
Aalto University
School of Science
Master’s programme in Mathematics and Operations Research

Marianne Honkasaari

Modelling Energy Production of Wind Farms
under Transmission Capacity Constraints

Instructors:
M.Sc. Vilma Virasjoki, Aalto University
Ph.D. Øyvind Byrkjedal, Kjeller Vindteknikk AS
Supervisor:
Prof. Ahti Salo, Aalto University

MS-E2108 Independent Research Projects in Systems Analysis
October 25, 2018

The document can be stored and made available to the public on the open
internet pages of Aalto University.
All other rights are reserved.



Contents
1 Introduction 1

2 Methods 2
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Smoothing function . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Power curve shift in the smoothing function . . . . . . 6
2.2.2 Time shift in the smoothing function . . . . . . . . . . 6
2.2.3 Weights for the smoothing function . . . . . . . . . . . 9

2.3 Modelling losses . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 12
3.1 Time series and merit curves . . . . . . . . . . . . . . . . . . . 12
3.2 Curtailment due to the transmission line capacity limit . . . . 13
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusions 17

References 18

A Weather Research and Forecast model 20

B Wind roses 22

C Power curves 23



1 Introduction

Climate change and environmental concerns have shifted energy production
towards renewable energy sources, whereby wind power offers a sustainable
option (Cavanagh and Viswanthan, 2016; Steinberger and Yeh, 2016). Wind
is increasingly cost-effective, and an inexhaustible source of renewable energy
that produces no pollution (Peltola et al., 2017; Islam et al., 2013).

Nevertheless, wind power industry has experienced some challenges. Wind
turbines have been considered noisy and ugly, the technology has been rela-
tively expensive, and wind is intermittent which causes systemic challenges.
In spite of these obstacles, the wind energy industry is starting to boom
(Weissman et al., 2017). Currently, onshore wind is one of the most compet-
itive sources of energy, and the technology is still developing (IRENA, 2018).
Additionally, many governments are offering incentives to spur wind energy
development (Behrendt, 2015; Steinberger, 2017).

Wind energy is converted into electrical energy by wind turbines. Electricity
is fed into a transmission line, which has a capacity limit to transmit the
power. Because wind power is not dispatchable and it varies according to the
weather, the energy production from the turbines is usually below or above
the transmission capacity. Therefore, wind power must be balanced with
other energy sources to keep the system in balance as a whole; a necessity
for power system operations. Additionally, when all produced wind cannot
be transmitted due to the transmission line capacity limits, the owner of the
wind production facility faces a profit loss.

In this study, we consider a situation in which a curtailment due to the
transmission capacity limit may cause such profit losses on wind production
facilities. This is a real case study from Norway but wind farms are discussed
anonymously as wished by the client of Kjeller Vindteknikk. The plan under
study includes a system of seven wind farms. Six of them have the privilege
to use the transmission line out of the system into the larger grid. This means
that if the total production of wind farms in the system exceeds the limit, the
seventh wind farm must restrain its power production first. Distance from
the southernmost wind farm to the northernmost wind farm is approximately
86 km.

The objective of this study is to find out how much wind farm 7 may have
to cut down its annual production due to this transmission line capacity
limit. In order to determine this, we construct a model to represent energy
production time series and merit curves for the wind farms in the system.
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Scenarios with and without wind farm 7 are considered.

Section 2 presents data and model formulation. Results are presented in
Section 3 and conclusions in Section 4.

2 Methods

2.1 Data

The model formulation in this study was based on the supervisory control
and data acquisition (SCADA) data of energy production from wind farm 1
during years 2013-2015. The data was available on an hourly basis for each of
the 25 turbines in the wind farm. The layout of wind farm 1 can be found in
Figure 1. To be able to build the model, the SCADA data was filtered and
cut, to produce uncorrupted data without technical problems. The model
was constructed with MATLAB.

Figure 1: Layout of the wind farm 1
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The wind dataset, including wind speed and direction for each wind farm
for the years 2000-2016, was produced with the publicly available meso-scale
meteorological model WRF (Weather Research and Forecast Model), with a
horizontal resolution of 4 km x 4 km and a temporal resolution of 1 hour.
Each wind farm is represented by a WRF grid point and the model describes
the geographical differences in wind conditions between all seven wind farms.
Details on this model are in Appendix A.

