
 1

AALTO UNIVERSITY

Systems analysis laboratory

Reactive vehicle routing using a shortest path

network optimization algorithm

Lasse Johansson

Espoo, September 8
th
, 2011

Instructor: Ph.D. Kai Virtanen

The document can be stored and made available to the public on the open internet pages of Aalto

University. All other rights are reserved.

i

ii

AALTO UNIVERSITY

 11000, 00076 Aalto

http://www.aalto.fi

ABSTRACT

Author: Lasse Johansson

Title: Optimal flight-path planning using a shortest path network algorithm

Faculty: The Faculty of Information sciences and Technology

Study program: Applied mathematics and Physics

Major: Systems analysis

F3010

Instructor: Kai Virtanen, Ph.D.

Abstract:

In this paper, a label setting shortest path algorithm is used to solve optimal flight paths to a

fixed destination for an aircraft flying in an closed rectangular 2-dimensional air space. The air

space, which is represented by a symmetric node grid, contains hostile objects that chase the

aircraft. The coordinates of both the aircraft and its chasers are updated and the problem is

solved repeatedly to produce a simulation of the aircraft’s trajectory. For this purpose, a

Matlab simulation program was created and its general principles and functioning logic is

illustrated. One example simulation is then presented in this paper.

Also, a sophisticated targeting intelligence for the chasers is formulated and used in the

simulation. Furthermore, the computational effort of the program with respect to the amount

of hostile objects and grid size is presented. Two other methods for solving optimal flight

paths are discussed. Finally, several ways of improving the presented method is presented.

Date: 6.2.2011 Language: English Pages: 18

Keywords: Network optimization problem, shortest path, node grid

iii

Contents
Symbols and notations ... iv

1. Introduction .. 1

2. Network optimization problem and the shortest path algorithm 2

2.1 Network notations... 2

2.2 The shortest path problem ... 3

2.3 Label setting methods for solving the shortest path problem 3

3. Problem formulation .. 5

3.1 Arc costs .. 6

3.2 Intelligent targeting system for the chasers ... 8

3.3 Simulation program .. 9

3.4 Other possibilities for problem formulation – Dynamic optimization 10

3.5 Other possibilities for problem formulation – MILP ... 11

4. Simulation results .. 12

4.1 Computational effort considerations .. 14

5. Conclusions ... 16

5.1 Improvements for the approach .. 17

5.1.1 Label setting algorithm improvement ... 17

5.1.2 Diagonal movement .. 17

5.1.3 Cost matrix size reduction ... 18

References ... 18

iv

Symbols and notations

 Set of nodes

 The number of nodes

 Node

 Set of arcs

 The number of arcs

 An arc

 An Arc flow

 A sequence of arcs

 such that the

end node of an arc is always the next start

node in the following arc of the path

 th node in the shortest path from to

 the total flow departing from node ,

divergence of the node

 A scalar arc cost of arc

 Matrix containing all arc costs

 Start node of the shortest path, node that

contains the aircraft

 Sink node, destination node for the aircraft

 Candidate list for the Dijkstra shortest path

algorithm

 Label of node i for the Dijkstra shortest path

algorithm

 Coordinates of the node

v

 Coordinates of the arc

 Network grid size parameter

 Euclidean distance between arc and

chaser

 Euclidean distance between arc and

node , additional distance cost

 Weight parameter for the additional distance

cost

 The sum of the arc cost and the

additional distance cost

 Speed of the aircraft

 Speed of a chaser

 Speed relation

 The minimum difference of arrival times in

the node between the aircraft and its

chase

 1

1. Introduction

Network models are used extensively in practice, in a variety of different applications

which are based on network problems such as max-flow, traveling salesman, vehicle

routing, and multi-commodity flow. Collectively, these network problems constitute the

most common class of practical optimization problems (Bertsekas, 1998). Arguably, the

shortest path network optimization problem is the simplest of the network problems,

although the range of applications is nonetheless extensive, covering problems such as

data routing, project management and dynamic programming. Furthermore, the

shortest path problem is often needed to be solved as a sub problem with the more

complex network optimization tasks. Thus, a host of effective yet simple methods to

solve the shortest path problem have been introduced.

