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Introduction 1

1 Introduction
Multiple target tracking methods aim to estimate the states of targets using noisy
measurements. These methods have been used in diverse application areas of multiple
object systems research, such as traffic control [Blackman, 1986], oceanography [Lane
et al., 1998], computer vision [Cham and Rehg, 1999] and estimation of wild animal
populations [Abbas, 2011] [Kokkala and Särkkä, 2015].

Multiple target tracking is inherently more complicated than tracking single targets.
Whereas the main challenges in single target scenarios lie in defining a dynamic model
of the target and detecting clutter measurements, in multiple target scenarios one has to
be able to solve the problem of data association, i.e., assigning the measurements to the
different targets. The problem of data association is complicated by that the number of
targets is generally not known, but has to be estimated from the measurements.

Different approaches to multiple target tracking exist, ranging from heuristics (such
as nearest-neighbour association [Blackman, 1986]) to methods based on probabilistic
models. The latter includes methods such as Joint Probabilistic Data Association
(JPDA) [Fortmann et al., 1980], Probability Hypothesis Density filters (PHD) [Mahler,
2003] and Rao-Blackwellized Monte Carlo Data Association (RBMCDA) [Särkkä
et al., 2004]. These methods differ, e.g., in the way they approximate the probability
distributions of the quantities of interest. The main focus of this independent research
project is RBMCDA, which uses Monte Carlo sampling to approximate the distribution
of the data associations.

The targets are often assumed to behave independently of each other. Such models
are widely applicable, especially in situations where there is no sufficient prior informa-
tion about the behaviour of the targets. However, in some applications it is natural to
assume that there are interactions between the target movements, e.g., when the targets
are expected to move in groups, or if the targets are expected to avoid or approach
certain locations. The term interaction is used here to refer to any probabilistic depen-
dencies between the target movements, regardless of whether the targets are truly aware
of each other. When these interactions are modeled, one should expect improvements
in the state estimates, and more accurate data associations and estimates of the number
of targets.

Several approaches to modeling target interactions are found in the literature. Khan
et al. [2004] use Markov random fields to learn the nature of the interactions between
the targets in real-time. Pang et al. [2011] propose group models for tracking of multiple
interacting targets that require simpler computational procedures than Markov random
fields. They consider both repulsive and attractive forces between the targets, and
present how the computations can be carried out efficiently with these models.

Models of the target dynamics generally contain unknown parameters, such as
variances related to the target accelerations, and strengths of the attractive forces
between the targets. These parameters can be tuned through experiments, or chosen
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based on prior information in the model construction phase. Another approach is to
estimate these parameters from the data. For example, Kokkala and Särkkä [2015]
showed how Particle Markov Chain Monte Carlo (PMCMC) methods can be used with
RBMCDA to compute posterior distributions of the parameters.

The objective of this research project is to extend the Rao-Blackwellized Monte
Carlo Data Association method to tracking of multiple interacting targets. The approach
taken to modeling interactions is to define them in the dynamic models of the targets.
The parameters of the models are estimated using the Particle Gibbs method. For
independent targets, this is done using the approach introduced in [Kokkala and Särkkä,
2015]. A slight modification is made to apply this approach to interacting targets.
Models with and without interactions are compared using simulations.

This report is organized as follows. Kalman filtering, smoothing and RBMCDA
are briefly reviewed in Section 2. The extension of RBMCDA for interacting targets
is presented in Section 3. The procedure for discretizing the dynamic models of the
targets is described in Section 4. The models of the target dynamics are developed in
Section 5. The parameter estimation method is described in Section 6. The performance
measure used in the simulations, the OSPA-T metric, is summarized in Section 7. The
models are compared using simulated data in Section 8. Conclusions and directions for
future work are presented in Section 9.

2 Tracking Methods
The necessary preliminaries, namely Kalman filtering, smoothing, and RBMCDA are
reviewed in this section. Some background in estimation and Bayesian statistics is
assumed. For detailed introductions, see, e.g, [Grewal and Andrews, 2008], [Särkkä,
2013] and [Särkkä et al., 2007].

2.1 Kalman Filtering and Smoothing
The Kalman filter [Kalman, 1960] is an optimal estimator for the state of a linear
dynamic system. It is used in multiple target tracking methods to solve the subproblem
of state estimation conditional on the data associations and the measurements. The
models of the target dynamics are expressed as linear time-invariant dynamic systems
in discrete time, defined by

xt = Ftxt−1 +wt (1)
yt = Htxt +vt , (2)
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where

• xt is the state vector of the targets at time step t.
• yt is the measurement at time step t.
• wt is a white noise process that represents deviations from the dynamic model.
• vt is a white noise process that represents the measurement errors.
• Ft is the transition matrix that describes the linear dynamics of the system at time

step t.
• Ht is the measurement model that describes the relationship between the mea-

surements and the state at time step t.

It is often assumed that wt and vt are normally distributed with zero mean, i.e.,

wt ∼N (0,Qt) vt ∼N (0,Rt), (3)

where Qt is the process noise covariance matrix, Rt is the measurement error covariance
matrix, and 0 is the zero vector. Once the matrices Ft , Ht , Qt , and Rt are defined,
the Kalman filter can be used to compute the optimal estimate of xt based on the
measurements.

The Bayesian interpretation of the Kalman filter is that it is an exact method to
combine the measurements and the prior information about the states to yield the
posterior distribution. The linear dynamic system with normally distributed random
terms can be formulated as

p(x0) =N (m0,P0) (4)
p(xt |xt−1) =N (Ftxt−1,Qt) (5)

p(yt |xt) =N (Htxt ,Rt), (6)

where x0 is the initial state, m0 is the prior mean, and P0 is the prior covariance matrix.
The Kalman filter is then understood as a method that solves the conditional mean and
conditional covariance terms mt , Pt , m−t , and P−t , defined by

p(xt |y1 . . .yt−1,xt−1) =N (m−t ,P
−
t ) (7)

p(xt |y1 . . .yt) =N (mt ,Pt), (8)

where mt is referred to as the filtered mean of xt . Solving the means and covariances
in equations (7) and (8) is commonly referred to as the prediction step and the update
step, respectively.

