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In this thesis, a multiobjective simulation optimization procedure is presented. The

procedure is based on optimal computing budget allocation, which is modified to work

on multiobjective problems by using multi-attribute utility function and incomplete

preference information. This procedure is compared against an established multiobjective

computing allocation procedure and simulation experiments show that significant

computational savings can be achieved with a wide variety of problems. Results show

that if the decision maker is able or willing to give preference information, the proposed

procedure may save computational time in simulations.
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Tässä työssä esitellään monitavoitteinen simulointi-optimointi menetelmä. Menetelmä

perustuu olemassa olevaan optimal computing budget allocation menetelmään, jota on

muutettu toimimaan monitavoitteisissa ongelmissa. Muutokset perustuvat moniatribuuttiseen

hyötyfunktioon ja epätäydelliseen preferenssi-infromaatioon. Menetelmää verrataan toiseen

olemassa olevaan monitavoiteoptimointiin tarkoitettuun menetelmään. Simulointikokeiden

perusteella uudella menetelmällä voidaan saavuttaa merkittäviä säästöjä laskenta-ajassa,

jos menetelmää käyttävällä päätöksentekijä voi tai haluaa ilmoittaa hyötynsä.

Asiasanat: monitavoitteinen ranking and selection, simulointi-optimointi,

epätäydellinen preferenssi-informaatio
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1 Introduction

Ranking and selection (R&S) procedures in discrete-event simulation optimization are

statistical methods for selecting the best simulated system design or a subset containing

the best design from a set of competing designs (Swisher et al., 2003; Kim and Nelson,

2007). Most existing R&S procedures are concerned with a single measure of performance.

Although frequently assessed in practical settings only few R&S procedures allow multiple

performance measures (Morrice et al.; Butler et al., 2001; Swisher and Jacobson, 2002;

Teng et al., 2007; Lee et al., 2008; Teng et al., 2010; Lee et al., 2010). This thesis

presents a new procedure for multiple performance measure R&S based on multi-attribute

utility theory (Keeney and Raiffa, 1976) and an existing R&S procedure designed for a

single performance measure (Chen et al., 2000). In particular, the presented procedure

incorporates incomplete preference information from a decision-maker (DM) seeking the

best design.

The existing literature on R&S for multiple performance measures is twofold. First,

Morrice et al.; Butler et al. (2001); Swisher and Jacobson (2002) combine multiple per-

formance measures into a single one through a multi-attribute utility function. Then,

R&S procedures for a single performance measure can be utilized for determining the

design with the maximum expected utility. Second, Teng et al. (2007); Lee et al. (2008);

Teng et al. (2010); Lee et al. (2010) develop procedures for determining all non-dominated

designs. A design is non-dominated if it is non-inferior to any other design with respect

to all performance measures. These procedures are extensions of the optimal computing

budget allocation (OCBA) procedure developed in (Chen et al., 2000). In OCBA, an

expression for the probability of correctly selecting the best design given an allocation

of computing budget, i.e., simulation replications for determining the performance of the

designs is found. Further simulation replications are allocated to the designs by maxi-

mizing the probability of correct selection assuming an infinite number of replications.

By updating the allocation when an incremental number or replications have been per-

formed, a sequential procedure for efficiently determining the best design is obtained.

The versions for multiple performance measures are similar, but maximize a probability

of correctly identifying the non-dominated designs.

The R&S procedure presented in this thesis lies methodologically in the intersection of the

procedures described in (Morrice et al.; Butler et al., 2001; Swisher and Jacobson, 2002)

and in (Teng et al., 2007; Lee et al., 2008; Teng et al., 2010; Lee et al., 2010). The multiple

performance measures are combined into single one through a MAU utility function, but
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the procedure additionally incorporates incomplete preference information (White et al.,

1984; Kirkwood and Sarin, 1985; Hazen, 1986; Weber, 1987; Salo and Hämäläinen, 1992).

The utility of a design does not therefore obtain a unique scalar value, but a range of

values. The objective of the presented procedure is to determine the designs that are

non-dominated based on the utilities, i.e., the incomplete preference information. Thus,

instead of seeking a single utility maximizing design, a subset of designs is obtained. This

is accomplished by expressing the probability of correctly identifying the preferentially

non-dominated designs given an allocation of simulation replications among the designs.

Further replications are sequentially allocated by maximizing the probability under the

assumption that the computing budget is unlimited, similar to the OCBA procedure.

The presented procedure can thus be regarded as an extension of OCBA to multiple

performance measure R&S with incomplete preference information.

The DM may be unwilling or incapable of giving a complete specification of preferences.