In this paper, a shortest path algorithm is used to produce a simulation about an aircraft

which selects and repeatedly re-evaluates the safest flight path to its destination, while

avoiding hostile moving objects that are chasing the aircraft. In Chapter 2, the basic

notations related to network problems are presented. With these notations the label

setting solving algorithm for the general shortest path problem is explained. In Chapter

3, the problem of finding an optimal flight route while avoiding moving hostile objects

to destination is formulated as a shortest path network problem. Furthermore, two

other formulation approaches other than optimization problem are shown. In Chapter

4, a simulation result is presented for the aircraft in which the shortest path problem has

been iterated while the positions of the aircraft and the hostile objects have been

updated each round. Also, the computational effort of the approach is illustrated.

Finally, in Chapter 5, several methods for improving the method and its computational

speed are discussed.

2

2. Network optimization problem and the shortest path

algorithm

Based on (Bertsekas, 1998), the notations that are needed to define a shortest path

problem are briefly presented in this chapter. Furthermore, the shortest path problem

is formulated in mathematical terms and a simple label setting algorithm to solve the

problem is presented.

2.1 Network notations

A directed graph , consists of the set of nodes and of the set of

directed arcs between the nodes . The number of nodes and arcs are denoted by

and respectively. An arc from node to is denoted by . If an outgoing arc exists

from node to then is an arc where is called the start node and is called the

end node. It is possible that both arcs and exist but no more than one arc

may exist between a pair of nodes in the same direction.

A forward path from node n to m in a directed graph is a sequence of arcs

 such that the end node of an arc is always the next start

node in the following arc of this path. It is also possible to express a forward path

simply as a sequence of nodes

The flow of an arc is a scalar which is denoted by . Sometimes convenient to

allow negative as well as positive values for a flow, but a negative flow can always be

changed to a positive flow if the arc direction is swapped in the graph. In this paper an

arc exists for every existing arc and thus, all flows are set to be nonnegative

scalars without any loss of generality. The divergence of the node is the total flow

departing from node less the total flow arriving at , which is given by

 ∑

 ∑

 (1)

It is said that node i is a source if and that node i is a sink if . In this

paper the network contains only one source and sink. Note that by adding divergences

over all , we obtain ∑

3

2.2 The shortest path problem

Suppose that each arc of the graph is assigned a scalar cost and the cost of a

forward path is the sum of the costs of its arcs. Given a start and an end node, the

shortest path problem is to find a forward path between the nodes that has the

minimum total cost. In many contexts, arc cost can be viewed as physical distances

between the nodes. Based on this analogy, the problem is referred to as the shortest

path problem and the total cost is sometimes referred to as the length of the path.

In mathematical terms, the shortest path problem can be formed in the following way:

Minimize:

 ∑

 (2)

subject to

 ∑

 ∑

 {

 (3)

Where, is the start node (source) and is the end node (sink) referred to as the

destination node. It is said that a flow is feasible if the constraining equation (3) holds

for every . It can be shown [1] that if the shortest path problem has at least

one feasible flow, then an optimal solution to the problem of Eq.2 exists. Feasible flow

is always achieved if we set for any forward path from s to t that

 {

 (4)

Reader may verify that equation (3) now holds. If a flow of the form of Eq. 4 is an

optimal solution for the problem in Eq. 2, then the corresponding path is the

shortest.

2.3 Label setting methods for solving the shortest path problem

There are many different types of algorithms (Bertsekas, 1998, p. 51) that solve the

shortest path problem defined in chapter 2.2. In this paper, a relatively simple label

4

setting method is used, first published by Dijkstra in 1959. In this algorithm, each node

is associated with a scalar label and a candidate list is formed. In a stepwise

procedure, a certain node is removed from the candidate list for which is the

minimum label at each step. The process starts with candidate list containing only the

node s and terminates when the candidate list is empty.

The Label Setting Method (Dijkstra)

As presented in(Bertsekas, 1998), the shortest path problem in Eq. 2 can be solved with

the following algorithm:

Step 1: Let all arc cost be nonnegative. We set

 ,

where is the label of the node .

Step 2: A node i is removed from the candidate list such that

 { }

Step 3: For each arc , if , we set and node is

added to if it does not already belong to .

Step 4: If the candidate list is empty, terminate. Go to step 2 otherwise.

It can be shown that the algorithm always terminates and the final non-infinite labels are

equal to the length of the shortest path to the corresponding node. The label setting

algorithm described above finds not only the shortest path from node s to t but all the

shortest paths from node s to each other node .