As new measurements from time steps t + 1 . . .T are obtained, the states xt can
be updated using all the measurements. This is referred to as smoothing, and the
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corresponding distribution can be expressed as

p(xt |y1 . . .yT ) =N (ms
t ,P

s
t ), (9)

where ms
t is referred to as the smoothed mean of xt . The means and covariances ms

t
and Ps

t can be solved exactly using the Rauch-Tung-Striebel smoother [Rauch et al.,
1965]. Smoothing can be combined with multiple target tracking methods to estimate
the history of the target states, e.g., to estimate the starting points of the targets.

The Kalman filtering and smoothing equations are omitted here, and can be found
in many textbooks, e.g., [Grewal and Andrews, 2008].

2.2 Rao-Blackwellized Monte Carlo Data Association
Rao-Blackwellized Monte Carlo Data Association (RBMCDA) [Särkkä et al., 2007]
is a multiple target tracking method that allows for unknown and varying numbers of
targets. Clutter measurements are treated in a probabilistic way.

In RBMCDA, the targets are assumed to have linear dynamics with Gaussian
process noise, as well as a linear measurement model (as in Equations (1) and (2)).
Each measurement is assumed to either originate from exactly one target, or to be a
clutter measurement. The data association history is contained in the vector c, defined
by

ct =

{
k if the measurement yt is assigned to target k
0 if yt is considered a clutter measurement.

(10)

RBMCDA uses a method called particle filtering [Doucet et al., 2000] to assign the
measurements to the targets, and Kalman filtering for estimating the states of the targets.
The output of RBMCDA is a set of weighted Monte Carlo samples from the posterior
distribution

p(c1...T |y1...T ), (11)

where T is the time step when the last measurement is obtained.
At each time step t, RBMCDA approximates the posterior distribution p(c1...t |y1...t)

by a finite number of point masses (or particles). Each particle contains a data associa-
tion history and a particle weight wt that represents the probability mass of the particle.
Using large numbers of particles results in more accurate inference, but increases the
computational expense of the method.

RBMCDA uses Kalman filtering to solve p(xt |yt ,c1...t), i.e., the exact posterior dis-
tributions of the target states conditional on the measurements and the data association
history. This procedure is referred to as Rao-Blackwellization [Casella and Robert,
1996]. It reduces the variance of the particle weights, resulting in better efficiency of
the method than would be obtained with Monte Carlo based methods. If the model of
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the target dynamics is non-linear or the error terms are not normally distributed, the
Kalman filter does not yield the exact posterior distributions, and other estimators may
be considered.

As RBMCDA is used to compute Monte Carlo samples, it does not directly offer a
way to find the most probable data associations. When a point estimate is needed, one
may use the data association history with the largest weight, as was done in [Särkkä
et al., 2007]. The weight of a data association history is here defined as the combined
weight of the particles that contain that particular history. Once the data associations
are fixed, estimating the target states is reduced to Kalman filtering and smoothing.

The following are defined before applying RBMCDA:

• The dynamic model of the targets (Equations (1)-(2)).
• The prior distribution of the initial state N (m0,P0). If there is no prior informa-

tion about the locations of the targets, one may use large variances in P0.
• The conditional prior distribution of the data associations p(ct = j|c1...t−1). This

can be defined uniformly so that the prior probability of choosing any of the
already seen targets is the same.

• The prior distribution of the clutter measurements p(yt |ct = 0). If there is no
prior information about the locations of the clutter measurements, one may use a
uniform distribution.

• The number of particles N.

The data associations are then obtained by proceeding through the following steps for
all measurements, starting from t = 1:

1. When a measurement yt is received, for all particles i ∈ {1...N}:
(a) Use the Kalman filter prediction step for each target. Use the Kalman filter

update step separately for each target (m(i)
k ,P(i)

k ) to obtain the likelihoods

p(yt |ct = k,c(i)1..t−1,y1...t−1) for data associations k ∈ {1 . . .M(i)
t }, where

M(i)
t is the number of targets already seen, i.e., max

k=1...t−1
c(i)k . Use the Kalman

update step to obtain the likelihood for a new target,
p(yt |ct = M(i)

t +1,c(i)1..t−1,y1...t−1).

(b) Draw c(i)t , i.e., the target associated with the newest observation yt , from
the discrete distribution defined by

p(ct = j) =
p(ct = j|c(i)1...t−1)p(yt |c

(i)
1...t−1,ct = j,y1...t−1)

∑
M(i)

t +1
j=0 p(ct = j|c(i)1...t−1)p(yt |c

(i)
1..t−1,ct = j,y1...t−1)

, (12)

where j = 0 . . .M(i)
t + 1. The probabilities p(ct = j|c(i)1...t−1) are obtained

from the prior distribution of the data associations, and p(yt |c
(i)
1...t ,y1...t−1)
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is obtained using the Kalman filter in step (a).
(c) Update the particle weight:

w(i)← w(i)
∑

M(i)
t +1

j=0 p(ct = j|c(i)1...t−1)p(yt |c
(i)
1..t−1,ct = j,y1...t−1).

2. Normalize the particle weights to sum to 1.
3. Resample: Replace the particles with N samples from the discrete distribution

defined by the weights p(c(i)1...t) = w(i). Set all weights to 1/N.