In the procedures described in (Morrice et al.; Butler et al., 2001; Swisher and Jacobson,

2002), for instance, the DM states his preferences prior to evaluating the alternative

designs. The difficulty is that the DM is required to provide a complete specification of

preferences without accurate information of the ranges of the values of the performance

corresponding to the designs. In the procedure presented in this thesis, the DM also gives

preference statement prior to the evaluation of the designs. Since incomplete statements

are allowed, however, the DM has room for preferential uncertainty and should be more

confident in giving the statements. In comparison to the multiple performance measure

OCBA procedures (Teng et al., 2007; Lee et al., 2008; Teng et al., 2010; Lee et al.,

2010), the benefit of the presented procedure is the possibility for computational savings

that come with the prior expression of preferences. Since all non-dominated designs

do not have to be identified, simulation replications can be primarily allocated to a

subset of these designs that are preferentially non-dominated or nearly preferentially

non-dominated. The preferentially non-dominated designs may thus be identified with

the same level of confidence as the non-dominated designs, but with fewer simulation

replications. Although the magnitude of the saving in computing effort depends on the

preferences and the designs to be compared, the illustrative examples presented in this

thesis imply that such benefits can be significant.

The thesis is organized as follows. Section 2 introduces the use of the MAU function

incorporating incomplete preference information for comparing the alternative designs.

Section 3 presents the R&S procedure based on OCBA for sequentially allocating simu-

lation replications among the designs and identifying the absolutely non-dominated de-

signs with high level of confidence. Section 4 illustrates the application of the procedure
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through several example problems and analyses the computational savings compared to

OCBA procedures for multiple performance measures. Concluding remarks are given in

Section 5.
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2 Multi-attribute utilities and incompletely specified

preferences

Multiobjective ranking and selection is about determining the best design from a finite

set of alternatives, which all have multiple performance measures that are evaluated with

stochastic simulation. Xk = (Xk1, . . . , Xkn) denotes the random variables corresponding

to n performance measures of the design k. This section describes how designs with

multiple performance measures can be compared by the means of multi-attribute utility

theory. The goal is to determine a subset of preferred designs that is consistent with

preferential information given by a decision-maker.

2.1 Multi-attribute utility function

The comparison of the designs is based on a multi-attribute utility (MAU) function. The

MAU function determines a utility value that describes the performance of a design. The

value is based on performance measures of the design and the preferences of the decision-

maker. Value of a single performance measure is determined with a single-attribute utility

function that maps the value to a range [0, 1]. The decision-maker determines the relative

importance of the performance measures with weights. Additive MAU function is

u(Xk) =
n∑

i=1

wiui(Xki), (1)

where ui, i = 1, . . . , n are single-attribute utility functions and wi ∈ [0, 1], l = 1, . . . , n are

weights, for which holds
∑n

i=1 wi = 1.

Additive MAU function can be used if attributes are assumed to be additively indepen-

dent, which means that the preference of one attribute is not dependent on the values

of other attributes (Keeney and Raiffa, 1976). Additive MAU function is one of several

different MAU functions and it is chosen in this work because of its simplicity and easy

implementation to the R&S problem. It has also been found to be robust even if the

additive independence assumption does not completely hold (Keeney and Raiffa, 1976).

When comparing designs, design k is preferred to design l if and only if E[u(Xk)] >

E[u(Xl)], that is, the the expected utility of design k is higher than that of design l.
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2.2 Incomplete information

The description of the preferences of the DM through the MAU function (1) is widely

accepted and applied. However, it requires the DM to evaluate exactly the single-attribute

utility functions and the weights in the MAU function. In some occasions, the DM may be

unwilling or incapable of doing such evaluations. In the decision theoretic literature, this

difficulty has been addressed in several instances by methodology that allows incomplete

evaluations by the DM.

The incomplete information can relate to both the MAU function and the probabilities

of the distributions of the measures of the design (Xki, k = 1, . . . , K, i = 1, n). With no

loss of generality, we restrict the consideration of incomplete information to concern the

weights of the additive MAU function.

A wealth of studies have considered techniques for eliciting incomplete preferences from

the DM for the construction of the utility function, i.e., single-attribute utility functions

and the weights. In this thesis, these techniques are not considered, since the focus is

on making the strongest possible inferences given a set of preference information and a

limited computing budget for determining the performance of the designs. For discussion

of preference elicitation, the reader is referred to (e.g. Keeney and Raiffa, 1976; von

Winterfeldt and Edwards, 1986)

Incompletely specified weights are presented as intervals, instead of exact values. As a

result, there are several different ways to determine the dominance relations between the

designs. First, design k is said to dominate design l according to pairwise dominance

if the expected utility of k is higher for all feasible weights. Formally, E[u(Xk|w)] >

E[u(Xl|w)] ∀w ∈ W, where u(Xk|w) is the additive MAU function (1) conditional on

the weights w = (w1, . . . , wn) and W the set of all feasible weight vectors. Second,

design k dominates design l according to absolute dominance if the expected utility of

k over all feasible weights is higher than the expected utility over all feasible weights,

i.e., E[u(Xk|w)] > E[u(Xl|w′)] ∀w,w′ ∈W. Absolute dominance is a more restrictive

condition in the sense that an absolutely dominated design is also pairwise dominated

but the opposite is not true.

Figure 1 shows an example illustrating different dominance relations. Figure shows pos-

sible values of MAU functions (1) with different weights for five different designs with

two performance measures. Weights for both measures are limited between 0.3 and 0.7.