5

3. Problem formulation

In this chapter, a shortest path algorithm presented in Chapter 2.3 is used to solve a

minimum cost flight path for an aircraft to its destination. A bounded airspace for the

problem, which contains a number of hostile moving objects, is represented by a two-

dimensional symmetric network grid. Arc costs in the grid are associated with the

proximity of the hostile objects to the arcs.

The aircraft is set to a starting position and it is set to have a destination at

 At fixed positions in the
 plane lie also a number of hostile objects, which

in this paper are referred to as the “chasers”. While the chasers are able to move freely

in the airspace, the aircraft is bound to move in the grid network from node to the next.

The grid is a symmetric network of nodes, which is illustrated in the Figure

1. The nodes in the grid are arranged so that node 1 is the left-most node in the bottom

row and node lies in the opposite corner of the grid.

Figure 1: Grid network of m x m nodes. Circles represent nodes in the network and

arrows represent the directed arcs between nodes.

6

For every , there are also the arc in this grid network. Also as it can be

seen from the Figure 1, An inner node has outward arcs

 as well as inbound arcs and

 - A total of eight arcs.

Each node and arc associated with coordinates, which are fixed so that the node

 lies in the origin as the Figure 1 suggests. The coordinates of an arc are fixed to the

center of the arc. Using the grid network’s node numbering sequence presented in

Figure 1, the -coordinate of node are given by

 (5)

The -coordinate corresponds to the node’s row number less one, which can be

calculated with the help of its -coordinate: The left-most node in the same row of node

 is equal to . Therefore we have that

 (6)

To represent a real air space later on, these coordinates are scaled accordingly. The

coordinate should not be mistaken as the divergence of the node . Indeed, from

now on in this paper refers specifically to an -coordinate of node and to a

chaser ’s -coordinate respectively.

3.1 Arc costs

To emulate the threat from the hostile objects in the form of arc costs, the arc cost

should be large near the chasers and smaller far away. A simple way to define the arc

costs then would be then to use negative Euclidean distance values between arcs and

chasers as arc costs. However, the algorithm presented in Chapter 2.3 requires that

each arc cost is to be nonnegative, and thus the arc cost is defined in the following

way:

 ∑

 (7)

7

where
 is the Euclidean norm between the center of the arc and the chaser

 , given by

 √(

)

 (

)

 (8)

Eq. 7 and 8 now dictates that if an arc is located far away from the chaser’s current

position, the cost of flowing through the arc is low but near a chaser the arc cost can be

substantial because of the nonlinear definition of .

For programming purposes, all arc costs are gathered to a cost matrix , where the cell

 is the arc cost . If an arc doesn’t exist, we set making a sparse

matrix although a very large one – for a network grid the cost matrix is of the

 .

It is important to note, that most of the low-total cost paths from to have the same

number of steps and therefore these paths have the same physical length. Nevertheless,

to force the aircraft to favor “shorter” routes, an additional cost is also set for travelling

an arc far away from the destination. The adjusted total arc cost
 is defined to be the

sum of and the Euclidean distance to the destination node :

 ∑

 (9)

where is a fixed weight coefficient for the additional distance cost. The additional

distance cost causes the plane to favor physically shorter routes when the path length is

measured on a bigger scale - An example of the phenomenon called as the coastline

paradox (Mandelbrot and Benoit, 1983). An example of this effect is presented in

Figure 2 in which two paths and of equal length from to are shown. If the

length of these paths are evaluated using only even numbered nodes in the path

 , then clearly has the shortest physical length.

8

Figure 2: Paths of equal lengths measured with a fractal unit of one arc are not equal

when a different fractal unit of two arcs is used.

It can be shown that if the weight parameter of the additional distance cost is set

arbitrarily large, then the cost-wise shortest path from to is just like the path in

Figure 2, no matter where the chasers are positioned. Because of this, is set to be

relatively small in relation to the chaser costs. However, it should be noted that with

even small values of , the problem of finding the shortest path is transformed

essentially to a multiple criteria optimization problem.

3.2 Intelligent targeting system for the chasers

By default, the chasers are set to target the aircraft’s next node in the path between the

nodes and , but also a more sophisticated targeting system for the chasers is

presented. In this more advanced targeting mode, the chasers are aware of the aircraft’s

shortest path and with this information the chasers select which node in aircraft’s path

would be the most suitable for catching the aircraft and then head in that direction.