After the last measurement, the particles represent a discrete approximation of the
posterior distribution of the data associations. As the Kalman filter is a recursive
method, the means and covariances of the target states can be stored with the particles
for further processing to avoid repeating the same computations in Step 1(a). In practice,
the updated mean and covariance are stored for the target chosen in Step 1(b), and
the predicted means and covariances are stored for the other targets. In [Särkkä et al.,
2007], target death processing was also used in RBMCDA. For simplicity, it is not used
in this research project. However, if no new measurements are obtained from a target,
the posterior probability of associating it with any measurement decreases. Eventually
particles containing such a target is expected to be removed in the resampling step (3).

3 Extension of RBMCDA for Interacting Targets
RBMCDA does not directly offer a way to model interactions, as the means and
covariance matrices of the states are processed separately for each target. For this reason,
RBMCDA is here extended by considering the joint state of all targets instead of the
per-target states. When the dynamic model of the targets does not include correlations
between different targets, this method yields the same estimates as RBMCDA without
the extension.

Let the states of the targets 1 . . .K be x1 . . .xK , each state being of size h×1. Let xc
be a column vector of states that are not associated with any particular target, but with
the whole system (e.g., the common center of the targets). Define the joint state x of
the targets 1 . . .K as

x =


xc
x1
...

xK

 . (13)

Let m and P be the estimated mean and covariance matrix of the joint state. Let the
prior distribution of the initial state of a target be defined by m0 and P0. As the number
of targets varies, the transition matrix Ft (in Equation (1)) must be defined for each
number of targets, which is denoted by F(K)

t for K targets.
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In this extension, one starts with m and P being equal to the prior mean and
covariance of xc. Step 1 (a) in the previous section is replaced with the following:

1. When a measurement yt is received, for all particles i ∈ {1...N}:
(a) Use the Kalman filter prediction step for the joint state using FM(i)

t
t . Use

the Kalman filter update step for the joint state to obtain the the likelihoods
p(yt |ct = k,c(i)1..t−1,y1...t−1) for data associations k ∈ {1 . . .M(i)

t }. Only the
measurement model Ht (Equation (2)) is different for each target. Use
the Kalman update step for the extended mean and covariance to obtain

the likelihood for a new target using FM(i)
t +1

t . The extended mean me and
covariance Pe are defined by

me =

[
m
m0

]
(14)

and

Pe =

[
P 0
0 P0

]
. (15)

This yields the likelihood p(yt |ct = M(i)
t + 1,c(i)1..t−1,y1...t−1). Steps from

1(b) to 3 are as in the previous section.

The updated joint mean and covariance for the chosen data association ct can be
stored with the particles to make use of the recursive nature of the Kalman filter. Unlike
in the original RMBCDA, the output of the Kalman filter prediction step is not stored.

The definitions of me and Pe imply that the new target is independent of the other
targets before the first measurement is associated to it. This means that the prior
distribution of the new target does not change over time, which seems like a reasonable
assumption for some applications. The interactions between the new target and the
other targets are taken into account at all time steps after the first association.

As the original RBMCDA, this extended method is also a Rao-Blackwellized
particle filter, since it uses Kalman filtering to compute the likelihoods, and particle
filtering to sample from the posterior distribution of the data associations.

4 Discretization of Dynamic Models
RBMCDA requires the discrete-time transition matrix and process noise covariance
matrix of the model. However, the target dynamics are modeled in continuous time.
The motivation for this is that continuous-time models are straightforward to define and
can be discretized as needed, whereas starting with a discrete model can be difficult. In
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particular, the discrete-time covariance matrices are not, in general, of any simple form
due to correlations between the target states. The discretization is not an approximation
of the continuous-time model, but it yields the exact transition matrix and the process
noise covariance matrix for a given time interval. If the continuous-time model is linear
with Gaussian noise, then so is the discretized model.

The continuous-time models of the target dynamics used in this research project are
of the form

ẋ(t) = Fcx(t)+Lcw(t) (16)

where Fc and Lc are analoguous to the discrete case in Equation (1) and w(t) is a
white-noise process with spectral density Qc.

The discrete-time covariance matrix can be sometimes solved analytically for simple
models. However, as the size of the state vector may vary, such a discretization would
have to be solved for an arbitrary number of targets. In practice, the discrete-time
process covariance matrix is evaluated numerically. This is done using the matrix
fraction decomposition [Grewal and Andrews, 2008]:[

C
D

]
= exp

([
Fc LcQcLT

c
0 −Fc

]
∆t)
)[

0
I

]
, (17)

where exp denotes the matrix exponential. Both the zero matrix 0 and the identity
matrix I are the same size as Fc. The discrete-time process noise covariance is then
given by

Q = CD−1. (18)

The discrete-time transition matrix is given by

Ft = exp(Fc∆t). (19)

5 Models of Target Dynamics
In this section, two models for independent targets and two models for interacting targets
are described. The models are first defined in continuous time, and then discretized
to make use of the Kalman filter for state estimation. The models with independent
targets are described in Sections 5.1 and 5.3. These models are used for comparisons
in the simulations. The interaction models developed for the purposes of this research
project are described in Sections 5.2 and 5.4.

5.1 Mean-Reverting Model for Independent Targets (I-MR)
In this model, each target is allowed to approach a different fixed location. These
locations are unknown constants that are estimated from the data. The targets do not
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move in straight lines, but random noise is added to the target locations. The state
vector contains the locations of the targets (x j,y j) and the locations they approach
(x j,cp,y j,cp). For each target j, this model can be written in continuous time as

ẋ j = λ (x j,cp−x j)+
√

qw j(t), (20)

where λ is a rate parameter, q is the spectral density of the process noise and w j(t) is a
two-dimensional white noise process. This model can be viewed as a generalization of
the Ornstein-Uhlenbeck model (see, e.g., [Papoulis, 1984]).