Pairwise dominance relations in this example are: design 5 dominates designs 1, 2, and
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4, design 4 dominates designs 1 and 2 and design 3 dominates designs 1 and 2. Absolute

dominance relations are otherwise the same, except design 3 does not dominate design 1.
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Figure 1: Relation of dominance definitions.

The dominance relations do not yield a complete ranking for the designs and there is

no unique way to determine the ranking. Several decision rules utilizing the preference

information as well as the information on the performance of the designs are available

though (Weber, 1987). According to Weber (1987), the rule that is applied should in-

corporate all information that is gathered so far in the analysis. Sorting of the designs

with respect to highest or lowest expected utilities may therefore be undesirable, since

some of the preference information is omitted (i.e., only the most favourable or un-

favourable outcomes are considered).Weber (1987) suggest decision rules that are based

on expressing the strength of preference between pairs of solutions. Let the difference

in expected utilities for the kth and the lth design with weights w be denoted with

h(Xk,Xl|w) = E[u(Xk|w)] − E[u(Xl|w)]. If one assumes a given probability distribu-

tion for the weights over the set of all feasible weights, the strength of preference for

the kth design over the lth design can be expressed as the probability that k has higher

expected utility:

d(Xk,Xl|W) = P (h(Xk,Xl|w̃) ≥ 0) , (2)
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where w̃ are random weights that belong to the set W. If d(Xk,Xl|W) is larger than

0.5 one can regard that the kth design is preferred to the lth design.

2.3 Dominance and ranking with simulated performance

In this thesis, techniques for identifying absolutely dominated designs by utilizing stochas-

tic simulation to determine the performance of the designs are considered. These tech-

niques allocate simulation replications among the designs so that the non-dominated

designs can most likely be identified. Absolute dominance is considered because it al-

lows existing and proven R&S techniques to be used in the allocation of the replications.

For pairwise dominance, the question of how to allocate computing effort becomes con-

siderable more difficult and there is no apparent way to apply existing techniques for

the task. Although the use of absolute dominance prohibits the identification of pairwise

dominated designs, it still allows to eliminate several poor designs from consideration and

thus benefits the DM. For the purpose of identifying the absolutely dominated designs,

the lowest and highest utilities of design k are defined as:

u(Xk|W) = min
w∈W

u(Xk|w), (3)

u(Xk|W) = max
w∈W

u(Xk|w). (4)

Based on m independent simulation replications, the lowest and highest expected utilities

of design k are estimated through:

û(Xk1, . . . ,Xkm|W) = min
w∈W

1

m

m∑
j=1

n∑
i=1

wiui(Xkij), (5)

û(Xk1, . . . ,Xkm|W) = max
w∈W

1

m

m∑
j=1

n∑
i=1

wiui(Xkij), (6)

where Xkj = (Xk1j, . . . , Xknj) are random variables representing the performance of the

kth design in the jth simulation replication. Design k is regarded as dominating design

l if û(Xk1, . . . ,Xkm|W)] > û(Xl1, . . . ,Xlm|W).

Simulations are allocated to different designs based on absolute dominance. Pairwise

dominance and the ranking of the designs can be determined based on the performed
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simulations. Pairwise dominance and ranking based on simulated performance of the

designs is shortly described. First, the expected utility of the kth design with weights w

based on m independent simulation replications is estimated through:

û(Xk1, . . . ,Xkm|w) =
1

m

m∑
j=1

(
n∑

i=1

wiui(Xkij)

)
. (7)

The kth design is regarded as dominating the lth design according to the pairwise domi-

nance if û(Xk1, . . . ,Xkm|w) > û(Xl1, . . . ,Xlm|w) ∀w ∈W.

Finally, the strength of preference for the kth design over the lth design (2) is estimated

through

d̂(Xk1, . . . ,Xkm,Xl1, . . . ,Xlm|W) =

1

M

M∑
j=1

1 (û(Xk1, . . . ,Xkm|w̃j)− û(Xl1, . . . ,Xlm|w̃j) ≥ 0) , (8)

where w̃1, . . . , w̃M are drawn randomly from W according to their assumed distribution.
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3 Optimal computing budget allocation procedure

This section describes a procedure for determining the absolutely non-dominated designs

with high level of confidence using a limited total computing budget, i.e., number of sim-

ulation replications. This procedure is based on the optimal computing budget allocation

(OCBA) procedure presented in (Chen et al., 2000). In the original OCBA, the goal is

to determine the design that minimizes a single performance measure. Chen et al. (2000)

determine an expression for the probability that the design for which the estimated value

of the performance measure (based on given allocation of simulation replications) is actu-

ally the one with the minimum expected performance. Further simulation replications are

allocated among the designs by finding an allocation that asymptotically maximizes this

probability referred to as the probability of correct selection. By determining a new allo-

cation after a given amount of additional replications have been performed a sequential

R&S procedure is obtained.

Here, OCBA is applied for multiobjective R&S with incomplete preference information.

An expression for the probability of correctly selecting the non-dominated designs with

a given allocation of replications is given. Further, we show that the rules for allocating

further replication in OCBA can be applied for the maximization of this probability with

minor modification. As the result, a procedure largely similar to OCBA is obtained for

efficiently determining the absolutely non-dominated designs.

