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Abstract: 

In this paper, a label setting shortest path algorithm is used to solve optimal flight paths to a 

fixed destination for an aircraft flying in an closed rectangular 2-dimensional air space. The air 

space, which is represented by a symmetric node grid, contains hostile objects that chase the 

aircraft. The coordinates of both the aircraft and its chasers are updated and the problem is 

solved repeatedly to produce a simulation of the aircraft’s trajectory. For this purpose, a 

Matlab simulation program was created and its general principles and functioning logic is 

illustrated. One example simulation is then presented in this paper. 

 

Also, a sophisticated targeting intelligence for the chasers is formulated and used in the 

simulation. Furthermore, the computational effort of the program with respect to the amount 

of hostile objects and grid size is presented. Two other methods for solving optimal flight 

paths are discussed. Finally, several ways of improving the presented method is presented.  
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Symbols and notations  

    Set of nodes 

     The number of nodes 

        Node   

    Set of arcs 

     The number of arcs 

          An arc 

        An Arc flow 

   A sequence of arcs 

                            such that the 

end node of an arc is always the next start 

node in the following arc of the path 

        th node in the shortest path from   to   

    the total flow departing from node  , 

divergence of the node   

      A scalar arc cost of arc       

    Matrix containing all arc costs 

       Start node of the shortest path, node that 

contains the aircraft 

    Sink node, destination node for the aircraft 

  Candidate list for the Dijkstra shortest path 

algorithm 

   Label of node i for the Dijkstra shortest path 

algorithm 

          Coordinates of the node    



v 

 

                   Coordinates of the arc       

    Network grid size parameter 

           Euclidean distance between arc       and 

chaser    

        Euclidean distance between arc       and 

node  , additional distance cost 

  Weight parameter for the additional distance 

cost 

     The sum of the arc cost      and the 

additional distance cost  

     Speed of the aircraft 

     Speed of a chaser 

    Speed relation       

       The minimum difference of arrival times in 

the node       between the aircraft and its 

chase
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1. Introduction 

Network models are used extensively in practice, in a variety of different applications 

which are based on network problems such as max-flow, traveling salesman, vehicle 

routing, and multi-commodity flow. Collectively, these network problems constitute the 

most common class of practical optimization problems (Bertsekas, 1998). Arguably, the 

shortest path network optimization problem is the simplest of the network problems, 

although the range of applications is nonetheless extensive, covering problems such as 

data routing, project management and dynamic programming. Furthermore, the 

shortest path problem is often needed to be solved as a sub problem with the more 

complex network optimization tasks. Thus, a host of effective yet simple methods to 

solve the shortest path problem have been introduced.  

In this paper, a shortest path algorithm is used to produce a simulation about an aircraft 

which selects and repeatedly re-evaluates the safest flight path to its destination, while 

avoiding hostile moving objects that are chasing the aircraft.  In Chapter 2, the basic 

notations related to network problems are presented. With these notations the label 

setting solving algorithm for the general shortest path problem is explained. In Chapter 

3, the problem of finding an optimal flight route while avoiding moving hostile objects 

to destination is formulated as a shortest path network problem. Furthermore, two 

other formulation approaches other than optimization problem are shown. In Chapter 

4, a simulation result is presented for the aircraft in which the shortest path problem has 

been iterated while the positions of the aircraft and the hostile objects have been 

updated each round. Also, the computational effort of the approach is illustrated. 

Finally, in Chapter 5, several methods for improving the method and its computational 

speed are discussed. 
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2. Network optimization problem and the shortest path 

algorithm 

Based on (Bertsekas, 1998), the notations that are needed to define a shortest path 

problem are briefly presented in this chapter. Furthermore, the shortest path problem 

is formulated in mathematical terms and a simple label setting algorithm to solve the 

problem is presented. 

2.1 Network notations 

A directed graph         , consists of the set of nodes     and of the set of 

directed arcs between the nodes    . The number of nodes and arcs are denoted by   

and   respectively. An arc from node   to   is denoted by      . If an outgoing arc exists 

from node   to   then       is an arc where   is called the start node and   is called the 

end node. It is possible that both arcs       and       exist but no more than one arc 

may exist between a pair of nodes in the same direction.  