By comparing Equations (20) and (16), it is seen that the continuous-time model is

x =



x1
y1

x1,cp
y1,cp

...
xJ
yJ

xJ,cp
yJ,cp


Fc =



−λ 0 λ 0
0 −λ 0 λ

0 0 0 0
0 0 0 0

. . .
−λ 0 λ 0
0 −λ 0 λ

0 0 0 0
0 0 0 0



Qc = qI Lc =



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

. . .
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.

This continuous-time model can be discretized, e.g., using the matrix fraction
decomposition, which yields the block diagonal matrices

Ft =


e−λ∆t 0 1− e−λ∆t 0

0 e−λ∆t 0 1− e−λ∆t

0 0 1 0
0 0 0 1

. . .


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Qt = q


1−e−2λ∆t

2λ
0 0 0

0 1−e−2λ∆t

2λ
0 0

0 0 0 0
0 0 0 0

. . .

 .

In practice, one may use the 4×4 blocks of Ft and Qt instead of the full matrices,
and apply them separately to each target to speed up computations. The measurement
model for a measurement from target k is

H(k)
t =

[
0 0 . . . 1 0 . . . 0
0 0 . . . 0 1︸︷︷︸

4k−3 4k−2

. . . 0

]
.

5.2 Mean-Reverting Model with a Common Center
This model is similar to the mean-reverting model for independent targets, with the
difference that in this model all targets approach a fixed common center. The transition
matrices and the discrete-time process noise covariance matrices are no longer of block
diagonal form. The state vector consists of the common center point (xcc,ycc) and the
target locations (x j,y j). The form of Equation (16) is obtained by defining

x =



xcc
ycc
x1
y1
x2
y2
...


Fc =



0 0
0 0
λ 0 −λ 0
0 λ 0 −λ

λ 0 −λ 0
0 λ 0 −λ

...
... . . .



Qc = qI Lc =



0 0
0 0

1 0
0 1

1 0
0 1

. . .


.
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The corresponding discrete-time transition matrix Ft is similar to that in the mean-
reverting model for independent targets. The discrete-time covariance matrix is not of
simple form, and is computed numerically.

5.3 Independent Targets with White Noise Accelerations (I-WNA)
The states of the independent targets are described by their locations (x j,y j) and
velocities (ẋ j, ẏ j). Accelerations are modelled as white noise processes affecting the
velocities of the targets. Following the notation in Equation (16), this model is defined
by

x =


x1
ẋ1
...

yJ
ẏJ

 Fc =


0 1
0 0

. . .
0 1
0 0



Qc = qI Lc =


0 0
0 1

. . .
0 0
0 1

,

where q is a spectral density parameter, and the matrices Fc and Lc are block-diagonal
matrices. This model can be discretized analytically [Bar-Shalom et al., 2004]. Follow-
ing the notation in Equation (1), this yields

Ft =


1 ∆t
0 1

. . .
1 ∆t
0 1

 Qt = q



(∆t)3

3
(∆t)2

2
(∆t)2

2 ∆t
. . .
(∆t)3

3
(∆t)2

2
(∆t)2

2 ∆t


.

5.4 Follower Model
In the follower model the observed targets are assumed to approach an unobserved
moving target. The dynamics of the unobserved target are modeled with white noise
accelerations, as in Section 5.3. The observed targets are mean-reverting targets with
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the location of the unobserved target, (xut ,yut), as the common center.
The velocities of the observed targets are not included in the model. Instead,

changes in the velocities of the observed targets are interpreted to be a consequence
of the changes in the velocity of the unobserved target. The spectral density of the
process noise q is common for all the observed targets, and is in general different from
the spectral density of the process noise of the unobserved target, qut .

In continuous time, this model is expressed in the form of Equation (16) as

x =



xut
ẋut
yut
ẏut
x1
y1
x2
y2
...

xJ
yJ



Fc =



0 1
0 0

0 1
0 0

λ 0 0 0 −λ 0
0 0 λ 0 0 −λ

λ 0 0 0 −λ 0
0 0 λ 0 0 −λ

...
... . . .

λ 0 0 0 −λ 0
0 0 λ 0 0 −λ



Qc = I Lc =



0 0
0
√

qut
0 0
0
√

qut √
q 0

0
√

q
. . .√

q 0
0
√

q


.

The discrete-time matrices are computed numerically.

6 Parameter Estimation Using Particle Gibbs
Particle Gibbs [Andrieu et al., 2010] is a method for computing posterior distributions
of parameters in a variety of statistical models, where particle filters are applicable. In
particular, it can be used in multiple target tracking with the models of target dynamics
introduced in Section 5. While the Kalman filter yields the exact posterior distributions
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of the states of the targets in linear models with Gaussian noise, it cannot be used,
e.g., to estimate multiplicative constants. Particle Gibbs offers a way to estimate such
parameters, as well as the spectral density of the process noise. As Particle Gibbs is a
Bayesian method, a prior distribution is defined for the parameters to be estimated. In
this research project, the main motivation for estimating the parameters is to improve
the accuracy of the data associations and the state estimates.

Kokkala and Särkkä [2015] combined Particle Gibbs with RBMCDA to estimate
the parameters in the dynamic models of independent targets. The resulting method is
based on running RBMCDA sequentially with different parameter values θ 1 . . .θ J . The
parameter values that are a priori likely (according to the prior distribution p(θ)) and
fit the data well (as measured by the likelihood p(y|θ ,c)) are likely to be accepted, and
the parameter values that are a priori unlikely and fit the data poorly are more likely to
be rejected. The data associations of one particle are always inherited from the previous
RBMCDA run. This introduces correlation between successive RBMCDA runs and
decreases the effect of the random number generation in RBMCDA for any single run.

