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1 Introduction

Humans encounter situations on a daily basis where the spreading of infor-
mation plays a major role. A few examples are transfer of news, propagation
of gossip and spreading of fads. Communication devices and the Internet
are playing a growing role in the transfer of information. These media can
coarsely be divided in two categories: to global broadcast media such as on-
line news agencies which provide information to everyone interested, and to
social media that leads to localized information spreading processes. The lo-
cal processes take place within social networks and the interactions between
individuals can occur e.g. via mobile phones or WWW based social media
applications. For instance, significant part of the information leading to the
revolution on 25 January 2011 in Egypt spread quickly via social media [1].
Information spreading in social networks can also be utilized knowingly for
instance in word of mouth marketing [2]. Thus, the ability to understand
information diffusion processes between individuals can provide warning sig-
nals of upcoming protests or help designing an efficient marketing plan for a
new product.

There exists a wide theoretical background studying spreading processes in
human societies. These diffusion models are often mean field models, i.e. the
individual effects from multiple members of the system are approximated by
a single averaged effect. Epidemic spreading models, such as the Susceptible-
Infected-Recovered (SIR) -model [3], are an elementary example of them.
The epidemic spreading models are applicable for studying diffusion pro-
cesses where the participants are passive in the sense that they are incapable
of determining their attendance to the process. For instance, individuals are
usually not able to decide whether they become ill and consequently act as a
spreader for the disease. Despite the simplicity of the SIR-models, they have
been successfully utilized for example in vaccination planning. However, there
exist a variety of spreading processes where humans can not be considered as
passive. They either consciously or unconsciously assess the costs or benefits
of acting as an adopter. For instance, it is beneficial to buy some commu-
nications device only if sufficiently many friends already have it, or a piece
of news is a worth spreading if one hears it from many enough sources. A
straightforward way to enable this kind of consciousness to the participants
of the spreading processes leads to threshold models of collective behavior [4].
In threshold models stimuli from more than one source is required in order
for advancement in the spreading.

All the spreading processes fundamentally depend on the framework they
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function on. Consequently, the mean field approach provided by the simple
diffusion models does not explain spreading in the real world but we need
to take the underlying network of connections explicitly into account. The
outcomes of the diffusion processes vary greatly if the underlying network
is switched from e.g. regular lattices to random networks. Networks in the
real world, whereas, are not completely regular nor random but have peculiar
topological features and are called complex networks. For example, social net-
works include features such as broad degree distribution, short path lengths
and community structure [5, 6]. These features have a distinctive effect on
the dynamical processes occurring on the networks [7].

In addition to the topology of the underlying network for the diffusion pro-
cess, we need to consider the possible dynamical properties of the network
per se. This includes both the fact that the underlying network is changing
over time and that the single links are active only at specific points of time.
Rapid development of electronic means of communications seen during the
last decades enables us to gather large amounts of data representing human-
to-human interactions. This data can be represented as a temporal network
in which the links can transmit something only when they are active, i.e.
there is a call between two people. Studying the activity patterns of tempo-
ral networks reveal the bursty nature of human behavior, which means that
there is plenty of activity in a short period of time and large gaps of low
activity between them [8]. The temporality on the topology of the network
creates a new kind of environment for all dynamical processes because they
can advance only through active links. Hence, in order to study information
propagation among humans as realistically as currently possible, we need to
consider the temporality of the underlying complex network, as well as a
threshold based approach.

Much work has already been carried out to study the two aforementioned
factors separately, and here, the aim is to study them together. Previous
work include examining the elementary dynamical processes in temporal net-
works, such as random walks [9] and SI-spreading. For instance, it has been
shown that even though the topology of human communication networks ad-
vances spreading [10], the temporality of the system makes the SI-spreading
slow [11]. Studies of spreading processes in social networks have also been
conducted and they have been exploited for instance in finding the crucial
nodes for the diffusion [12,13]. Classification of the specific features enabled
by the temporality that either hamper or advance the speed or reachability
of the dissemination [14] is also possible via diffusion studies. Few empirical
studies of information spreading in real Internet based social networks have
also been conducted [15,16]. Threshold model of spreading is examined ana-
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lytically in random networks in [17] and a generalization of spreading models
is presented and in simple cases solved in [18].

The aim of this special assignment is to study the threshold models of in-
formation spreading in empirical temporal networks, a question with recent
activity [19,20]. Via our analysis we try to find common features of temporal
networks that influence the spreading, and also to find differences between
and characteristics within our four datasets describing human interactions.
This work is organized as follows. In section 2 we introduce the crucial back-
ground information and definitions, and present the datasets used in the
study. Next, we introduce the models used in this study and the results ob-
tained from the simulations of the models in sections 3 and 4, respectively.
The final section 5 discusses the results and their interpretation.
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2 Background and data

In this section we introduce background information on temporal networks,
diffusion processes on them and present the datasets used in this study.
For the fundamental knowledge about complex networks one can refer to
Newman’s extensive introduction book [5] and Holme and Saramäki’s review
about temporal networks [21].

2.1 Temporal networks

In general, temporal networks can be represented as a set of events that
define which edges of the network are momentarily active. Each single event
e is a set of four members, e ≡ (u, v, t, δt), where the members represent the
transmitter, receiver, occurrence time and duration of the event, respectively.
For example, in the case of a mobile phone call network, the network is
presented as a list of calls (events) and each call contains the information
about the caller, callee, the starting time and duration of the call. Often, for
simplicity, the events are considered instantaneous, i.e. δt is ignored. Figure
1 presents an example of a temporal network.