3.1 Probability of correct selection

The absolutely non-dominated designs have highest expected utility that is higher than

the maximum lowest expected utility of all designs. The other designs are dominated. Let

us denote the non-dominated designs, based on given allocation of simulation replications,

with S and the dominated designs with S̄. Since the estimators (6) of the lowest and

highest expected utilities are sample averages of independent random variables they can

be treated as approximately normally distributed. In order to simplify notation, we use

ûk = û(Xk1, . . . ,Xkm|W) to denote the estimator for the lowest expected utility of design

k and denote the estimator for the highest expected utility similarly. Further let b denote

the design with maximum lowest expected utility, i.e., b = arg maxi∈{1,...,K} ûi. Based on

the Bonferroni inequality, the probability of correct selection, i.e., that each design in S

is actually non-dominated and each design in S̄ is actually dominated can be expressed

as
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Pcs ≥ 1−
∑

k∈S,k 6=b

P
(
ûb > ûk

)−
∑

k∈S̄,k 6=b

P
(
ûk > ûb

)
. (9)

3.2 Rule for allocation of simulation replications

The derivation of the rule for allocating simulation replications among the designs to

maximize the probability of correct selection is similar to the derivation of the OCBA

procedure presented in (Chen et al., 2000). The steps of the reasoning are repeated here

for clarity and convenience. The optimization problem to be solved is

max
m1,...,mK

1−
∑

k∈S,k 6=b

P
(
ûb > ûk

)−
∑

k∈S̄,k 6=b

P
(
ûk > ûb

)

s.t.
K∑

k=1

mk = T, (10)

where mk is the number of simulation replications allocated to the kth design and T the

total computing budget. In (Chen et al., 2000), the strategy of solving (10) is to first

assume mk, k = 1, . . . , K continuous and ignore all associated non-negativity constraints,

express the Karush-Kuhn-Tucker (KKT) conditions of the Lagrangian relaxation of the

problem, and to investigate the relationships of mk, k = 1, . . . , K when T is assumed

infinite.

First, some additional notation is introduced. Let the negative absolute value of the

difference in the estimates for the lowest expected utility for design b and the highest

expected utility for design k be δbk = − |û(xb1, . . . ,xbmb
|W)− û(xk1, . . . ,xkmk

|W)| where

the xk1, . . . ,xkmk
refer to realizations of the performance measures for the kth design.

Further, the variance of the estimator for this difference is σ2
bk = σ2

b/mb + σ2
k/mk, where

σ2
b and σ2

k are the variances of the estimators for the lowest expected utility of design b

and the highest expected utility of design k. The above quantities are unknown but they

can be estimated from the realizations of the performance measures and the resulting

utilities. The summation terms in the objective function in (10) are now approximated

by:
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∑

k∈S,k 6=b

P
(
ûb > ûk

)−
∑

k∈S̄,k 6=b

P
(
ûk > ûb

) ≈
∑

k∈{1,...,K},k 6=b

∫ ∞

0

1√
2πσbk

e
− (x−δbk)2

2σ2
bk dx

=
∑

k∈{1,...,K},k 6=b

∫ ∞

− δbk
σbk

1√
2π

e−
t2

2 dt

The Lagrangian relaxation of (10) becomes

F = 1−
∑

k∈{1,...,K},k 6=b

∫ ∞

− δbk
σbk

1√
2π

e−
t2

2 dt− λ

(
K∑

k=1

mk − T

)
. (11)

It should be emphasized that this expression is exactly the same as in the derivation of

OCBA (Chen et al., 2000). The only difference is that δbk, k = 1, . . . , K, k 6= b refer to

the difference in the lowest expected utility of design b and highest expected utility of

design k instead of difference in expected value of a performance measure between the

best performing design and the other designs. Thus, the remaining steps in the derivation

of the allocation rule are exactly the same as in (Chen et al., 2000).

The KKT conditions for (11) are

∂F

∂mk

=
∂F

∂
(
− δbk

σbk

)
∂

(
− δbk

σbk

)

∂δbk

∂δbk

∂mk

− λ

=
−1

2
√

2π
exp

[−δ2
bk

2σ2
bk

]
δbkσ

2
k

m2
k(σ

2
bk)

3/2
− λ = 0, k = 1, . . . , K, k 6= b, (12)

∂F

∂mb

=
−1

2
√

2π

∑

k∈{1,...,K},k 6=b

exp

[−δ2
bk

2σ2
bk

]
δbkσ

2
b

m2
b(σ

2
bk)

3/2
− λ = 0, (13)

λ

(
K∑

k=1

mk − T

)
= 0, λ ≥ 0.