Wind speed for each wind farm was scaled so that the modelled energy pro-
duction was able to reach the expected AEP (Annual Energy Production).
Net production was assumed to be 85 % of the gross production. Wind roses,
which show the frequency distribution of the long-term wind direction binned
according to different wind speed intervals, are given in Appendix B for each
wind farm with the scaled wind for years 2000-2016.

Information on the 7 wind farms is in Table 1. The turbine type of wind
farm 6 is not known, so a Vestas V117, which is used in many of the other
wind farms, has been selected for this study. The number of turbines in wind
farm 6 is calculated based on the turbine capacity and the total capacity of
the wind farm.

Table 1: Features of the wind farms. Status meanings: IO = In operation,
UC = under construction, IP = In planning. Net annual energy production
= Net AEP.

Wind Number Status Capacity/ Total Net AEP Turbine type
farm of turbine capacity (GWh)

turbines (MW) (MW)
1 25 IO 2.3 57.5 172.5 Enercon E70
2 71 UC 3.6 255.6 766.8 Vestas V117
3 80 UC 3.6 288.0 864.0 Vestas V117
4 30 UC 3.6 108.0 324.0 Vestas V117
5 28 UC 3.6 100.8 302.4 Vestas V117
6 36 IP 3.6 129.6 390.0 Not decided
7 32 IP 3.6 115.2 345.0 Vestas V117

2.2 Smoothing function

Because we have energy production data only for wind farm 1 from the
SCADA data, the production for the other six wind farms has to be based on
modelling. For this, we need wind speed data for each wind farm location and
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power curves for different turbine types to construct the energy production
time series. Turbine type specific power curves are in Appendix C.

To develop a realistic model for total production of a wind farm, we need
a smoothing function. SCADA data for wind farm 1 was used for studying
the smoothing effect on the production within each wind farm. Without
smoothing, our model assumes the correlation between energy productions
of different turbines within a wind farm to be 1, which is not realistic. This is
because geographical dispersion of wind energy production decreases volatil-
ity in total energy production.

Figure 2 shows how the correlation between the production levels of two
different turbines in wind farm 1 decreases as the distance between them in-
creases. The reference turbine is turbine 18 in the south-east corner. Corre-
lations are calculated and the linear fit of correlation as a function of distance
is made based on the available SCADA data.

Figure 2: Wind energy production correlation as a function of distance and
the actual correlation coefficients for wind farm 1. Reference turbine is tur-
bine 18.

The effect of smoothing can be seen clearly in merit curves, especially on
production close to the maximum of the production capacity. The merit
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curve shows the share of hours above a certain production capacity. The
horizontal axis shows the time as a percentage of total time and the vertical
axis shows the percentage with which the turbine/wind farm is producing.
For example, Figure 3 shows that without smoothing, the model assumes
that turbine produces approximately 10 % of the time with full power; with
smoothing the time with full power decreases to around 6 %, which is closer
to real production in view of the average of the SCADA data.

Figure 3: Effect of smoothing on the merit curve of wind farm 1.

The final smoothing function combines two techniques. The first one focuses
on critical evaluation of the power curves (Sohoni et al., 2016). Three differ-
ent power curves are produced based on one, turbine-specific power curve,
after which they are aggregated based on weights. The second technique fo-
cuses on the geographical dispersion within a wind farm by using time shifts
in production time series. Lastly, shifted time series are aggregated based on
weights.
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2.2.1 Power curve shift in the smoothing function

Power curve shift allows the model to consider also extreme values and not
only values around the mean. The strategy is to create three different power
curves by adding 1 m/s and, correspondingly, subtracting 1 m/s from the
wind speed (Olauson and Bergkvist, 2015; Norgaard and Holttinen, 2004).
This is shown in Figure 4.

Figure 4: Original and shifted power curves of Enercon E70 turbines.