Denote

• θ , the parameters to be estimated.
• θ 1 . . .θ J , the samples generated from the posterior distribution of the parameters.
• θ ∗, the proposed values of the parameters.
• p(θ), the prior distribution of the parameters .
• q(θ ∗|θ j−1), the proposal distribution. This distribution defines how new parame-

ter values are proposed based on the previous accepted value θ j−1.

The initial values of the parameters are chosen or randomly generated, and the following
steps are repeated for j = 1 . . .J:

1. Propose a new θ ∗ ∼ q(θ ∗|θ j−1)
2. Generate a random number r ∼ Uniform([0,1]) and compute the acceptance

probability

α = min

(
q(θ j−1|θ ∗)p(y1:T |θ ∗,c

j−1
1:T )p(θ ∗)

q(θ ∗|θ j−1)p(y1:T |θ j−1,c j−1
1:T )p(θ j−1)

,1

)
, (21)

where the likelihoods are evaluated using the Kalman filter. If r≤ α , set θ j = θ ∗,
otherwise set θ j = θ j−1.

3. Generate a set of N particles (c j,1:N
1:T ,w j,(1:N)

1:T ) by running RBMCDA with param-
eters θ j, while keeping the data associations in the first particle as c j−1

1:T .
4. Draw new data associations c j

1:T from c j,1:N
1:T with probabilities w j,(1:N)

T .

This method is applied to tracking of interacting targets by replacing RBMCDA in Step
3 with the extension described in Section 3.
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The length J of the sequence (or chain) of parameter values is chosen sufficiently
large, so that the effect of the initial value is negligible. The method can be run several
times to produce different chains, which can then be compared to each other to assess
whether the chains have converged to the same distribution.

7 Optimal Subpattern Assignment for Tracks
In this section, the Optimal Subpattern Assignment for Tracks (OSPA-T) [Ristic et al.,
2010], a performance measure for multiple target tracking methods, is reviewed. While
a large number of measures could be used for performance evaluation (for an overview,
see [Gorji et al., 2011]), using a single performance measure allows for more easily
interpretable numerical results.

OSPA-T takes into account the accuracy of the state estimates and the estimate of
the number of targets. In addition, it considers the state estimates as a whole by adding
a penalty if an estimated target corresponds to different true targets at different times.

The true track of a target is defined as the set of locations at different time steps.
Similarly, the estimated tracks are sets of estimated locations of the targets at different
time steps. OSPA-T assigns the estimated tracks to the true tracks so that they are as
close to each other as possible. The differences between the true and estimated tracks
are then measured using the OSPA metric [Schuhmacher et al., 2008]. Missing and
false tracks increase the OSPA-T metric, whereas accurate state estimates decrease it.

Denote

• xl
t , the true location of the target in track l at measurement t.

• L, the total true number of targets.
• Lt , the true number of targets at measurement t.
• zl

t , the estimated location of target l at time t.
• R, the total estimated number of targets.
• Rt , the estimated number of targets at measurement t.
• ΠR

L , the set of permutations of length L with elements taken from {1 . . .R}.
• ‖‖, the Euclidean norm.
• et

l , is 1, if the target l exists at time t, otherwise zero.
• α , the penalty resulting from assigning the target to a wrong track.
• ∆, the penalty resulting from a missing or a false track in the track assignment

step (step 1 in the following).
• β , the penalty resulting from a missing or a false track in the OSPA step (step 2).

Generally α < β , meaning that it is preferred to assign a target to a wrong track
than miss the target.

• p and p′, parameters that describe the sensitivity of the OSPA-T value with
respect to outliers, i.e., how much OSPA-T is affected by a small number of state
estimates with large errors.
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The OSPA-T metric is computed in two steps as follows:

1. Find π∗ ∈ΠR
L , the optimal track assignment of the estimated tracks to the true

tracks. Here π∗(i) = j means that the estimated track l is assigned to the target j.
If L≤ R,

π
∗ = arg min

π∈ΠR
L

L

∑
l=1

T

∑
t=1

(
eπ(l)

t el
t min(‖xl

t − zπ(l)
t ‖,∆)

+(1− eπ(l)
t )el

t∆+ eπ(l)
t (1− el

t)∆
)
.

(22)

If L > R, the roles of the true tracks and the estimated tracks are reversed.
When the number of targets is low, the minimization problem can be solved by
exhaustive search through all the permutations in ΠR

L .
2. The OSPA-T metric is given by the OSPA metric for π∗, at each measurement

t = 1 . . .T , computed as follows. Define z̃(i)t = zπ∗(i)
t . If Lt ≤ Rt ,

OSPA-T (t) =
( 1

Rt
min

π∈Π
Rt
Lt

(
(Rt−Lt)β

p +
Lt

∑
i=1

min(d(xi
t , z̃

π(i)
t ),β )p

)) 1
p
, (23)

where

d(x, z̃) =

{
‖x− z̃‖, if i = π(i)

(‖x− z̃‖p′+α p′)
1
p′ otherwise.

(24)

If Lt > Rt , the roles of the true tracks and the estimated tracks are reversed.

OSPA-T does not directly penalize for large variances in the state estimates. This
means that in the sense of OSPA-T, posterior uncertainty of the state estimates does
not matter at all. Indirectly, large variances may affect the data associations and
consequently increase the OSPA-T value. As OSPA-T is computed separately for each
time step, it does not directly offer a way to summarize the results with a single number.
One may plot the OSPA-T values over time for visual comparisons, or summarize
the values with a time-average, as was done with OSPA in [Septier et al., 2011]. The
approach taken in this project is to use both visual comparisons and time-averages.