With the KKT conditions the relationship of mb and mk, k = 1, . . . , K, k 6= b can be

investigated. First, Equation (12) gives

−1

2
√

2π
exp

[−δ2
bk

2σ2
bk

]
δbk

(σ2
bk)

3/2
= λ

m2
k

σ2
k

, k = 1, . . . , K, k 6= b. (14)

15



Substituting (14) into (13) yields

∑

k∈{1,...,K},k 6=b

λm2
kσ

2
b

m2
bσ

2
k

− λ = 0, (15)

which further gives

mb = σb

√√√√
∑

k∈{1,...,K},k 6=b

m2
k

σ2
b

. (16)

Moreover, the relationship between mk and ml, k, l ∈ {1, . . . , K} , k 6= l 6= b needs to be

considered. From Equation (12),

exp


 −δbk

2
(

σ2
b

mb
+

σ2
k

mk

)

 · δbkσ

2
k/m

2
k(

σ2
b

mb
+

σ2
k

mk

)3/2
= exp


 −δbl

2
(

σ2
b

mb
+

σ2
l

ml

)

 · δblσ

2
l /m

2
l(

σ2
b

mb
+

σ2
l

ml

)3/2
. (17)

If the variances σ1, . . . , σK are assumed equal Equation (16) implies

mb =

√ ∑

k∈{1,...,K},k 6=b

m2
k. (18)

Thus, it appears that the number of replications allocated to the design b with the

maximum lowest expected utility is notably higher compared to the other designs. It

should be noted that this may not be true for the final allocation, since b might actually

correspond to different designs in different stages of budget allocation (recall that the

allocation is done sequentially) as the the utilities of the designs are estimated with

increasing accuracy. During one stage, however, design b is allocated the most replications

since its utility may potentially affect the status of dominance for several designs. It is

thus assumed that mb >> mk, k ∈ {1, . . . , K} , k 6= b which allows to write Equation (17)

as

exp


 −δbk

2
(

σ2
k

mk

)

 · δbkσ

2
k/m

2
k(

σ2
k

mk

)3/2
= exp


 −δbl

2
(

σ2
l

ml

)

 · δblσ

2
l /m

2
l(

σ2
l

ml

)3/2
. (19)
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Rearrangement further gives

exp


1

2


 δbl

σ2
l

ml

− δbk

σ2
k

mk







√
ml

mk

=
δblσk

δbkσl

, (20)

and taking natural logarithm yields

δ2
bl

σ2
l

ml + log(ml) =
δ2
bk

σ2
k

mk + log(mk) + 2 log

(
δblσk

δbkσl

)
. (21)

Letting the total computing budget tend to infinity, i.e., T → ∞, the logarithm terms

become negligible compared to other terms. Thus, with minor rearrangement

mk

ml

=

(
σk/δbk

σl/δbl

)2

, k, l ∈ {1, . . . , K} , k 6= l 6= b. (22)

In the beginning of the derivation, all non-negativity constraints on mk, k = 1, . . . , K

were ignored. According to Equations (16) and (22), mk, k = 1, . . . , K are, however, non-

negative since they all have the same sign and must sum up to the total computing budget

T . Further, if mk, k = 1, . . . , K satisfy Equations (16) and (22), the KKT conditions hold

and a local optimal solution is obtained. The result is that the approximate probability

of correctly identifying the non-dominated solutions is asymptotically maximized when

computing budget is allocated according to the equations.

3.3 Summary of the multiobjective R&S procedure

With the computing budget allocation rules implied by Equations (16) and (22), the

complete allocation procedure is described as follows.

0. Determine the total computing budget T , the number of additional replications

∆ and the number of initial replications m0. Set the iteration counter to j ← 0.

Perform m0 simulation replications for each design such that mj
1 = mj

2 = . . . =

mj
K = m0, where mj

k is the number of replications performed for the kth design

after the jth iteration.
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1. If
∑K

k=1 mj
k ≥ T , go to step 4.

2. Calculate the new allocation of computing budget mj+1
1 , . . . ,mj+1

K according to

Equations (16) and (22) by using
∑K

k=1 mj
k + ∆ as the intermediate total com-

puting budget at iteration j + 1.

3. Perform max(0,mj+1
k ) additional replications for each design k ∈ {1, . . . , K}. Set

the iteration counter to j ← j + 1. Go to step 1.

4. Determine the set of non-dominated solutions based on the final allocation mj
1, . . . , m

j
K .
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4 Numerical experiments

OCBA procedure’s probability of correctly determining the absolutely non-dominated

designs is tested with numerical experiments. OCBA procedure is compared against

multiobjective computing budget allocation procedure (MOCBA) (Chen and Lee, 2010).

MOCBA allocates simulation replications among the designs so that non-dominated de-

signs, in terms of traditional dominance, are identified with a high level of confidence.

Procedures are tested with two different problems. First problem has nine predetermined

designs which all have two performance measures. In the second problem procedures are

tested with randomly generated problems. These problems include 50 different designs

that have two performance measures with means that are randomly selected.

4.1 Example problem

OCBA and MOCBA procedures are compared in the case where the decision maker

wants to find the absolutely non-dominated designs by using the MAU function and

imprecise information. First, performance estimates are gathered from the procedures.

Second, absolutely non-dominated designs are found using these estimates. These es-

timated dominances are then compared against dominances calculated from the actual

means of the performance measures.

