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1 Introduction

Global climate change has triggered a rising concern over energy consump-
tion, which has had an effect on the market in means of energy production
and in the increasing share of energy effective electric appliances available.
In addition to its ecological significance, reducing energy consumption has
an economical perspective to it. This study focuses on energy consumption
from a household point of view.

According to the survey by Mettler-Meibom and Wichmann [14], consumers’
estimates on energy consumption of specific end uses tend to deviate from
their actual values. Energy used for heating tends to be highly underesti-
mated, whereas energy used for appliances, lighting and cooking tends to be
overestimated.

Consumers overestimate also the effectiveness of short-term energy conser-
vation methods such as turning off the lights and underestimate long-term
solutions such as replacing an inefficient appliance or enhancing a home’s in-
sulation [9]. Better knowledge on the actual distribution of energy consump-
tion could help consumers make more meaningful decisions in their efforts
on energy conservation.

In this study a method for Non-Intrusive Load Monitoring (NALM or NIALM
or NILM) is proposed. The goal in energy disaggregation is to break down
total energy usage into energy usage of individual electric appliances. This
can be accomplished, for example, by recognizing patterns or by matching a
priori information on the data. The non-intrusiveness in NALM means that
the electrical infrastructure does not need any additional monitoring gadgets
since the data is collected from the total consumption meter only. During
the past few decades, numerous methods have been developed for this task.

Another aspect to the benefits of energy disaggregation is the possibility to
plan one’s energy consumption better with respect to time. The spot price of
electricity may vary strongly depending on the time of day, and thus the time
of consumption is of high importance. Many households nowadays also have
solar panels, which generates income dependent on the spot price. Therefore
a household with solar panels may gain double the profit by planning the
time of consumption wisely.

Household energy meters provide data primarily for billing reasons, but they
can be used for acquiring total energy consumption data for other reasons
as well. Nowadays there are special smart meters that gather and send the
consumption data forward and enable data collection for personal use.



The data for this study, however, is collected with a smart phone application
by observing the blinking lights that appear in most energy consumption
meters. The approach is therefore less dependent of the novelty of equipment
available, since only a smart phone is needed rather than a high-end smart
meter. In contrast to usual setups, the data used in this study does not
include any labels for the events nor does it contain any information about
the appliance configuration present in the sample household.

The rest of this study is structured as follows: The main principles of NALM
and related work is discussed in section 2. The method for collecting data
is introduced and the data is discussed in section 3. The proposed method
for energy disaggregation is presented in section 4. Finally the results are
summarized and further discussion is conducted in section 5.

2 Background

Traditional load monitoring [16]| requires complex hardware for data collec-
tion. This, however, is seldom possible and is not very scalable, which is why
NALM methods have become popular. They require only simple hardware,
but the complexity is in the software.

2.1 Non-intrusive Load Monitoring

Hart [6] divides NALM methods into two groups:

e Manual setup: A one-time intrusive period is required to setup the
monitoring. The intrusive period allows to recognize individual appli-
ance signatures and thus enables further monitoring without intrusive
instruments.

e Automatic setup: Only a priori information about the characteristics
of present appliances may be used.

Some studies ([8], [11]) dub methods that require manual setup as supervised,
in contrast to methods with automatic setup, which are dubbed as unsuper-
vised. In this study, an automatic setup approach is used, but without any
a priori information on the individual appliances.

As proposed by Hart [6], electrical appliances can be divided into three cat-
egories:



e Two-state: Appliances like light bulbs or toasters, which are simply
just ON or OFF on a constant level of power. This study focuses on
monitoring appliances from this category.

e Multistate: Appliances like washing machines and dishwashers, which
go through multiple ON states during the time they operate.

e Continuously variable: Appliances like light dimmers and variable-
speed tools, which have a continuous range of ON states. These ap-
pliances are difficult to monitor, since there are no step changes in the
power signal.

Hart [6] concentrates on low-frequency (1 kHz or slower) data, which prac-
tically only enables observation of steady states. Steady state observation
means the detection of phases where the power level somewhat stable for
a certain minimum amount of time. The phases between steady states are
called transients.