8 Simulations
In this section, the models described in Section 5 are compared using simulated data.
RBMCDA is used for the models with independent targets, and the extension of
RBMCDA described in Section 3 is used for the models with interactions. The models
are compared using plots of average OSPA-T values over the simulations, time-averaged
OSPA-T values, posterior distributions of the number of targets, and computation times.
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8.1 Mean-Reverting Targets with a Common Center in Clutter
This simulation scenario contains five targets approaching a common center point. The
two dynamic models used for the targets are the independent targets model with mean-
reversion (I-MR), described in Section 5.1, and the common center model, described in
Section 5.2. The only difference between these models is that in the former model the
targets are allowed to approach different points, whereas in the latter model the targets
approach the same point.

The true locations of the targets are generated from Equation (20) with parameters
λ = 0.07 and

√
q= 9. At constant time intervals ∆t = 0.3, one measurement is obtained

from each target. In addition, 10 clutter measurements, uniformly distributed over
the square (0,0)× (500,500), are obtained at each time step. Thus, only 1/3 of the
measurements represent true targets. The measurement errors are normally distributed
with a standard deviation of 4 in each coordinate. The prior distributions and parameter
values used for tracking are the following:

• The prior distribution for the target locations is the normal distribution with
zero mean and variance 107 in each coordinate. This represents vague prior
information: about 97.7% of the probability mass is contained within the square
(−8000,−8000)× (8000,8000)

• The prior distribution for the centers in both models is the normal distribution
with zero mean and variance 106 in each coordinate.

• The prior distribution for the data associations is constructed as follows:
– Each already seen target is a priori equally likely to be assigned to a new

measurement.
– The prior probability of clutter is 0.7. This represents a good estimate of

the true proportion of the clutter measurements.
– The prior probability of assigning a measurement to a new target is 0.06.

• The parameter values λ and
√

q in the dynamic models are set equal to the true
values used to generate the data.

• The prior density of clutter is set to the constant value 1450−2 everywhere.
• The number of particles N is 1000.

The following example illustrates the differences between the models. Figure 1(a)
shows one realization of the true locations of the targets. The measurements from the
targets and the clutter are shown in Figure 1(b).

The data associations obtained using the two models are shown in Figure 2. These
data associations are the ones with the largest weight. The model with independent
targets yields a false target near the point (150,150). This type of mistake would be
unlikely when using the model with a common center, as this false target moves away
from the other targets. Some delay in detecting the targets is seen with both models,
i.e., the first measurements from the targets are treated as clutter.
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(a) (b)

Figure 1: a) The true target locations generated from the model. b) The generated
measurements with additive measurement noise.

(a) (b)

Figure 2: The data associations obtained using a) independent targets (I-MR) and b) a
common center for all targets. Each measurement assigned to a target is marked with a
◦. The colours are assigned according to the order in which the targets are detected.
The measurements associated with clutter are marked with ×.
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Figure 3 shows the estimates of the target locations obtained using Kalman filtering
and the previous data associations. As these estimates are obtained by conditioning on
the previous measurements, they represent a possible result if the targets were tracked
in real time. The number of estimates is greater than the number of measurements,
as the estimates are also updated when no new measurements are associated with the
targets. When using the common center model, each measurement associated to a target
affects the estimate of the center, which further affects the estimates of all the targets.

The false target in 3(a) is estimated to approach the location (558.2,−1182.9). The
estimated center in the case shown in Figure 3(b) is (251.8,273.6), not far from the
true center at (250,250).

(a) (b)

Figure 3: Estimates of the locations of the targets obtained with Kalman filtering using
the model with a) independent targets (I-MR) and b) a common center for all targets.

Finally, the smoothed estimates are shown in Figure 4. Only slight corrections
to the estimates are made by the smoother, as the measurement errors are small and
the estimates given by the Kalman filter are already quite consistent with the dynamic
model.
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(a) (b)

Figure 4: Estimates of the locations of the targets obtained with a Rauch-Tung-Striebel
smoother using the model with a) independent targets (I-MR) and b) with a common
center for all targets.

Figure 5: OSPA-T values of the smoothed estimates in the example case. Each time
step corresponds to 5 target measurements and 10 clutter measurements.

Figure 5 shows the OSPA-T values for the smoothed estimates in the example case
with parameters β = ∆ = 10,α = 5, p = 1, and p′ = 1. The common center model has
a slightly larger OSPA-T value for the first two time steps. This seems to be caused by
the delay in detecting the targets. The independent targets model is worse according
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to this metric for most of the time steps. The OSPA-T values are heavily correlated
between the models, suggesting that the measurement errors and the clutter affect the
results similarly with both models.

Figure 6 shows the OSPA-T values averaged over 40 Monte Carlo simulations.
Both the true target locations and the measurement noise are randomized separately
for each simulation, but the same data is used with both models. The OSPA-T values
are computed for the smoothed estimates using the data associations with the largest
weight.

It is seen that the models give similar results in the first 7 time steps. After this,
the common center model is superior. An increase in OSPA-T is seen at the last time
steps. This can be explained by that there is not enough data to rule out target births at
the last time steps. This problem could be addressed by modifying the target birth and
clutter prior probabilities. However, this might result in larger delays in target detection
and larger OSPA-T values in the first time steps. Another cause for the increase in the
OSPA-T value is that there are no future measurements to use for smoothing the last
state estimates.

Figure 6: OSPA-T values of the smoothed estimated averaged over 40 Monte Carlo
simulations using the two dynamic models.

The Monte Carlo simulations are summarized in Table 1. The average OSPA-T
is the time-average of the values shown in Figure 6. The computation time is longer
when using the independent targets model, compared to the common center model.
This is most likely related to that the independent targets model tends to overestimate
the number of targets, which results in larger numbers of possible data associations and
more unique particles to update.



Simulations 21

Model Time-averaged OSPA-T Computation time (s)

Common center 6.3497 450.4
Independent targets (I-MR) 6.8491 714.3

Table 1: A summary of the Monte Carlo simulations in the first simulation scenario.