Problem of nine designs with two performance measures is shown in Table 1 and Figure

2. There are five non-dominated designs, which are marked with a red circle and three

absolutely non-dominated designs, which are marked with a black cross. Variance of 22

is used for all performance measures. Weights of the performance measures are bounded

[0.3 0.6] and [0.4 0.7]. Lowest and highest utilities calculated with these weights are

shown in table 2.

Table 1: Mean values of the performance measures of the designs.

design # 1 2 3 4 5 6 7 8 9

Measure 1 0.0 0.67 2.5 5.0 1.1 2.2 4.0 2.4 3.5

Measure 2 5.0 2.5 0.67 0 4.0 2.2 1.1 3. 2.4

Figure 3 shows the probability of correct selection of the preferentially dominated set

for both procedures with computing budgets from 400 to 2000. OCBA finds the abso-

lutely non-dominated sets with a higher probability. MOCBA is more accurate when
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Table 2: Highest and lowest utilities of the designs.

design # 1 2 3 4 5 6 7 8 9

Highest utility 3.5 2.0 1.8 3.0 3.1 2.2 2.8 3.2 3.1

Lowest utility 2.0 1.4 1.2 1.5 2.3 2.2 2.0 2.8 2.7

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

Figure 2: Means of the performance measures of the designs. Non-dominated designs

are marked with red circles, dominated designs with blue squares and absolutely non-

dominated designs with black crosses.

determining the non-dominated set. This is not surprising, as these procedures aim to do

different things. OCBA procedure tries to find the absolutely non-dominated designs and

MOCBA tries to find the non-dominated set. OCBA is more accurate in determining the

absolutely non-dominated designs than the MOCBA is at determining the non-dominated

set.

Table 3 shows how the procedures allocated replications between different designs. MOCBA

procedure allocates replications to designs that are non-dominated, or close to being non-

dominated symmetrically(its a symmetrical problem), designs 2 and 3, 5 and 7 and 8 and

9 receive almost equal amounts. OCBA allocates to designs that are absolutely non-

dominated, or close to being absolutely non-dominated. For example design 7 gets more

replications than design 6, which is different from MOCBA.
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Figure 3: PCS for absolutely non-dominated and non-dominated sets of OCBA and

MOCBA procedures.

Table 3: Percentage of replications allocated between designs %.

design # 1 2 3 4 5 6 7 8 9

OCBA 13.0 14.7 26.1 13.9 4.6 7.8 16.8 1.3 1.8

MOCBA 8.0 26.4 25.8 3.0 4.2 21.0 6.2 2.7 2.7

Table 4 shows which designs were classified wrong, absolutely non-dominated designs

were classified as absolutely dominated, or the other way around. Designs 1, 4 and 7

seem to be the most difficult to determine correctly. These are also the designs whose

lowest utilities are closest to the highest utility of the dominating design 3.

Table 4: Number of times which each design was classified wrongly.

design # 1 2 3 4 5 6 7 8 9 total

OCBA 430 114 31 257 98 66 443 8 5 1452

MOCBA 790 188 19 656 70 244 537 1 8 2513
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Table 5: Preference weights, simulations budgets, and OCBA and MOCBA PCS with

randomized problems.

w1 0.3-0.6 0.3-0.6 0.4-0.5 0.4-0.5 0.1-0.9 0.1-0.9

w2 0.4-0.7 0.4-0.7 0.5-0.6 0.5-0.6 0.1-0.9 0.1-0.9

T 1000 2000 1000 2000 1000 2000

OCBA PCS 65.8 77.2 80.2 88.4 18.1 33.3

MOCBA PCS 50.5 59.2 66.9 73.7 9.7 12.2

4.2 Randomly generated problems

In this section, OCBA and MOCBA procedures are compared with randomly generated

test problems and with different weight combinations. Each problem consist of 50 different

designs, each with two performance measures. Both procedures use same designs and

new replications are made according to the procedures. Probability of correct selection

is estimated by finding the absolutely dominated and absolutely non-dominated designs

from the simulation outcomes.

True performance measures of the designs are generated from a uniform distribution on

the range of from 0 to 10. Values of the performance measures in simulation replications

are generated from a normal distribution using true performance measures as means and

with variances of 22. Results from using 1000 different designs with different weight

intervals and computing budgets are shown in table 5.

OCBA procedure is more accurate than MOCBA in finding the absolutely non-dominated

sets. If Computing budget is increased from 1000 to 2000 both procedures have a better

change of finding all the absolutely non-dominated designs. When weight intervals are

defined with narrow weight intervals, both procedures perform better.
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5 Conclusions

Ranking and selection (R&S) methods are used to compare different designs, whose

performance are measured with stochastic simulation. The goal is to find the best or

a set of best designs, when computational resources are limited. These methods are

automatic procedures which determine how simulation replications are allocated between

different designs. Unlikely candidates for the best design receive less computational time

than the likely candidates.

In this thesis, a new multiobjective R&S method is proposed. The method is based on

an existing optimal computing budget allocation (OCBA) procedure. This procedure

is modified so that incomplete preference information can be used. Instead of finding

the best design, modified method aims to find all of the preferentially non-dominated

designs. Elimination of the dominated designs should make the decision of choosing the

best design easier for the decision maker (DM). In this thesis absolute dominance is used.

