 82 82 82 82 82

C7 78 75 75 75 75 75 75

C8 92 90 90 90 90 90 90

C9 63 59 59 59 59 59 59

C10 83 78 78 78 78 78 78

C11 90 84 84 84 84 84 84

C13 77 71 71 71 71 71 71

C14 91 82 82 82 82 82 82

C15 86 75 75 75 75 75 75

C16 95 80 80 80 80 80 80

C17 100 87 87 87 87 87 87

Then, we compare reference portfolios in the models CP1�CP5 and CCR. For simplicity,

this is done in the non-restricted case. Most DMUs have no di�erences in their reference

portfolios with di�erent models, but the largest DMUs do. The preference portfolios of four

largest DMUs, A1�A4, are presented in Table 3. The e�ect of the constraints in di�erent CP

models can be seen, for example, by considering the reference portfolios of the DMU A1. In the

CCR model, the reference portfolio of A1 consists of 3.22 copies of the DMU B2 and 1.35 copies

of the DMU B4. When moving to the model CP5 by adding the constraint that a portfolio

cannot contain more than one copy of each DMU, the reference portfolio of A1 gets three new

DMUs, A2, B8 and C2. The DMUs B2, B4 and B8 are included in this portfolio as a whole.
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Table 3: Reference portfolios of four largest DMUs when there are no weight restrictions

Model A1 A2

CCR 3.22B2+1.35B4 1.79B2+0.61B4

CP5 0.69A2+B2+B4+B8+0.64C2 B2+B4+0.28B8+0.66C2

CP4 1.80A2+0.04A5+0.17B4 0.29A2+1.28B2+0.44B4

CP3 0.28A1+A2+0.15A5+0.57B2 0.36A2+B2+0.50B4+0.14C2

CP2 0.89A1+0.21A2 0.93A2+0.13B2+0.04B4

CP1 A1 A2

Model A3 A4

CCR 1.33B2+0.87B4 0.80B2+0.95B4

CP5 B2+B4+0.16B8+0.26C2 0.80B2+0.95B4

CP4 0.14A2+1.08B2+0.78B4 0.80B2+0.95B4

CP3 0.16A2+B2+0.80B4+0.04C2 0.80B2+0.95B4

CP2 0.75A2+0.04A5+0.31B4 0.45A2+0.03A5+0.63B4

CP1 0.76A2+0.12A5+0.12B4 0.46A2+0.10A5+0.44B4

In the models, CP1�CP4, instead, the total number of DMU copies is limited, and these

limits are achieved in the corresponding optimums. Thus, the reference portfolios of A1 mainly

consist of the largest DMUs in these models. When the constraints in the model get tighter,

fewer small DMUs are included in the reference portfolio. In the model CP1, the reference

portfolio of A1 �nally contains only the DMU A1 itself. That is, A1 is e�cient in this model.

Finally, we compare the number of dominating DMUs determined by De�nition 11 and the

standard REA (e.g., Salo and Punkka 2011). In the former case, the scalar weight u0 is free,

whereas the latter case includes the restriction u0 = 0. The number of dominated DMUs has

been calculated for each DMU both without and with preference information (18). The results

are presented in Appendix 4.

The results show how the free-scalar-weight (FSW) case accepts only the most obvious

dominance relations, whereas REA dominances occur quite a lot; When there is no preference

information, REA includes 25 dominated DMUs, whereas only 7 DMUs are dominated in the

FSW case. When including the preference information, more dominance relations appear, and

the corresponding numbers are 30 and 14. In addition, the scale of DMUs a�ects di�erently the

REA and FSW dominances, which can be seen, especially, when the preference information is

included; In the REA case, DMUs in large (A1�A7) and small scale (C4�C17) have signi�cantly

more dominating DMUs than in middle scale, whereas the scale has no remarkable e�ect in the

FSW case.
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6 Conclusions

In this study, we have extended DEA theory for more general production possibility sets. The

e�ciency scores can be de�ned and calculated as a (I)LP problem for many kinds of DEA

models using the envelopment form. The solution to this problem also suggests a strictly

more e�cient DMU combination for an ine�cient DMU or portfolio. In the case of connected

production possibility set, DEA models also have a ratio form that allows us to access input

and output weights. Through the ratio form, preference information about relative values of

inputs and outputs can easily be added as linear constraints also in the envelopment form of

the model. In addition, we have considered general DEA e�ciency in the REA framework by

de�ning generalized e�ciency ratio and introducing the concept of dominance.

We have mainly focused on the connected production possibility sets, since the ratio form

is not sensible in discrete cases because it is not equivalent to the envelopment form. Thus,

it would be of interest to examine the DEA theory more carefully for discrete production

possibility sets. For example, we have seen that preference information about relative values

of inputs and outputs can also be included in the discrete case, but its e�ects has not been

analyzed. Also, discrete portfolio DEA models possibly have observable correspondences with

portfolio decision analysis (e.g, Liesiö et al. 2008).

In addition, the concept of dominance could possibly be extended to re�ect the shape of the

production possibility set by restricting the free scalar weight. This is since the non-restricted

weight catches only the most obvious dominance relations, whereas the zero weight totally

ignores di�erent scales of DMUs. Especially, restricting the weight correctly would lead to

extend REA in the BCC case. However, restricting the weight sensibly seems to be di�cult,

particularly, if solving the dominance is wanted to remain a LP problem. Finally, it would be of

interest to examine how the results change when building the theory on output-oriented DEA

instead of input-oriented.
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Appendix 1: Data set

Input and output values of each DMU; `Dentists': number of dentists, `Hygienists': number

of dental hygienists, `Assistants': number of dental assistants, `W. Sum': weighted sum of

operations completed.
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Appendix 2: E�ciency scores without preference information

E�ciency scores of each DMU in di�erent DEA models without preference information.
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Appendix 3: E�ciency scores with preference information

E�ciency scores of each DMU in di�erent DEA models with preference information.

27



Appendix 4: Number of dominating DMUs

Number of dominating DMUs for each in four di�erent cases; `REA': REA, without preference

information; `FSW': free scalar weight, without preference information; `REA - PI': REA, with

preference information; `FSW - PI': free scalar weight, with preference information.
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