Once the three power curves were created, they were combined to generate
an aggregated power curve. This resulted in a smoothed multi-turbine power
curve, that is representative for the aggregated power output for the wind
turbines within the area.

2.2.2 Time shift in the smoothing function

For the time shift, the relation of the distance between two turbines and the
correlation between their energy production levels was studied based on the
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available SCADA data. The following linear fit was made by MATLAB:

c1 = −0.0542d+ 0.9944, (1)

where c1 is the correlation between the energy production levels of two tur-
bines, and d is the distance (km) between turbines x1 and x2.

The fit and the actual correlation coefficients of the turbines compared to
the reference turbine 18, the southernmost turbine, are in Figures 5 and 2,
respectively.

Figure 5: Correlation between the energy production of two turbines as a
function of their distance.

Other parameters than the distance also have effects on the variation. For
example, complex terrain and turbulence affect the variation of production
within a wind farm, but are not studied here.

The correlation between the original and the shifted production time series
was studied with MATLAB. The following second-degree polynomial fit was
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made:

s = 36.7693c22 − 80.1266c2 + 43.4363, (2)

where s is the time shift (h) and c2 is the correlation between original and
shifted time series. The fit with the actual correlation coefficients can be
seen in Figure 6.

Figure 6: Time shift as a function of correlation between the shifted and the
original time series.

By using the size of each wind farm, the correlations between turbines within
the farm were estimated by using equation (1). Average correlation was
estimated by using the mean of the length and width of the wind farm. By
applying the estimated correlation, the correct time shift for smoothing for
each wind farm was calculated by using equation (2). The time shifts for
each wind farm are in Table 2.
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Table 2: Time shifts used in smoothing for different-sized wind farms.

Wind farm Mean of length & width Time shift (h)
1 2.25 2
2 8.50 11
3 6.50 7
4 3.50 3
5 3.75 3
6 4.75 4
7 4.25 4

Time shifts were used to shift the energy production time series back and,
correspondingly, the same amount of time ahead so that we had three pro-
duction time series similarly to Norgaard and Holttinen (2004). These three
time series were combined to produce one, more realistic, time series with
less volatility.

2.2.3 Weights for the smoothing function

For the final smoothing function, the change in the power curves had to be
combined with the change in the production time series. This was made by
creating the combined power curve by using weights and using it to calculate
one production time series. This time series was shifted to create three time
series, which were then combined by using weights to produce the final,
smoothed time series.

Six parameters had to be decided for the smoothing function. To find the
appropriate mix of the three power curves, as well as the mix of the three
time series, weights for the power curves and similarly weights for the time
series had to be chosen carefully.

As the smoothed model should correspond to an average turbine of a wind
farm, it was compared with the average of the available SCADA data of wind
farm 1. In the comparison, average observations and modelled data points
were fitted to align on the merit curve. The appropriate weights were found
by manual iteration similarly to Norgaard and Holttinen (2004). The weights
in Table 3 and Table 4 were applied to all wind farms 1-7.
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Table 3: Weights for combining three different power curves in the smoothing
function.

Weight
Power curve - 1 m/s 0.2
Power curve 0.6
Power curve + 1 m/s 0.2

Table 4: Weights for combining three different time series, shift x hours, in
the smoothing function. The time shift x depends on the size of the wind
farm according to Table 2.

Weight
Production time series - x h 0.2
Production time series 0.6
Production time series + x h 0.2

2.3 Modelling losses

To create a net production time series for each wind farm and merit curves
for the total net production of all the wind farms, some losses had to be
accounted for. Modelling losses is important to produce a realistic model of
energy production. If the total decrease in production due to different losses
would be modelled similarly at every time period, the focus would be on the
average and consequently the extremes would not be modelled realistically.
This would not affect total production, but it would have a big effect on the
merit curves and on the calculation of annual profit losses in wind farm 7,
which is our objective in this study. Four kinds of losses were modelled with
MATLAB: icing and blade degradation losses, wake losses, unavailability
losses, and electrical losses. The estimations of the percentage for different
types of losses were based on the expertise and previous experience of Kjeller
Vindteknikk. The distribution of different losses is in Table 5.