9

Figure 3: Chaser’s intelligent targeting logic which aims to meet the aircraft in some of

the nodes that belongs to the aircraft’s optimal flight path from to .

The aircraft’s speed in the network is one arc per turn and the speed relation

between the aircraft and the chasers is . Let be the shortest path,

illustrated in Figure 3, that the aircraft is about to travel. Then for the aircraft, the time

for arriving at node in the path is simply turns. If a chaser is located at an

Euclidean distance of from node , then the chaser is able to arrive at node in

 turns. For each node , a time difference is evaluated, where

 | | (10)

If the time difference is, for example, equal to zero, then the aircraft and the

chaser are bound to arrive at simultaneously in turns if the aircraft doesn’t

change course at later stages. Therefore, the chasers target such a node in the path

that minimizes Eq. 10.

3.3 Simulation program

A program using Matlab programming software was created to produce simulations of

the aircraft’s voyage to its destination. The simulation program produces a 3-

dimensional plot presenting the steps taken by the aircraft and the chasers and works in

the following way:

10

Step 1: Threat matrix A is calculated and converted to a sparse matrix. Both - and -

axis are scaled so that steps equal a distance of 1000km. Using the start node

and the sparse cost matrix, a shortest paths –problem to all other nodes is solved with

algorithm [5]. With the help of this result, the shortest path is

generated.

Step 2: Aircraft position marked as the node is updated to be , the next node in

the path. The speed of the aircraft is 1000km/h and while the aircraft moves a distance

equivalent of 1 arc in a step, the chasers move a distance of arc lengths

to the direction defined by their targeting logic. If or step 1 has been taken

times (a fixed maximum number of iterations), the program moves to step 3. Otherwise

step 1 and 2 are repeated with the updated positions.

Step 3: Steps taken by the aircraft and the chaser’s are presented in a 3 dimensional

plot, where z-axis illustrates the passage of time.

3.4 Other possibilities for problem formulation – Dynamic optimization

The shortest path problem formulation used for the simulation is not the only one that

could be used. The problem finding the aircraft’s path to its destination might as well be

presented as a dynamic optimization problem without the network grid. With the

methods described in [3], the following analogous problem could be solved:

Minimize

 ∫ ∑

 (11)

Subject to

 √

{

 ()

 ()

 (12)

where is just like in Eq. 8 except is , is replaced with) and is

the Euclidean distance between the destination and the position of the

aircraft respectively. The resulting path from Eq. 11 should be smooth in contrast to the

11

one solved with the discrete network problem optimization method presented in this

paper. Also, this alternative method can be easily extended to cover a three-dimensional

airspace.

3.5 Other possibilities for problem formulation – MILP

In (Ma, C.S. and Miller, R.H., 2006) another solution technique for optimal path

planning using a Mixed-Integer Linear Programming problem formulation (MILP) was

presented. The basic obstacle (or threat object in this case) avoidance problem is

presented as a linear programming problem where some of the variables are restricted

to be integers.

The aircraft’s movement is modeled with linear, time invariant discrete equations. Just

like in Chapter 3.7, a velocity and destination constraints are presented but also control

limits are taken into account in the form of linear equations with slack variables.

The terrain under the airspace is represented with a square based grid pattern but more

importantly, the three-dimensional terrain is formed with triangulated irregular

networks (TIN) laid on top of the grid pattern. The obstacles with three vertical

triangular side walls can be presented in mathematical terms as collision constraints,

again with linear equations.

With the methods presented in [4], it would be possible to solve a variation to the

shortest path problem by representing the chasers as three dimensional obstacles. With

appropriate cost function, the linear optimization problem could be solved with

commercially available MILP solver such as CPLEX. There are also several techniques

to reduce the computational requirements, such as receding time horizon and multiple

time scales – techniques that enable the problem to be solved in smaller parts.

However, the number of constraint equations and variables – and therefore the

computational effort - is heavily dependent on the number of obstacles which is not the

case in this paper’s network optimization method.

12

4. Simulation results

In this chapter, an example of a single shortest path solution by the algorithm is

demonstrated with and without the additional distance cost. Then, an example

simulation with three chasers is presented.