The computation times for the I-WNA model could be reduced by requiring more
evidence before a measurement is assigned to a new target. This could be done by
changing the clutter prior or the birth prior probabilities. However, as noted, this
might result in larger delays in target detection and larger OSPA-T values in the first
measurements.

Figure 7 shows the posterior distributions of the number of targets with the two
models. The number of particles is 10000 for each model. As the OSPA-T values
in Figure 6 suggest that the number of targets is overestimated at the last time steps,
the number of targets is estimated at time step 20 using the particles obtained by
computing the data associations for the whole data. It is seen that the number of targets
is overestimated when using the I-MR model, and even the number of targets 9 is given
a positive probability. With the common center model, all the posterior mass is given
to numbers 5 and 6. The number of targets is not underestimated with either model.

(a) (b)

Figure 7: Posterior distributions of the number of targets at time step 20 using a) the
I-MR model and b) the common center model.
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8.2 Group Tracking in Clutter
In the second simulation scenario a group of five targets moves in a V-formation,
making two turns of 180 degrees. One measurement from each target and 10 clutter
measurements are received at constant time intervals ∆t = 1. Figure 8(a) shows the
true target locations, starting from the lower left corner at t = 0, and Figure 8(b) shows
an example of a simulated data set. The measurements are random, whereas the true
target locations are not. The standard deviation of the measurement noise is 6.

(a) (b)

Figure 8: a) The true target locations and b) measurements with additive measurement
noise.

The I-WNA model (Section 5.3), and the follower model (Section 5.4) are used to
track the targets. The following choices for the parameters and the prior distributions
are used:

• The prior variance for the target locations is 106 in each coordinate.
• The prior variances for the location and velocity of the unobserved target in the

follower model are 105 and 103 in each coordinate, respectively.
• The prior standard deviations of the target velocities in the I-WNA model are 50

in each coordinate. The true velocities in this scenario vary roughly between 50
and 100.

• The target birth prior is that used in [Kokkala and Särkkä, 2015], with the
difference that clutter measurements are taken into account. The prior probability
of clutter is 0.7. In this prior distribution the probability of a target birth decreases
as new measurements are assigned to targets.
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• The square roots of the process noise spectral densities of the observed targets
are 15 (follower model) and 35 (I-WNA). The spectral density parameter for the
unobserved target in the follower model is 90.

• The parameter value λ is 0.25.
• The prior density of clutter, p(yk|ck = 0), is set to the constant value 1750−2

everywhere.
• The number of particles N is 1000.

Figure 9 shows the data associations from a simulation where both models yield
good results. Figure 9(a) shows that when using the I-WNA model, two observations
that lie far from the group are associated with a target in the last time step. This
is consistent with the model, as the targets are not forced to be close to each other.
According to the data associations, the targets switch places with each other. For
example, the red target is in the middle at the beginning of the tracking, and at the end
it is in the leftmost position. This phenomenon is far less pronounced with the follower
model in Figure 9(b).

(a) (b)

Figure 9: The data associations obtained using the two models.

Figures 10 and 11 show the filtered and smoothed estimates of the targets, respec-
tively. The differences between the filtered and the smoothed estimates are small. This
is an expected result, considering that the measurement errors are small. The largest
differences are seen at the beginning of the tracking with the follower model, whereas
with the I-WNA model the largest differences are seen about halfway into the tracking.
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(a) (b)

Figure 10: Estimates of the locations of the targets obtained with Kalman filtering.

(a) (b)

Figure 11: Estimates of the locations of the targets obtained with a Rauch-Tung-Striebel
smoother.

The estimated locations of the unobserved target in the follower model are shown
in Figure 12. When the targets change directions, an overshooting phenomenon is
seen, i.e., the turns made by the unobserved target are greater than 180 degrees. This
is not an error, because the unobserved target is only used in the model to introduce
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correlations between the observed targets, and consequently, no ground truth exists for
these locations.

Figure 12: Smoothed estimates of the unobserved target in the follower model. True
locations of the targets are drawn for reference.

Figure 13 shows the prior and posterior distributions of the square roots of the
spectral densities in the I-WNA model and the follower model, obtained using the
Particle Gibbs algorithm described in Section 6. The data used for parameter estimation
is that in the example case shown in Figure 8(b). The number of chains used in Particle
Gibbs is 20, and the length of each chain is 1000. The first 500 samples of the chains
are discarded as warm-up samples to decrease the effect of the initial values of the
parameters. The number of particles is 1000 for the first sample of each chain, and 5
for the remaining parts. The prior distributions are Gamma distributions with scale
parameter 2 and means 35 and 90, respectively. Point estimates for the parameters are
obtained as posterior means (38.4 and 73.4).

The OSPA-T values averaged over 40 Monte Carlo simulations are shown in Figure
14. The measurements are generated separately for each simulation. The models are
first used before parameter estimation, and then using the point estimates obtained
above. The parameters of OSPA-T are β = ∆ = 200,α = 50, p = 1, and p′ = 1. These
values are larger than in the first simulation scenario in Section 8.1, because the errors
in the target locations are expected to be higher due to mislabeling of the targets, as
seen in Figure 9(a). Since these parameters are different, these OSPA-T values are not
comparable to those in the first simulation scenario.

It is seen that the follower model performs better than the I-WNA model according
to the OSPA-T values. An improvement is seen in the performance of both models
when the estimated parameter values are used. The differences between the models
are small in the first time steps, and the effect of parameter estimation seems to vanish
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in the last steps for the I-WNA model. Unlike in the first simulation scenario, no
significant increase is seen at the last time steps. This can be attributed to the different
target birth prior distribution, which was chosen so that new targets are unlikely to be
born after the first time steps.