Icing and blade degradation losses include the production losses due to ice
formation on the blades, and due to the successive degradation of the blade
surface that occurs due to wear and tear and exposition to icing and dirt.
The turbines continue producing with degraded performance (Turkia et al.,
2013; Zidane et al., 2016; Sareen et al., 2014), and the resulting losses were
modelled by a decreased wind speed. The seasonal variation by the icing was
not taken into account, as it was considered to have only a small effect on
the total losses, and the effect of cold weather was taken into account when
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considering the unavailability losses. The reduced production was estimated
by decreasing wind speed until the desired percentage of blade degradation
losses was reached. This means that the turbine will still be able to produce
at full power, but the wind speed will have to be slightly higher to reach the
full power.

Wake losses are the production losses caused by a wake effect generated by
the turbines of the wind farm. Wind turbines extract energy from the wind
and, thus, downstream from the wind turbine, there is a wake, which means
that the wind has reduced speed and is turbulent (González-Longatt et al.,
2012). It is important to consider the wake effect when designing a wind
farm and to account for wake losses when modelling the production. Wake
losses are modelled by a decreased wind speed similarly to icing and blade
degradation losses.

Unavailability losses were modelled as random production breaks in turbines.
These losses occur mostly in periods when the turbine is unavailable to pro-
duce energy due to technical reasons. The turbine with a break was chosen
randomly as well as the start of the break. The duration of the break was
chosen randomly from the distribution of halt durations made of the SCADA
data of wind farm 1. The breaks were added one by one until the unavail-
ability losses reached the defined baseline percentage. In addition, at low
temperatures, the wind turbine system can shut down or produce at reduced
efficiency. Due to this, extra halts were added during winter time (from Oc-
tober to March), until the determined level of total unavailability losses was
achieved.

Lastly, electrical losses were added. Electrical losses were estimated to be
proportional to the square of the production on each moment. Losses were
scaled to reach the defined percentage of electrical losses.

The final percentages for the different types of losses are in Table 5. Losses
were added one after another so the total loss percentage was a multiplication
of different types of losses. The actual total loss percentage sums up to 14.4
%. The total effect of the modelled losses on the production is in Figure 7.

In summary, the total production of the wind farms never reaches the in-
stalled capacity due to the losses. The merit curve does not reach the max-
imum mainly because of the electrical losses. Unavailability losses have an
effect mostly on the shape of the merit curve close to the maximum, and icing
and blade degradation and wake losses on the middle production. Effects of
the different losses on the merit curve are in Figure 8.
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Table 5: Different types of losses and the percentages the production is de-
creased because of the each loss.

Type of the loss Distribution of the production losses
Icing and blade degradation 1 %
Wake effect 8 %
Unavailability 4 %
Electrical 2 %

Figure 7: An illustrative time series of modelled energy production in wind
farm 5 with and without modelled losses.

3 Results

3.1 Time series and merit curves

By using the smoothing function and acknowledging production losses, a time
series for realistic net production in 2000-2016 were calculated for each wind
farm. The effects of smoothing and losses are in Figure 9 for an example
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Figure 8: Comparison of the effects of different loss types on the unsmoothed
merit curve.

one-week time series of the modelled power production for a turbine in wind
farm 1.

Merit curves were constructed by using the production time series. Merit
curves for the total production of the wind farms both with and without
wind farm 7 are in Figure 10, along with the installed capacity of all wind
farms. The total production of the wind farms never reaches the installed
capacity due to the losses.

3.2 Curtailment due to the transmission line capacity
limit

Seven wind farms are planned to be in the same local grid, but there is a
limited power transmission capacity in the system consisting of seven wind
farms. Because the wind farms 1 through 6 have the privilege to use the
transmission line, there are occasional profit losses for wind farm 7, when
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Figure 9: An example time series of modelled production by using wind data
and power curve, adding smoothing and the losses.

the produced power cannot be exported to the grid due to the limit on
transmission line capacity. This happens whenever the total production of
the wind farms exceeds the transmission line capacity constraint.

The level of the curtailment due to the transmission limit was calculated by
using merit curves. The curtailment of the power production of wind farm
7 was calculated by integrating the area between the merit curves with and
without wind farm 7, above the power that is equal to the transmission line
capacity limit.