A forward path   from node n to m in a directed graph is a sequence of arcs 

                            such that the end node of an arc is always the next start 

node in the following arc of this path. It is also possible to express a forward path 

simply as a sequence of nodes                       

The flow of an arc       is a scalar which is denoted by    . Sometimes convenient to 

allow negative as well as positive values for a flow, but a negative flow can always be 

changed to a positive flow if the arc direction is swapped in the graph. In this paper an 

arc exists       for every existing arc       and thus, all flows are set to be nonnegative 

scalars without any loss of generality. The divergence      of the node   is the total flow 

departing from node   less the total flow arriving at  , which is given by 

       ∑    

         

   ∑    
         

        (1) 

It is said that node i is a source if         and that node i is a sink if        .  In this 

paper the network contains only one source and sink. Note that by adding divergences 

over all     , we obtain ∑             
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2.2 The shortest path problem 

Suppose that each arc       of the graph is assigned a scalar cost     and the cost of a 

forward path is the sum of the costs of its arcs. Given a start and an end node, the 

shortest path problem is to find a forward path   between the nodes that has the 

minimum total cost. In many contexts, arc cost can be viewed as physical distances 

between the nodes. Based on this analogy, the problem is referred to as the shortest 

path problem and the total cost is sometimes referred to as the length of the path. 

In mathematical terms, the shortest path problem can be formed in the following way: 

Minimize: 

 ∑       

       

 (2) 

subject to  

       ∑    

         

   ∑    
         

  {
                    
                   

                                
  (3) 

                 

Where,   is the start node (source) and   is the end node (sink) referred to as the 

destination node. It is said that a flow is feasible if the constraining equation (3) holds 

for every         . It can be shown [1] that if the shortest path problem has at least 

one feasible flow, then an optimal solution to the problem of Eq.2 exists. Feasible flow 

is always achieved if we set for any forward path   from s to t that 

      {
                    
                                

 (4) 

Reader may verify that equation (3) now holds. If a flow of the form of Eq. 4 is an 

optimal solution for the problem in Eq. 2, then the corresponding path   is the 

shortest.  

2.3 Label setting methods for solving the shortest path problem 

There are many different types of algorithms (Bertsekas, 1998, p. 51) that solve the 

shortest path problem defined in chapter 2.2. In this paper, a relatively simple label 
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setting method is used, first published by Dijkstra in 1959. In this algorithm, each node 

is associated with a scalar label    and a candidate list   is formed. In a stepwise 

procedure, a certain node   is removed from the candidate list for which      is the 

minimum label at each step. The process starts with candidate list containing only the 

node s and terminates when the candidate list is empty.  

The Label Setting Method (Dijkstra) 

As presented in(Bertsekas, 1998), the shortest path problem in Eq. 2 can be solved with 

the following algorithm: 

Step 1: Let all arc cost be nonnegative. We set 

       , 

                       

where    is the label of the node  .  

Step 2: A node i is removed from the candidate list such that 

       {  }       

Step 3: For each arc         , if           , we set            and node   is 

added to   if it does not already belong to  .  

Step 4: If the candidate list is empty, terminate. Go to step 2 otherwise. 

It can be shown that the algorithm always terminates and the final non-infinite labels are 

equal to the length of the shortest path to the corresponding node. The label setting 

algorithm described above finds not only the shortest path from node s to t but all the 

shortest paths from node s to each other node     .  
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3. Problem formulation 

In this chapter, a shortest path algorithm presented in Chapter 2.3 is used to solve a 

minimum cost flight path for an aircraft to its destination.  A bounded airspace for the 

problem, which contains a number of hostile moving objects, is represented by a two-

dimensional symmetric network grid. Arc costs in the grid are associated with the 

proximity of the hostile objects to the arcs.   

The aircraft is set to a starting position         and it is set to have a destination at 

         At fixed positions in the   
   plane lie also a number of hostile objects, which 

in this paper are referred to as the “chasers”. While the chasers are able to move freely 

in the airspace, the aircraft is bound to move in the grid network from node to the next. 