Leeb et al. [13] have studied NALM with high-frequency data (over 1 kHz).
When observing high-frequency data, is is possible to recognize the transient
fingerprints of appliances. Usually the transient phases are so fast that low-
frequency observation only enables the detection but not the characterization
of such phases. The sharper resolution on transient phases allows for more
elaborate sensitivity to individual appliances, since the method is then not
reliant only on the power level information.

Yang et al. [17] and Farinaccio and Zmeureanu [3] study the disaggregation
problem using detection of ON and OFF events. Farinaccio and Zmeureanu
[3] propose a pattern recognition approach, which is the approach of this
study as well.

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models that were initially
introduced by Baum and Petrie [2] and have thereafter been used successfully
in a wide range of applications, such as speech recognition [15]. They are an
extension to Markov models, and consequently states are not observable but
rather connect to the system output through a probability distribution.

Ghahramani and Jordan [4] introduced a generalization for HMMs, where the
hidden state is factored into multiple state variables. These generalizations
are called factorial hidden Markov models (FHMMs). FHMMs have been

widely applied in energy disaggregation problems (e.g. [10, 11]). Because of



their scalability when discovering multiple independent factors they perform
better in modeling time series of multiple appliances than HMMs, which
require exponentially many parameters in order to represent all the states

I10].

2.3 Deep Neural Networks

Kelly and Knottenbelt [8] present an open source solution for using deep
neural networks on energy disaggregation. Their benchmarking against FH-
MDMs and combinatorial optimization shows that their approach yields better
results.

Artificial neural networks (ANNs) consist of nodes which represent artificial
neurons and edges allow information to flow from one node to another. ANNs
have an input layer, an output layer and hidden layers between the two. Each
artificial neuron takes in the weighted sum of its inputs and passes the sum
through its activation function and thus produces its output. The process of
information going from the input layer to the output layer through hidden
layers is called a forwards pass. (8]

Setting up a neural network means updating the weights for the connections
between the neurons. The goal is to minimize the error between the network
output and the expected output. Considering the amount of parameters in
the model, plain enumeration of the error surface is usually not an option.
Hence algorithms like back propagation must be used. [8]

Because of the amount of parameters, neural nets require a huge amount of
training data. In deep learning applications, it is common to produce training
data by duplicating and slightly modifying the real training data. In some
applications one might even create simulated data. In energy disaggregation
it is possible, for example, to artificially create data by randomly combining
different appliance outputs. [§]

3 Data

There exist a few popular benchmarking datasets for energy disaggregation
like the REDD dataset [12], the UK-DALE dataset [7] and the BLUED
dataset [1|. In this study, however, we use a different dataset in order to
study the possibilities of the equipment and software used.



The data has been collected from a single household in Espoo, Finland in
the summer 2016 by using the mobile application iSmartMeter!. The iSmart-
Meter application tracks the LEDs of a smart meter that blink according to
the energy that is used. The power consumption can thereby be calculated
by observing the interval between the blinks. For example, the active power
LED blinks every 5 seconds. One blink corresponds to one Wh (Watt-hour)
of energy, so the power is 360;)—;/]1 x 1Wh = 720W. Since we only know the en-
ergy consumption by the resolution of one Watt-hour, we may only calculate

the average power between the blinks.

The period of collection is 54 days. The household has a solar panel, which
disrupts the consumption data during daylight. The meters do not show,
whether the energy flow is inbound or outbound, so there are times, when
the solar panels produce more energy than is consumed and the drops in the
power signal are actually increments in the power consumption. Filtering
the solar panel power out from the data would require further research on
its characteristics in regard to weather and time of day, so in this study we
concentrate only on the data outside daylight hours.

In addition to the solar power, there seems to have been something interfering
with the data collection during the first 18 days and the last 3 days, which
makes the data strangely volatile. For this reason, we omit those days from
the data as well.

4 Emnergy Disaggregation

In this section we propose an energy disaggregation method that uses hier-
archical clustering to combine the events into groups that could be from one
individual appliance. First the data is denoised and then the steady state
periods are recognized after which the events are clustered by hierarchical
clustering.

4.1 Denoising

As can be seen in figure 1, the data collection method used in this study
generates some error measurements, when blinks are either missed or detected
twice. To filter out these mismeasurements, we must drop out all values that
clearly stand out from their adjacent values.