Different transmission limits are considered, as we do not know the real limit.
Therefore, different levels of the curtailment are presented in energy and as
a percentage of the annual energy production of wind farm 7 in Table 6.
The sum of the installed wind power capacity is 1055 MW and the modelled
annual energy production of wind farm 7 is 345 GWh. This is an estimation
based on the weather data of the location. Due to the losses, the power of
all farms never reaches the total installed capacity but is 1003 MW at the
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Figure 10: Merit curves for the total production of the wind farms with and
without wind farm 7 along with the total installed capacity of the wind farms.

maximum.

Table 6: Levels of the curtailment in wind farm 7 with different transmis-
sion line capacity limits in energy and as a percentage of the annual energy
production of wind farm 7.

Limit (MW) Curtailment (GWh) Curtailment as a percentage
1055 0 0 %
1003 0 0 %
950 3 1 %
900 24 7 %
850 62 18 %
800 97 28 %
750 125 36 %
700 148 42 %

The level of average curtailment due to transmission constraints is 2-3 % in
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the United States (Wiser et al., 2015). From Table 6, we can see that if the
transmission line capacity limit is below 1003 MW, the energy production in
wind farm 7 is curtailed.

If the transmission line capacity limit is below 950 MW, the curtailment
increases significantly. However, if the transmission line capacity limit is
below the total production capacity of the other six wind farms, there can
be curtailment in their production as well. The total installed capacity of
wind farms 1-6 sums up to 940 MW but due to the losses the real production
capacity is below this. If all the wind farms are producing energy close to
their maximum and the limit is below their total production capacity, the
production in the other wind farms must be curtailed as well. Therefore, the
transmission line capacity limit has also an effect on the other wind farms
but that is not studied here.

Transmission limit of 700 MW equals to the curtailment of 148 GWh. As the
annual energy production of wind farm 7 is 345 GWh (Table 1), this means
the level of curtailment is nearly half, 42 %, of the AEP of wind farm 7. With
the limit of 850 MW, the curtailment is still nearly one fifth, 18 %, of the
AEP of wind farm 7. However, in these cases the transmission limit effects on
the other wind farms as well at times, because the total production of wind
farms 1-6, with wind farm 7 entirely curtailed, may exceed the transmission
line capacity. Hence, the level of the annual curtailment in wind farm 7 is
actually smaller.

The significant level of the curtailment depends case by case. For example,
Jorgenson et al. (2017) defines 15.5 % as a significant level of wind curtailment
and studies how it can be reduced through transmission expansion.

3.3 Discussion

Different sources of uncertainty affect the results. The most sensitive choice
is likely to be the assumption of total losses to be 15 %. The assumption was
made based on the Kjeller Vindteknikk’s experience. This has an effect on
the estimated net AEP and, thus, on the wind scaling, as well as the amount
of losses added to the production model. Also the distribution of losses has
uncertainties, and it has to be estimated well to be able to model the energy
production realistically.

Other model limitations include, for example, omission of the effect of the
geography within wind farms. In the construction of the smoothing function,
the choices of the weights for combining three power curves and the three
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time series involve uncertainties, as they are found by manual iteration and
merit curve inspection. Also, the estimation of the sizes of wind farms and
the choice to use the mean of length and width can affect the results through
the smoothing function.

The estimation of the profitability of wind farm 7 is left to the client. As the
transmission line capacity is not known for this study, no exact value for the
curtailment is given. Rather, the modelled levels of curtailment for different
capacity limits are stated.

4 Conclusions

In this study, we have examined a system of seven wind farms in Norway.
Six of the farms are privileged to use the transmission line to transmit the
produced energy to the grid from the system of the seven wind farms. We
constructed a model to represent energy production of different wind farms
realistically. With the energy production time series, we constructed merit
curves and found the level of annual curtailment in wind farm 7 due to the
transmission capacity limit.

The results suggest that, depending on the transmission line capacity, a sig-
nificant curtailment in wind farm 7 can lead to profit losses. Therefore the
level of the energy production in the other wind farms should be taken into
account when implementing transmission line capacity limits on the energy
production at wind farm 7.