The grid is a       symmetric network of    nodes, which is illustrated in the Figure 

1. The nodes in the grid are arranged so that node 1 is the left-most node in the bottom 

row and node    lies in the opposite corner of the grid. 

  
Figure 1: Grid network of m x m nodes. Circles represent nodes in the network and 

arrows represent the directed arcs between nodes. 
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For every        , there are also the arc       in this grid network. Also as it can be 

seen from the Figure 1, An inner node   has outward arcs                  

                    as well as inbound arcs                         and 

        - A total of eight arcs.  

Each node and arc associated with       coordinates, which are fixed so that the node 

  lies in the origin as the Figure 1 suggests. The coordinates of an arc are fixed to the 

center of the arc. Using the grid network’s node numbering sequence presented in 

Figure 1, the  -coordinate of node   are given by 

               (5) 

The  -coordinate corresponds to the node’s row number less one, which can be 

calculated with the help of its  -coordinate: The left-most node in the same row of node 

  is equal to     . Therefore we have that  

    
    

 
   (6) 

To represent a real air space later on, these coordinates are scaled accordingly. The 

coordinate    should not be mistaken as the divergence of the node  . Indeed, from 

now on in this paper    refers specifically to an  -coordinate of node    and     to a 

chaser  ’s  -coordinate respectively.  

3.1 Arc costs 

To emulate the threat from the hostile objects in the form of arc costs, the arc cost 

should be large near the chasers and smaller far away. A simple way to define the arc 

costs then would be then to use negative Euclidean distance values between arcs and 

chasers as arc costs. However, the algorithm presented in Chapter 2.3 requires that 

each arc cost is to be nonnegative, and thus the arc cost     is defined in the following 

way: 

     ∑
 

        

 

   

 (7) 
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where         
 is the Euclidean norm between the center of the arc       and the chaser 

  , given by 

         
 √(          

)
 
  (          

)
 
 (8) 

Eq. 7 and 8 now dictates that if an arc       is located far away from the chaser’s current 

position, the cost of flowing through the arc is low but near a chaser the arc cost can be 

substantial because of the nonlinear definition of    .  

For programming purposes, all arc costs are gathered to a cost matrix  , where the cell 

    is the arc cost    . If an arc       doesn’t exist, we set       making   a sparse 

matrix although a very large one – for a       network grid the cost matrix   is of the 

              .  

It is important to note, that most of the low-total cost paths from   to   have the same 

number of steps and therefore these paths have the same physical length. Nevertheless, 

to force the aircraft to favor “shorter” routes, an additional cost is also set for travelling 

an arc far away from the destination. The adjusted total arc cost    
  is defined to be the 

sum of      and the Euclidean distance         to the destination node  : 

    
  ∑

 

        

 

   

            (9) 

where   is a fixed weight coefficient for the additional distance cost. The additional 

distance cost causes the plane to favor physically shorter routes when the path length is 

measured on a bigger scale - An example of the phenomenon called as the coastline 

paradox (Mandelbrot and Benoit, 1983). An example of this effect is presented in 

Figure 2 in which two paths    and    of equal length from   to   are shown. If the 

length of these paths are evaluated using only even numbered nodes in the path 

                , then     clearly has the shortest physical length.  
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Figure 2: Paths of equal lengths measured with a fractal unit of one arc are not equal 

when a different fractal unit of two arcs is used. 
 

It can be shown that if the weight parameter of the additional distance cost is set 

arbitrarily large, then the cost-wise shortest path from   to   is just like the    path in 

Figure 2, no matter where the chasers are positioned. Because of this,   is set to be 

relatively small in relation to the chaser costs. However, it should be noted that with 

even small values of  , the problem of finding the shortest path is transformed 

essentially to a multiple criteria optimization problem. 

3.2 Intelligent targeting system for the chasers 

By default, the chasers are set to target the aircraft’s next node in the path between the 

nodes   and  , but also a more sophisticated targeting system for the chasers is 

presented. In this more advanced targeting mode, the chasers are aware of the aircraft’s 

shortest path and with this information the chasers select which node in aircraft’s path 

would be the most suitable for catching the aircraft and then head in that direction. 
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Figure 3: Chaser’s intelligent targeting logic which aims to meet the aircraft in some of 

the nodes that belongs to the aircraft’s optimal flight path from      to  .   