There exists other dominance relations, but absolute dominance is used because it is

compatible with existing R&S methods.

Incomplete preference information means that the DM is either unwilling or unable to

state his preference completely. Instead of stating his absolute preferences between differ-

ent performance measures, like time or money, the DM states his preferences on intervals.

The procedure presented in this thesis is tested with numerical experiments. Experiments

show that the procedure allocates most simulations to designs that are close to being

either dominated or non-dominated. This way the performance of these designs are most

accurately determined. This can mean that, in some cases, designs that are clearly non-

dominated receive only a little simulations and therefore their performance is measured

inaccurately. This maybe unfortunate, because the DM might be interested in relative

performances on the non-dominated designs.

The modified OCBA procedure is compared against multiobjective computing allocation

(MOCBA) procedure. The MOCBA procedure allocates simulations so that all of the

non-dominated designs are determined. Results show that the OCBA procedure is more

accurate in determining the absolutely non-dominated designs. The DM can therefore

save computational resources by allocating his simulations with the new procedure.

One drawback of the proposed procedure is that it requires the incomplete information

from the DM. It might not always be worth the trouble to determine the preference infor-

mation just to save computational time. But especially in decision making cases where
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the information is already available, this procedure may lead to significant computational

savings.

24



References

John Butler, Douglas J. Morrice, and Peter W. Mullarkey. A multiple attribute utility

theory approach to ranking and selection. Management Science, 47(6):800–816, 2001.

C. Chen and L.H. Lee. Stochastic Simulation Optimization: An Optimal Computing

Budget Allocation. World Scientific Publishing, Singapore, 2010.

Chun-Hung Chen, Jainwu Lin, Enver Y’́ucesan, and Stephen E. Chick. Simulation budget

allocation for further enhancing the efficiency of ordinal optimization. Discrete Event

Dynamic Systems: Theory and Applications, 10:251–270, 2000.

Gordon B. Hazen. Partial information, dominance, and potential optimality in multiat-

tribute utility theory. Operations Research, 34(2):296–310, 1986.

Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Preferences and

Value Tradeoffs. Wiley, 1976.

Seong-Hee Kim and Barry L. Nelson. Recent advances in ranking and selection. In

Proceedings of the 2007 Winter Simulation Conference The best is yet to come, pages

162–172, Piscataway, NJ, 2007. Institute of Electrical and Electronics Engineers Inc.

Craig W. Kirkwood and Rakesh K. Sarin. Ranking with partial information - a method

and an application. Operations Research, 33(1):38–48, 1985.

Loo Hay Lee, Ek Peng Chew, Suyan Teng, and Yankai Chen. Multi-objective simulation-

based evolutionary algorithm for an aircraft spare parts allocation problem. European

Journal of Operational Research, 189:476–491, 2008.

Loo Hay Lee, Ek Peng Chew, Suyan Teng, and David Goldsman. Finding the non-

dominated pareto set for multi-objective simulation models. IEE Transactions, 42(9):

656–674, 2010.

Douglas J. Morrice, John Butler, , and Peter W. Mullarkey.
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A Summary in Finnish

Tietokonesimulointia voidaan käyttää systeemien käyttäytymisen tutkimiseen. Simu-

lointi on hyödyllistä erityisesti tapauksissa, joissa mittausten suorittaminen oikealla sys-

teemillä ei ole mahdollista tai se on kallista. Simulointien suorittaminen voi kuluttaa

paljon laskenta-aikaa, mitä voidaan säästää suorittamalla vain tarpeellinen määrä simu-

lointeja.

Ranking & selection-menetelmiä (R&S) käytetään eri systeemien vertaamiseen, kun sys-

teemien suoritusta mitataan stokastisella simuloinnilla. Tavoitteena on löytää paras sys-

teemi tai parhaiden systeemien joukko, kun käytössä on vain rajallinen määrä laskentare-

sursseja. R&S-menetelmät määrittelevät, kuinka monta kertaa mitäkin systeemiä simu-

loidaan, jotta paras systeemi löytyy halutulla tarkkuudella, tai miten ennalta määrätty

määrä simulointeja kannatta jakaa systeemien kesken. Selvästi huonompia systeemejä

simuloidaan vähemmän kuin hyviä systeemejä.

Monitavoitteisella simullointioptimoinnilla tarkoitetaan tilanteita, kun simuloitavilla sys-

teemeillä on useampia eri mitattavia attribuutteja. Esimerkiksi voidaan olla kiinnos-

tuneita projektin kestosta ja hinnasta. Monitavoitteisia ongelmia on kirjallisuudessa

lähestytty kahdella eri tavalla. Ensimmäinen tapa on etsiä kaikki pareto-optimaaliset

systeemit. Tällä tarkoitetaan niitä systeemejä, joille ei löydy toista systeemiä, joka

on parempi kaikissa attribuuteissa. Toinen tapa on muuntaa monitavoitteinen ongelma

hyötyfunktion avulla yksitavoitteiseksi. Tähän ongelmaan voidaan sitten soveltaa yksi-

tavoitteisia R&S-menetelmiä.