The study also examined the effect of the smoothing of the modelled energy
production within each wind farm as well as between the wind farms. The
study indicates that the smoothing is necessary to model energy production
realistically. Merit curves are useful when studying smoothing effects as well
as the effects of losses. The importance of modelling different types of losses
was demonstrated as well.
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A Weather Research and Forecast model

Meso-Scale Model WRF

The Weather Research and Forecast (WRF) model is a state-of-the-art meso-
scale numerical weather prediction system, aiming at both operational fore-
casting and atmospheric research needs. A description of the modelling sys-
tem in on the home page http://www.wrfmodel.org/. Details about the
modelling structure, numerical routines and physical packages available can
be found for example in Klemp et al. (2007)1 and Michalakes et al. (2001)2.
The development of the WRF-model is supported by a strong scientific and
administrative community in U.S.A. The number of users is large and grow-
ing rapidly internationally. In addition the code is freely accessible for the
public.

The meso-scale model WRF solves coupled equations for all important phys-
ical processes (such as winds, temperatures, stability, clouds, radiation etc.)
in the atmosphere based on the initial fields and the lateral boundary values
derived from the global data.

Input data

The most important input data are geographical data and meteorological
data. The geographical data is from the National Oceanic and Atmospheric
Administration (NOAA). The data includes topography, surface data, albedo
and vegetation. These parameters have high influence for the wind speed in
the layers close to the ground. The WRF model uses land use data input
from NOAA.

For solving the model equations, boundary conditions of the area are re-
quired. Such lateral boundary data is available from the National Centers
for Environmental Protection (NCEP). The data originates from the Final
Global Data Assimilation System (FNL) and is available as global data with
1 degree resolution every 6 hours. FNL is an operational assimilation model
that incorporates all available observation data globally, and uses this data to

1Klemp, Joseph B., William C. Skamarock, and Jimy Dudhia. "Conservative split-
explicit time integration methods for the compressible nonhydrostatic equations." Monthly
Weather Review 135.8 (2007): 2897-2913.

2Michalakes, J., et al. "Development of a next-generation regional weather research
and forecast model." Developments in Teracomputing. 2001. 269-276.
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create a global analysis dataset, or a snapshot of the atmosphere, four times
every day. The assimilation model incorporates data from several thousand
ground based observation stations, vertical profiles from radiosondes, air-
crafts, and satellites.

Model Setup

The model setup used in this study is shown in Figure 11a. The simulations
of the northern European region have been performed for 18 years covering
the period 2000-2017. The model has been set up with 2 nested domains.
The horizontal resolution is 4 km x 4 km.

With the current setup, the WRF-model calculates the change in the meteo-
rological fields for each grid-cell for a time step from 5 to 108 seconds in the
different domains with increasing time step for lower horizontal resolution.
In this way a realistic temporal development of the meteorological variables
is achieved. Data is stored every 1 hours of simulation.

The domain setup of the high resolution model used in this analysis is shown
in Figure 11b. The 7 simulations of Norway have been performed for 1 year
(2005). The model has been set up with 3 nested domains. The horizontal
resolution is 1 km x 1 km. The NCEP–FNL dataset is used as input for the
1 km simulations.

(a) Model setup for WRF4km
simulation.

(b) Inner model domains from
all available simulations from
WRF1km.

Figure 11: Domain setups for WRF.
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B Wind roses

(a) Wind farm 1 (b) Wind farm 2 (c) Wind farm 3

(d) Wind farm 4 (e) Wind farm 5

(f) Wind farm 6 (g) Wind farm 7

Figure 12: Wind roses for each wind farm
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C Power curves

Table 7: Turbine type specific power curves

Wind speed [m/s] Enercon E70 [MW] Vestas V117 [MW]
1 0 0
2 2 0
3 16 11
4 53 134
5 121 318
6 230 587
7 383 967
8 596 1467
9 866 2106
10 1212 2835
11 1580 3405
12 1885 3600
13 2077 3600
14 2262 3600
15 2300 3600
16 – 25 2310 3600
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