 

The aircraft’s speed    in the network is one arc per turn and the speed relation 

between the aircraft and the chasers is        . Let           be the shortest path, 

illustrated in Figure 3, that the aircraft is about to travel. Then for the aircraft, the time 

for arriving at node      in the path is simply     turns. If a chaser is located at an 

Euclidean distance of       from node     , then the chaser is able to arrive at node   in 

       turns. For each node     , a time difference         is evaluated, where 

                                                 |             |                                       (10) 

If the time difference        is, for example, equal to zero, then the aircraft and the 

chaser are bound to arrive at      simultaneously in     turns if the aircraft doesn’t 

change course at later stages. Therefore, the chasers target such a node      in the path 

that minimizes Eq. 10. 

3.3 Simulation program 

A program using Matlab programming software was created to produce simulations of 

the aircraft’s voyage to its destination. The simulation program produces a 3-

dimensional plot presenting the steps taken by the aircraft and the chasers and works in 

the following way: 
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Step 1: Threat matrix A is calculated and converted to a sparse matrix. Both  - and  -

axis are scaled so that     steps equal a distance of 1000km. Using the start node   

and the sparse cost matrix, a shortest paths –problem to all other nodes is solved with 

algorithm [5]. With the help of this result, the shortest path                   is 

generated. 

Step 2: Aircraft position marked as the node   is updated to be     , the next node in 

the path. The speed of the aircraft is 1000km/h and while the aircraft moves a distance 

equivalent of 1 arc in a step, the chasers move a distance of              arc lengths 

to the direction defined by their targeting logic. If       or step 1 has been taken   

times (a fixed maximum number of iterations), the program moves to step 3. Otherwise 

step 1 and 2 are repeated with the updated positions. 

Step 3: Steps taken by the aircraft and the chaser’s are presented in a 3 dimensional 

plot, where z-axis illustrates the passage of time.  

3.4 Other possibilities for problem formulation – Dynamic optimization 

The shortest path problem formulation used for the simulation is not the only one that 

could be used. The problem finding the aircraft’s path to its destination might as well be 

presented as a dynamic optimization problem without the network grid. With the 

methods described in [3], the following analogous problem could be solved:  

Minimize 

              ∫ ∑              

   

  

 

   (11) 

Subject to  

                √                      

{
 
 

 
 

        

        

 (  )     

 (  )     

 (12) 

where        is just like in Eq. 8 except    is     ,    is replaced with    ) and       is 

the Euclidean distance between the destination and the position             of the 

aircraft respectively. The resulting path from Eq. 11 should be smooth in contrast to the 
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one solved with the discrete network problem optimization method presented in this 

paper. Also, this alternative method can be easily extended to cover a three-dimensional 

airspace. 

3.5 Other possibilities for problem formulation – MILP 

In (Ma, C.S. and Miller, R.H., 2006) another solution technique for optimal path 

planning using a Mixed-Integer Linear Programming problem formulation (MILP) was 

presented. The basic obstacle (or threat object in this case) avoidance problem is 

presented as a linear programming problem where some of the variables are restricted 

to be integers.  

The aircraft’s movement is modeled with linear, time invariant discrete equations. Just 

like in Chapter 3.7, a velocity and destination constraints are presented but also control 

limits are taken into account in the form of linear equations with slack variables. 

The terrain under the airspace is represented with a square based grid pattern but more 

importantly, the three-dimensional terrain is formed with triangulated irregular 

networks (TIN) laid on top of the grid pattern. The obstacles with three vertical 

triangular side walls can be presented in mathematical terms as collision constraints, 

again with linear equations. 

With the methods presented in [4], it would be possible to solve a variation to the 

shortest path problem by representing the chasers as three dimensional obstacles. With 

appropriate cost function, the linear optimization problem could be solved with 

commercially available MILP solver such as CPLEX. There are also several techniques 

to reduce the computational requirements, such as receding time horizon and multiple 

time scales – techniques that enable the problem to be solved in smaller parts. 