Figure 4a-b: Shortest path to the destination in a 92 x 92 node grid. Chaser positions in
the grid are displayed as red dots. In Figure 4a (upper), the additional distance cost
weight parameter is set to a value of 0.01 and in Figure 4b, w is set to 0 respectively.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

distance x [km]

d
is

ta
n
c
e
 y

 [
k
m

]

First iteration - optimal trajectory

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

distance x [km]

d
is

ta
n
c
e
 y

 [
k
m

]

First iteration - optimal trajectory

13

The aircraft has been initially set at and has its destination at (900km, 900km)

near the upper right corner of the bounded air space. The shortest path to the

destination before the first step is shown in Figure 4a with additional distance cost

weight parameter being set to 0.01 and in Figure 4b, the shortest path to the same

initial problem is displayed but the weight parameter for the additional distance cost is

set to zero. Comparing Figures 5a and 5b shows that the additional distance cost has a

significant impact to the shortest path and its smoothed physical length in real air space.

Figure 5a-b: Simulation results using the same parameters as in Figure 5 and setting the
number of iterations to 190. Blue curve represents the aircraft’s path and other curves
represent the three chasers. In Figure 5b (lower), the simulation result is shown from a

different perspective to illustrate the passage of time.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

distance x [km]

Simulation results

d
is

ta
n
c
e
 y

 [
k
m

]

01002003004005006007008009001000
0

20

40

60

80

100

120

distance y [km]

Simulation results

ti
m

e
 [

m
in

]

14

With intelligent targeting set on, the result from a full simulation with 190 steps is

shown in Figure 5a-b. The aircraft in this case has been set to travel 1.5 times the speed

of its chasers. Being a three dimensional plot with z-axis representing the passage of

time, the simulation result is displayed from two different angles for visual clarity.

According to the simulation, just a few steps before reaching its destination the aircraft

is caught by the intelligent chasers. A small red cross marks the spot where at least one

catcher was no more than 0.1 arc’s length away from the aircraft at the time. However,

according to other simulations with different speed ratios than the 1.5 used in

the presented simulation, the aircraft is able to avoid the catchers successfully if the

speed relation is increased to 1.8 and up. Remarkably, if the intelligent targeting feature

is set off, the chasers cannot catch the aircraft even if the speed relation is set to 1.

4.1 Computational effort considerations

Running the simulation program with various different grid sizes, step counts and

number of chasers revealed that the biggest impact on computational effort required is

the grid size parameter m. Figure 6 shows how the grid size effects the total

computation time for an average modern PC. The simulations were run using 2m steps.

Figure 6: Computation effort using the presented algorithm for simulation. T2 is the
total time required for a typical simulation with two chasers consisting 2m steps. T3 is

the total time with three chasers.

0

50

100

150

200

250

300

350

400

20 30 40 50 60 70 80 90

T
o

ta
l
C

o
m

p
u

ta
ti

o
n

al
 T

im
e
 [

s]

Grid Size m

Computational effort

T2

T3

15

The curves presented in Figure 6 suggest that the program runs in polynomial time.

According to (Bertsekas, 1998), the best estimates of the worst-case running time of the

algorithm 2.3 are which is now solved usually n=2m times while the

number of arcs A is roughly . According to the profiler feature of Matlab the threat

matrix calculation and sparsing operation dominates the total computational effort. The

number of chasers, on the other hand, does not contribute much to the total effort as

they play a part in mostly simple calculations when the arc costs are evaluated with the

help of Euclidean norms. Thus it is clearly possible to run simulations using several

chasing objects although adding more chasers requires currently the modification of the

program source code.

16

5. Conclusions

With the help of label setting algorithms, a shortest path –problem formulation

presented in 2.2, offers a sound method for calculating trajectory to a fixed destination

for an aircraft that is set to avoid static objects. Solving the shortest path –problem in a

stepwise manner, the method can be used to produce a full simulation of the aircraft’s

flight while the objects are allowed move in each step.

The simulation program presented in this paper showed that the time required for the

computation is heavily dependent on the network grid size. For the test system PC, the

maximum grid size parameter bounded by Matlab’s memory requirements was 93.

Because of this, node separation was more than 10km in the airspace of 1000 square

kilometers at best. The reason for the high memory usage is the large cost matrix, which

is of the size . It is also worth noting that the network grid may not be the

best tool for presenting an unbounded airspace. In the example simulation, destination

node was intentionally set to the point (900km, 900km) to allow the aircraft at least

some free movement in the vicinity of . When was set to the upper right corner on

the other hand, the aircraft seemed to push towards that corner in the end no matter

where the chasers were positioned.