Thttp: //www.ismartmeter.com



Let V be the measurement value vector. First we calculate the difference
vector V' for the value vector and the difference vector V" for the difference
vector. We take out the value on index ¢ if V! | > 7 and |V ,| > ¢ = |V 4],
where 7 is the threshold value for the difference and ¢ is the threshold factor
for the second difference. We use 7 = 1000/ and ¢ = 1.8. The filtered data
is shown in figure 2.
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Figure 1: Data before denoising
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Figure 2: Data after denoising

4.2 FEvent Recognition

In our approach, the biggest challenge is event recognition. The data is split
up into events that consist of a step up followed by a step down in the power
level. These events will be further analyzed and clustered in section 4.3.



In order to spot the appliances in the data, we begin by examining the points
where power level rises over a threshold value of 5 and a percentage threshold
level of ps. For each such point we examine the next ng points for a beginning
of an event. Starting from the first beginning point candidate, we look at
the next n. points for a possible constant power level. The level is constant
if a maximum of ¢, events deviate from the value of the beginning point at
maximum by the threshold deviation t.. In order to prevent duplicate events
from being created on a single true event, subsequent points that surpass the
threshold levels may only produce one event.

If a candidate for a constant power level phase is found, we examine the n,
events before the first deviation (i.e. the point where power level rises at
least t5). These events form the base level in determining the power value
for the event. An additional requirement for an event to be acknowledged is
that the base level events all be at least t5 below the mean value of the event
values inside the threshold interval. If all the requirements apply, an event is
recognized. The power value is determined as the difference of the mean of
the event values inside the threshold interval and the mean of the base level
events.

The previous procedure allows us to determine the beginning points for the
events. In order to determine the ending points, we conduct the same pro-
cedure, but with the data order inverted.

The next step is to combine the start and end points of the events. Our
implementation handles only step changes that do not occur simultaneously.
This means that if two or more appliances are either turned on or off simul-
taneously, the step change is interpreted as having only one source. Such
changes could be addressed to the corresponding step changes when followed
or preceded by multiple smaller step changes of a summed value same as the
change.

4.3 Hierarchical Clustering

Clustering is a task, in which objects are grouped into groups (clusters) so
that the objects in one cluster are more similar to one another than with
those of another group. Hierarchical clustering is a method which seeks to
form a hierarchy of clusters.

In order to cluster the events, we need to standardize the data so that the
variables would have a controlled influence on the outcome. Here we stan-
dardize the data so that for each variable the mean is zero and the standard



deviation is one. The new value z;; for each value v;; can thus be calculated
as:

7y ==, M

where m; is the sample mean of the variable j and ¢; is the sample standard
deviation for the variable j.

There are numerous ways to determine the distance between two measure-
ment points for the clustering method. It depends on the context, which
metric is the most suitable. In our case we use the most common metric,
Euclidian distance, to determine the distance between two points.

In order to decide which cluster composition is optimal, one must decide
on the linkage criteria. There are many ways to determine the distance be-
tween groups as well. Some of the most common criteria are single-linkage,
complete-linkage, UPGMA and UPGMC. In single-linkage clustering the dis-
tance is counted as the minimum distance between any two objects not in the
same group, whereas in complete-linkage the maximum distance is taken into
account. UPGMA determines the distance between two clusters as the mean
distance between points from different groups. In UPGMC the distance is
calculated as the distance between the centroids of the two groups.

In this study, we use Ward’s linkage as our linkage criteria. Ward’s linkage
determines distance between two clusters as the increase in the sum of squares
of the distances between all objects within the cluster that would be the result
of joining the two clusters.

Hierarchical clustering methods are divided into agglomerative and divisive
methods. In the agglomerative approach, each object starts its own cluster,
which is then paired with another cluster until all the objects are connected.
Divisive methods start with one cluster, which is split recursively further
down the hierarchy.

In this study we use an agglomerative hierarchical clustering method. In the
initial setting every object forms its own cluster. The method proceeds by
combining the cluster such that every step is optimal for the cluster compo-
sition in means of the linkage criteria.

The results of hierarchical clustering are usually presented in a dendrogram.
A dendrogram is a hierarchical binary cluster tree, which shows the linkages
between clusters and their corresponding distances. The original clusters are
located on the horizontal axis and connected recursively with upside-down



U-links according to the progress of the clustering method. The height of
the links represent the distance between the clusters connected.