However, the number of constraint equations and variables – and therefore the 

computational effort - is heavily dependent on the number of obstacles which is not the 

case in this paper’s network optimization method. 
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4. Simulation results 

In this chapter, an example of a single shortest path solution by the algorithm is 

demonstrated with and without the additional distance cost. Then, an example 

simulation with three chasers is presented. 

 

Figure 4a-b: Shortest path to the destination in a 92 x 92 node grid. Chaser positions in 
the grid are displayed as red dots. In Figure 4a (upper), the additional distance cost 
weight parameter is set to a value of 0.01 and in Figure 4b, w is set to 0 respectively. 
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The aircraft has been initially set at       and has its destination at (900km, 900km) 

near the upper right corner of the bounded air space. The shortest path to the 

destination before the first step is shown in Figure 4a with additional distance cost 

weight parameter   being set to 0.01 and in Figure 4b, the shortest path to the same 

initial problem is displayed but the weight parameter for the additional distance cost is 

set to zero. Comparing Figures 5a and 5b shows that the additional distance cost has a 

significant impact to the shortest path and its smoothed physical length in real air space.  

 
 

Figure 5a-b: Simulation results using the same parameters as in Figure 5 and setting the 
number of iterations to 190. Blue curve represents the aircraft’s path and other curves 
represent the three chasers. In Figure 5b (lower), the simulation result is shown from a 

different perspective to illustrate the passage of time. 
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With intelligent targeting set on, the result from a full simulation with 190 steps is 

shown in Figure 5a-b. The aircraft in this case has been set to travel 1.5 times the speed 

of its chasers. Being a three dimensional plot with z-axis representing the passage of 

time, the simulation result is displayed from two different angles for visual clarity.  

According to the simulation, just a few steps before reaching its destination the aircraft 

is caught by the intelligent chasers. A small red cross marks the spot where at least one 

catcher was no more than 0.1 arc’s length away from the aircraft at the time. However, 

according to other simulations with different speed ratios             than the 1.5 used in 

the presented simulation, the aircraft is able to avoid the catchers successfully if the 

speed relation is increased to 1.8 and up. Remarkably, if the intelligent targeting feature 

is set off, the chasers cannot catch the aircraft even if the speed relation is set to 1. 

4.1 Computational effort considerations 

Running the simulation program with various different grid sizes, step counts and 

number of chasers revealed that the biggest impact on computational effort required is 

the grid size parameter m. Figure 6 shows how the grid size effects the total 

computation time for an average modern PC. The simulations were run using 2m steps. 

 
Figure 6: Computation effort using the presented algorithm for simulation. T2 is the 
total time required for a typical simulation with two chasers consisting 2m steps. T3 is 

the total time with three chasers. 
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The curves presented in Figure 6 suggest that the program runs in polynomial time. 

According to (Bertsekas, 1998), the best estimates of the worst-case running time of the 

algorithm 2.3 are              which is now solved usually n=2m times while the 

number of arcs A is roughly    . According to the profiler feature of Matlab the threat 

matrix calculation and sparsing operation dominates the total computational effort. The 

number of chasers, on the other hand, does not contribute much to the total effort as 

they play a part in mostly simple calculations when the arc costs are evaluated with the 

help of Euclidean norms. Thus it is clearly possible to run simulations using several 

chasing objects although adding more chasers requires currently the modification of the 

program source code. 
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5. Conclusions 

With the help of label setting algorithms, a shortest path –problem formulation 

presented in 2.2, offers a sound method for calculating trajectory to a fixed destination 

for an aircraft that is set to avoid static objects.  Solving the shortest path –problem in a 

stepwise manner, the method can be used to produce a full simulation of the aircraft’s 

flight while the objects are allowed move in each step. 

The simulation program presented in this paper showed that the time required for the 

computation is heavily dependent on the network grid size. For the test system PC, the 

maximum grid size parameter bounded by Matlab’s memory requirements was 93. 