(a) (b)

Figure 13: Histograms of the posterior distributions of the parameters. The prior
distributions are shown as solid lines.

Figure 14: OSPA-T values of the smoothed estimates averaged over 40 Monte Carlo
simulations using the I-WNA model and the follower model with and without parameter
estimation (PE).
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The Monte Carlo simulations are summarized in Table 2. The computation times
are sensitive to the parameter values. Using the estimated parameters decreases the
computation time with the follower model, whereas the opposite happens with the
I-WNA model. This can be attributed to that without parameter estimation, the number
of targets was often overestimated with the follower model, and underestimated with
the I-WNA model. When the estimated parameter values are used, the follower model
is faster. The computation times are longer than in the first simulation scenario. This is
natural, as the measurements are close to each other, which means that a large number
of plausible data association histories can be found. This results in a large number of
unique particles.

Model Time-averaged OSPA-T Computation time (s)

Follower model 73.9578 1593.4
Follower model (PE) 65.5909 1138.8
I-WNA 88.6114 1226.6
I-WNA (PE) 82.9237 1448.8

Table 2: A summary of the Monte Carlo simulations in the second simulation scenario.
(PE) denotes parameter estimation.

Figure 15 shows the posterior distributions of the number of targets using the
I-WNA model and the follower model with the estimated parameters. According to
preliminary simulations, a large number of particles would be needed to compute the
posterior distributions with the whole data to avoid large variation between different
runs. For this reason, the posterior distributions were computed using 100000 particles
and the data from the first 15 time steps of the example case in Figure 8(b). Most of
the posterior mass is given to the correct number of targets with both models. The
posterior variance is smaller when using the follower model. Very small, but non-zero
probabilities are given to numbers 3 and 7 with the I-WNA model, and 6 and 7 with
the follower model. The unobserved target in the follower model is not counted in the
number of targets.

According to the Potential Scale Reduction Factor [Gelman and Rubin, 1992], the
chains in Particle Gibbs had not converged to the same distribution (PSRF > 1.2), which
indicates that the samples obtained may not be representative of the true posterior
distributions of the parameters. For this reason, the way Particle Gibbs is used in this
experiment is somewhat heuristic. The nonconvergence is likely due to the fact that
early data associations were unlikely to change within the chains. Similar problems have
been reported in the literature, also outside the context of multiple target tracking, and
addressed by modifying the sampling procedure in various ways (see, e.g., [Lindsten
et al., 2014], [Andrieu et al., 2010], [Kokkala and Särkkä, 2015]). However, these
modifications are outside the scope of this research project.
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(a) (b)

Figure 15: Posterior distributions of the number of targets using the data from the first
15 time steps with a) the I-WNA model and b) the follower model.

It should be noted that some of the parameters in the follower model were fixed.
Thus, it seems likely that the performance of the follower model could be further
improved by estimating all the parameters with Particle Gibbs. The I-WNA model does
not contain other parameters than the spectral density of the process noise, which was
estimated.

9 Conclusions
An extension to the Rao-Blackwellized Monte Carlo Data Association (RBMCDA)
method was presented to track interacting targets. Two different interaction models were
developed: one for targets approaching a common center and one for targets moving in
groups. The models were applied to simulated data and compared to models without
interactions using the OSPA-T metric, computation times and posterior distributions of
the number of targets. Parameter estimation was carried out by applying the Particle
Gibbs method.

Two simulation scenarios were used, and 40 data sets were generated in each
scenario to obtain reliable estimates of the OSPA-T values and computation times.
The simulations show that the extension of RBMCDA with interaction models yields
good results: the OSPA-T values obtained with the interaction models are lower than
those obtained with models without interactions. In the first simulation scenario, the
comparison between the models was justified by that the same parameter values were
used in both models. The set-up in the second simulation scenario can be considered to
favour the model without interactions, since not all parameters of the interaction model
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were estimated. Despite this, the interaction model performed clearly better. However,
it should be noted that the performance of the models was found to be sensitive with
respect to the parameter values used.

Modeling the interactions decreased the computation times, despite that the in-
teraction models contain larger state vectors, and consequently require computations
with larger matrices. In the second simulation scenario the decrease in computation
times was seen after the parameters were estimated. The differences in the computation
times can be partially attributed to that using models without interactions tends to
lead to greater uncertainty about the number of targets. This was seen in the posterior
distributions of the number of targets, which were concentrated closer to the true value
when the interactions were modeled. The increase in the uncertainty naturally leads
to larger numbers of unique particles, increasing the computation times. Furthermore,
computations with larger numbers of targets are naturally heavier.

The chains in Particle Gibbs seemed not to have converged to the same distribution,
which means that the samples obtained may not be representative of the true posterior
distributions of the parameters. Improvements to this method in the context of multiple
target tracking are left as a subject for future research. When computational expense
is not a limiting factor, longer chains could be used with more particles to improve
convergence. Despite the convergence issues, parameter estimation improved the
performance of the two models it was applied to, according to the OSPA-T metric.

The approach to modeling interactions could be extended in several directions.
Nonlinear dynamic models could be used in the RBMCDA framework by replacing
the Kalman filter with, e.g., Extended Kalman filter (EKF) or Unscented Kalman filter
(UKF) [Särkkä et al., 2007]. This may open new possibilities for developing target
interaction models.

In practical applications, e.g., tracking of people and animal populations, it might
be beneficial to consider multiple different types of interactions between the targets.
Multiple groups of targets may be present, and the groups may further interact with
each other. Further research could be carried out to estimate the number of groups, and
to associate each target with one of them. Pang et al. [2011] suggest that the difficulties
in implementing such methods has hindered progress in the area of group tracking.
However, it seems plausible that such group assignments could be included in the
RBMCDA framework, once a suitable distribution for the data associations is defined.
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