5 Results

We set the following parameters for the algorithm explained in section 4.2:
ts = 25, ps = 5%, ns = 20, n, = 20, t,, = 4, t, = 20 and n; = 2. Because there
is no ground data, there is no good way to determine well-defined evaluation
criteria for the algorithm. The calibration is thus conducted based on human
evaluation. A few snapshots of the real data and the recognized events are
shown in figure 3.

From the snapshots in figure 3 we may conclude that the algorithm recognizes
events from the data decently, yet there is room for improvement. Events
appearing solo over a steady baseline are recognized easily, but there are
difficulties in handling noise and multiple simultaneous events.

The hierarchical clustering produces a dendrogram, which is presented in the
figure 4. From the dendrogram we can assess, into how many clusters we
should group the events. We note that with four clusters the clusters should
be rather distant from each other, which we can verify from figure 5. With
nine clusters there are still clear clusters, but from the figure 6 we see that
the distance comprises mainly of the distance in the duration dimension.

The clustering figures 5 and 6 show that the household has appliances with
different mean power consumption levels. Two main groups in the power
level are clearly visible. The event on the higher power level seem to have a
somewhat constant duration compared to that of the even on the lower level.

6 Discussion

The algorithm proposed in this study produces usable results in disaggregat-
ing electrical appliance data. The lack of ground truth prevents any use of
popular disaggregation methods, although it also causes the validation of the
proposed method to remain rather minuscule.

A big problem with the algorithm is its parameters. Labeling the data by
hand with the desired level of accuracy would enable better calibration, which
could easily be executed even by brute force since the data amount is so small.
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event data that is the aggregate values of the events recognized by the algo-
rithm proposed in this study
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Figure 4: Dendrogram for the hierarchical clustering.

Figure 5: Data grouped into 4 clusters according to the preprocessed vari-
ables. The horizontal axis represents the event duration variable and the
vertical represents the power level variable.
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Figure 6: Data grouped into 9 clusters according to the preprocessed vari-
ables. The horizontal axis represents the event duration variable and the
vertical represents the power level variable.

The calibration would require some metric for determining the accuracy of
the recognition process. But even with better calibration there is little guar-
antee on the robustness of the algorithm over different applications.

The algorithm lacks the ability to detect events that start (or end) simul-
taneously but end (or start) at a different time. Such events are not rare
in the data used in this study. One could split up an on or off transient,
when two or more nearby transients would sum up to the complement of
its value. It would, however, require a more robust method for detecting
the transients. With the current method we have to allow a wide margin in
deviation between the on and off transients, which would become a problem
when splitting the transients and matching them with smaller ones.

The proposed event detection algorithm does not take into account the time
dimension as such, but rather just handles data through indices. This ap-
proach makes it harder to handle data with floating frequency. In this case
the data frequency rises along with the power level, which is why high power
levels are not that well identified by the algorithm. Of course the data used in
this study could practically be transformed into having a constant frequency.

The frequency problem does not apply only to the algorithm but also for the
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data collection method, which seems to create some noise around the signal
on high power levels. On a level of 3600 W a smart meter blinks once a
second, so the blink of light is somewhat too slow a sign to observe. Thus
some kind of smoothing should probably be conducted on the data. This
could be done simply by the moving average method, for example.

The figures 5 and 6 clearly show an entire group of outliers in the data. In
practice the main interest in energy conservation is in the appliances that
consume most energy, but given the goal of this study, it would be worth
examining the data after ruling out the high power events. The same result
could be obtained, of course, by determining a metric that would emphasize
the differences in lower power levels. Also, the weight on differences in the
event durations could be assessed better. It is not even that important a
factor in recognizing an appliance, since you may well use the same appliance
(e.g. TV) for 5 minutes or 5 hours.

The data used in this study contains output power of a solar panel, which is
hard to filter out, especially because of the power data getting inverted when
the solar power exceeds consumed power. Because one of the motivations
of this study is the possibility to optimize energy consumption in regard to
solar panel output, separating the signal would be useful. Furthermore even
forecasting the solar power in the system with the help of weather forecast
data could be possible. Gupta et al. [5] have a patent claim on applications
related to solar energy disaggregation.
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