Because of this, node separation was more than 10km in the airspace of 1000 square 

kilometers at best. The reason for the high memory usage is the large cost matrix, which 

is of the size          .  It is also worth noting that the network grid may not be the 

best tool for presenting an unbounded airspace. In the example simulation, destination 

node   was intentionally set to the point (900km, 900km) to allow the aircraft at least 

some free movement in the vicinity of  . When   was set to the upper right corner on 

the other hand, the aircraft seemed to push towards that corner in the end no matter 

where the chasers were positioned. 

Even with maximum grid size the aircraft’s simulated path was far from being smooth. 

This was due to the fact that the presented network grid allows only horizontal and 

vertical stepwise movement. On the bright side, the number of object doesn’t contribute 

much to the computational effort so simulations with even hundreds of chasers are 

viable.  

One of the simplifications of the approach is that the shortest path for a dynamic 

situation is evaluated using a static threat environment. In many simulations the aircraft 

was caught by surprise just a couple of steps before reaching the destination because the 

aircraft’s next step in shortest path to t in the vicinity of t included one of the chasers in 

the next step. Just like a chess player should not plan moves according how pieces are 

placed in the board but rather how the pieces are likely to be situated in the future in 

different scenarios, the aircraft should plan ahead to make better path decisions. Of 

course, with alternative methods presented is 3.7, this problem would still remain. 
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As it was seen with the demonstration simulation in chapter 3.5, the additional distance 

cost term and its weight coefficient w has a strong impact to the shortest path. By setting 

it to value 0.01 the solved shortest path seemed more informative than the solved path 

while setting   to zero, even though the additional distance cost essentially transforms 

the initial problem to a multiple criteria optimization problem with arbitrary weightings. 

This raises a question: what should be the value of  ? With appropriate chaser 

positions the shortest path was actually seen to be quite sensitive to changes in  . At 

least one thing can be stated about  : the weight of the additional distance cost should 

be as low as possible so that the initial shortest path is not distorted more than it has to.      

5.1 Improvements for the approach 

The main disadvantages of the method used for this simulation was the lack of 

resolution due to the small grid size and also the fixed movement directions available to 

the aircraft as well as the performance issues with memory. These issues could be dealt 

with by making the following modifications:  

5.1.1 Label setting algorithm improvement 

The label correcting algorithm presented in Chapter 2 can be easily modified to a single 

origin/single destination algorithm by making the algorithm terminate right after the 

label     is removed from candidate list  . With this adjustment it is possible to achieve 

significant computational savings in solving the shortest path problem if the end node   

is relatively far away from   in the graph, which should be the case in many iterations as 

the aircraft draws nearer to its destination.  

5.1.2 Diagonal movement 

The network grid could be modified to include diagonal arcs to nearby nodes making 

the simulated paths appear to be more natural. However, with this modification we 

arrive at a problem: the time required to travel a diagonal arc is longer than a vertical or 

horizontal one. Also the distance traveled in a diagonal step would be longer and 

therefore would make the diagonal movement too low-cost an option for the aircraft to 

travel than it should. Indeed, simulations with a similar program allowing also diagonal 

movement showed a path consisting almost nothing but diagonal steps. A simplistic way 

to deal with this problem could be to weight diagonal arc costs more to counter the 

greater distance traveled and of course, to enable chasers then to travel farther in a 

diagonal step. 
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The grid network presented in this paper presents a two-dimensional airspace, but just 

as easy as it is to add diagonal arcs, it is possible to construct a three-dimensional grid 

network by piling up       grid networks on top of each other and adding the 

appropriate arcs between the layers. With this modification however, the shortest path –

algorithm would be dealing with a          cost matrix. 

5.1.3 Cost matrix size reduction 

Because every row of the cost matrix used in the program contains no more than four 

non-zero cells, it should be possible to increase the maximum grid size significantly and 

achieve computational effort reductions in the same time by feeding the shortest path 

algorithm a cost matrix of the form      . If the diagonal arcs are enabled, then the 

modified cost matrix would be of the size     . This modification requires however, 

that the general shortest paths -algorithm used in this paper’s simulations is to be 

reprogrammed.  
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