Even with maximum grid size the aircraft’s simulated path was far from being smooth.

This was due to the fact that the presented network grid allows only horizontal and

vertical stepwise movement. On the bright side, the number of object doesn’t contribute

much to the computational effort so simulations with even hundreds of chasers are

viable.

One of the simplifications of the approach is that the shortest path for a dynamic

situation is evaluated using a static threat environment. In many simulations the aircraft

was caught by surprise just a couple of steps before reaching the destination because the

aircraft’s next step in shortest path to t in the vicinity of t included one of the chasers in

the next step. Just like a chess player should not plan moves according how pieces are

placed in the board but rather how the pieces are likely to be situated in the future in

different scenarios, the aircraft should plan ahead to make better path decisions. Of

course, with alternative methods presented is 3.7, this problem would still remain.

17

As it was seen with the demonstration simulation in chapter 3.5, the additional distance

cost term and its weight coefficient w has a strong impact to the shortest path. By setting

it to value 0.01 the solved shortest path seemed more informative than the solved path

while setting to zero, even though the additional distance cost essentially transforms

the initial problem to a multiple criteria optimization problem with arbitrary weightings.

This raises a question: what should be the value of ? With appropriate chaser

positions the shortest path was actually seen to be quite sensitive to changes in . At

least one thing can be stated about : the weight of the additional distance cost should

be as low as possible so that the initial shortest path is not distorted more than it has to.

5.1 Improvements for the approach

The main disadvantages of the method used for this simulation was the lack of

resolution due to the small grid size and also the fixed movement directions available to

the aircraft as well as the performance issues with memory. These issues could be dealt

with by making the following modifications:

5.1.1 Label setting algorithm improvement

The label correcting algorithm presented in Chapter 2 can be easily modified to a single

origin/single destination algorithm by making the algorithm terminate right after the

label is removed from candidate list . With this adjustment it is possible to achieve

significant computational savings in solving the shortest path problem if the end node

is relatively far away from in the graph, which should be the case in many iterations as

the aircraft draws nearer to its destination.

5.1.2 Diagonal movement

The network grid could be modified to include diagonal arcs to nearby nodes making

the simulated paths appear to be more natural. However, with this modification we

arrive at a problem: the time required to travel a diagonal arc is longer than a vertical or

horizontal one. Also the distance traveled in a diagonal step would be longer and

therefore would make the diagonal movement too low-cost an option for the aircraft to

travel than it should. Indeed, simulations with a similar program allowing also diagonal

movement showed a path consisting almost nothing but diagonal steps. A simplistic way

to deal with this problem could be to weight diagonal arc costs more to counter the

greater distance traveled and of course, to enable chasers then to travel farther in a

diagonal step.

18

The grid network presented in this paper presents a two-dimensional airspace, but just

as easy as it is to add diagonal arcs, it is possible to construct a three-dimensional grid

network by piling up grid networks on top of each other and adding the

appropriate arcs between the layers. With this modification however, the shortest path –

algorithm would be dealing with a cost matrix.

5.1.3 Cost matrix size reduction

Because every row of the cost matrix used in the program contains no more than four

non-zero cells, it should be possible to increase the maximum grid size significantly and

achieve computational effort reductions in the same time by feeding the shortest path

algorithm a cost matrix of the form . If the diagonal arcs are enabled, then the

modified cost matrix would be of the size . This modification requires however,

that the general shortest paths -algorithm used in this paper’s simulations is to be

reprogrammed.

References

[1] Bertsekas, D. 1998. Network Optimization: Continuous and Discrete Models.

Athena Scientific. Belmont, Massachusetts. ISBN 1-886529-02-7.

[2] Benoit and Mandelbrot. 1983. The Fractal Geometry of Nature. W.H. Freeman

and Co.. pp. 25–33

[3] Kirk, D.E. 2004. Optimal Control Theory, An Introduction. Dover Publications,

[4] Ma, C.S. and Miller, R.H.2006. MILP - Optimal Path Planning for Real-Time

Applications. Proceedings of the 2006 American Control Conference. Minneapolis,

Minnesota, USA.

[5] Gleich, David. Shortest path algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/authors/23283, Visited 6.2.2011