Hyötyfunktio painottaa eri attribuutteja toistensa suhteen painoilla. Hyötyfunktion arvo

saadaan kertomalla jokaista attribuuttia sen painolla ja laskemalla kaikki yhteen. Päätök-

sentekijä kertoo preferenssinsä eri attribuuttien suhteen määrittelemällä painot. Jois-

sain tilanteissa päätöksentekijä ei pysty tai halua määritellä painoille yhtä tarkkaa ar-

voa. Tällöin päätöksentekijä voi määritellä jokaiselle painolle välin, jolle paino todel-

lisuudessa sijoittuu. Tätä kutsutaan epätäydelliseksi preferenssi-informaatioksi. Kun

hyötyfunktion painojen arvot on esitetty väleillä, myös itse hyötyfunktion arvo on jol-

lain välillä. Vaihtoehto on preferentiaalisesti absoluuttisesti dominoitu, kun löytyy yk-

sikin toinen vaihtoehto, jolle hyötyfunktio antaa kaikilla mahdollisillä painoilla paremman

hyödyn, päätöksen tekijän asettamien rajojen puitteissa. Tässä työssä käytetään abso-

luuttista dominanssia. Muitakin dominanassirelaatioita on olemassa, mutta absoluuttista

käytetään, koska se on yhteensopiva käytettävän menetelmän kanssa.
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Tässä työssä on esitetty uusi monitavoitteinen R&S-menetelmä. Menetelmä perustuu

olemassa olevaan yksitavoitteiseen menetelmään. Tätä menetelmää on muutettu siten,

että epätäydellistä preferenssi-informaatiota voidaan hyödyntää. Moniattribuuttien ong-

elma muutetaan yksiatribuuttiseksi hyötyfunktion avulla. Attribuuttien oikeiden arvojen

sijasta käsitellään systeemin hyödyn arvoa. Parhaan systeemin etsimisen sijaan tämä

menetelmä pyrkii etsimään kaikki preferentiaalisesti ei dominoidut systeemit.

Menetelmän toimii vaiheittain. Ensin jokaista systeemiä simuloidaan muutaman kerran,

jolloin saadaan jokaisen systeemin suorituksellle ensimmäiset estimaatit. Seuraavaksi

näiden estimaattien perusteella lasketaan menetelmän tuottamien sääntöjen mukaisesti,

kuinka paljon jokaista systeemiä simuloidaan seuraavassa vaiheessa. Näiden sääntöjen pe-

rusteella suoritetaan pieni määrä uusia simulaatioita, joiden perusteella saadaan uudet,

tarkemmat estimaatit. Näiden uusien estimaattien perusteella päätellään, miten seuraa-

vat simulaatiot jaetaan. Näin jatketaan, kunnes koko simulaatiobudjetti on käytetty.

Simulaatioiden jakamissäännöt on johdettu todennäköisyydestä, jolla estimaattien perus-

teella dominoidut systeemit ovat oikeasti dominoituja ja ei-dominoidut ei-dominoituja.

Säännöt painottavat lisäsimulointeja systeemeille, jotka ovat lähellä dominoinnin rajaa ja

systeemeille, joiden estimaatti on epätarkka.

Tämän työn menetelmää kokeiltiin simulointikokeilla. Kokeet osoittivat, että menetelmä

jakaa eniten simulointitoistoja niille systeemeille, jotka ovat melkein dominoituja tai ei-

dominoituja. Tällöin näiden systeemien suoritus mitataan tarkiten. Tämä tarkoittaa,

että joissakin tapauksissa selvästi ei-dominoituja systeemejä simuloidaan vähän ja niiden

suorituksen arvo jää epätarkaksi. Tämä voi olla ongelma, jos päätöksentekijä haluaa

verrata ei-dominoitujen systeemien suoritusta keskenään.

Tämän työn menetelmä verrattiin toiseen monitavoitteiseen menetelmään, joka pyrkii et-

simään kaikki pareto-optimaaliset systeemit. Simulointien perusteella tämän työn menetel-

mä vaikuttaisi löytävän preferentiaalisesti ei-dominoidut systeemit toista menetelmää

tarkemmin useimmissa tapauksissa. Tarkkuuden lisäys perustuu siihen, ettei simulointi-

toistoja tarvitse tuhlata sellaisiin systeemeihin, jotka ovat lähellä pareto-optimaalisuutta,

mutta kaukana preferentiaalisesta dominanssista. Päätöksentekijä voi siis säästää lasketa-

aikaa käyttämällä uutta menetelmää.

Esitetyn menetelmän yhtenä heikkoutena on se, että se vaatii preferenssi-informaatiota

päätöksentekijältä. Joissakin tapauksissa preferenssien määrittäminen voi olla hankalam-

paa kuin laskenta-ajan lisääminen. Mutta niissä tapauksissa joissa päätöksentekijä mää-

rittelee päätösprosessissa epätaydelliset preferenssit joka tapauksessa, voi uuden menetel-
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män käyttäminen aiheuttaa säästöjä laskenta-ajassa.
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