The standard form of the representation of the temporal networks has the
information about the direction of the events, thus the links of the network
are directed. However, in the setting of information spreading, we need to
reason whether to account the directionality. For instance in phone calls,
once the link is active, the information can flow through it in both ways and
thus the link is bidirectional or undirected, whereas, e.g. in email network
one single event represents one email where the flow of the information is
explicitly from the sender to the receiver and thus directed.

We are often interested in the total network structure that the temporal links
span. In this aggregated version the temporality of the links is discarded by
considering them to be constantly active.

2.2 Diffusion processes in static and temporal networks

In addition to the static topological properties of networks, we are often
interested in some dynamic function taking place in them. A wide variety of
dynamical processes has been studied in static networks, including important
elementary processes such as synchronization, percolation and random walks.
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Figure 1: Three different representations of the same undirected temporal network
with instantaneous events. In a) the red links are currently active, whereas the
black links represent the links of the aggregated network. In b) and c) the network
is presented as eventlist or event sequence. The columns in c) are respectively
from left to right: time t, label of the sender node n1 and label of the receiver
node n2. The format in c) is an efficient way of representing temporal networks for
computers.

The goal in synchronization is to study the common dynamical evolution
of coupled oscillators that interact via a network. A famous example is the
synchronization of cricket chirping. Percolation studies the robustness of the
networks, i.e. how the network is affected when nodes are removed from it.
Percolation theory has important applications in studying for example power
grid blackouts or Internet resiliency. Random walks are closely connected to
searching in networks, and are the simplest example of a diffusion process in
a network. In a random walk the network is explored by starting from one
node, then advancing to one of its neighbors chosen at random and finally
repeating the procedure. The PageRank algorithm developed by Google can
be considered as an application of random walks. [7]

The next step in diffusion studies is modeling the epidemic spreading, which
has applications for instance in epidemiology and in computer science when
studying the spreading of computer viruses. The epidemic models are usually
mean field models, i.e. the exact effect that each system’s member has on a
single specific member is replaced with a single representative average effect.
They also assume a certain level of homogeneity in the interaction network,
meaning that the egocentric network built for every system member looks
exactly the same. Thus, they do not give correct answers when applied to
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real life social networks with heterogeneous topological properties.

Even though the mean field models of epidemic spreading may not give cor-
rect results with real world networks, we can still utilize the concept of the
epidemic dynamics on a node by node basis. This approach leads to an agent
based model, and we can use them for instance with empirical networks.
Moreover, the simple epidemic dynamics are usually the basis for studying
complex collective behavior in social networks and they are used in simulating
processes such as opinion formation or, especially, information spreading.

It is clear that the temporality in the underlying network creates funda-
mentally different environment for all dynamical processes, because they can
advance only through active links. For example, it is shown that even with
proper scaling of the time, the random walk exploration is slower in temporal
networks than in the corresponding aggregated network [9]. On a more gen-
eral level, empirical temporal networks include many properties that make
the analytical treatment very complicated. Such features include the corre-
lation between the event sequences of different links and temporal hetero-
geneities such as bursty behavior and daily patterns. Therefore dynamical
processes in temporal networks are usually modeled using real empirical net-
works and agent based dynamics. Next we take a closer look at the compart-
mental model of epidemic spreading and see how it can be utilized as a basis
for diffusion processes in temporal networks.

2.2.1 SIR-models of epidemic spreading

Though ultimately developed to describe epidemiological spreading, the
Susceptible-Infected-Recovered (SIR) -models are significant and can be used
as a base for more elaborate models [3]. The simplest model from the SIR-
family has only two states, susceptible and infected, and is therefore called SI-
model. In this model, when an individual becomes infected, it stays infected
forever. The dynamics of the SI-model can be fully described with the help
of few factors. Lets assume that the proportion of susceptible agents in the
system at time t is s and the equivalent proportion for infected is i. Then we
define transition rate β, which means that each individual has, on average,
β contacts with other members of the system per unit time. At time t, the
probability that each contact is between susceptible and infected individual
and not between pairs S-S or I-I, is si. Now we can write differential equations
for the rate of change between these groups:

ds

dt
= −βsi (1)
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and
di

dt
= βsi. (2)

Actually, since the expression s + i = 1 holds, the equations (1) and (2) are
the same. This equation can then be solved analytically. More complicated
models where the individuals can recover or become susceptible again, such
as SIR and SIS, require the introduction of recovery rate. The rate equations
for these cases can be derived following the same principles as above.

It is easy to see that the spreading processes from the SIR-family are crude
simplifications of the reality and not very well suitable for information spread-
ing. First, they assume that every individual of the system is able to contact
directly with every other member of the system, which is clearly not true
in real social networks. They also neglect the heterogeneous and correlated
event sequences of real communication networks. Nevertheless, SIR-models
are popular because of their simplicity and analytical solvability.

As stated, one possible way of utilizing SIR-dynamics and empirical underly-
ing temporal network of connections is to make each node obey the dynamics
individually. Thus, when simulating the spreading process, at each time step
the nodes with an active event are checked in case of possible infection. New
infection at a given time is possible only if susceptible node is in a contact
with at least one infected neighbor. While the exact analytical manageability
is lost, this kind of approach gives valuable information about the spread-
ing processes in empirical network. For instance, the deterministic SI-model
where the transition rate of the infection is 1 whenever there’s a contact be-
tween infected and susceptible individual, gives the upper bound for all the
spreading processes in empirical temporal networks.

An important step towards a more realistic information diffusion model in
human societies was taken by Watts in [17]. He studies the occurrence of
global cascades in random networks by first infecting a small initial popula-
tion and then repeatedly applying the SI-model on a randomly chosen node.
Instead of a transition rate, the new infection is governed by the fraction of
infected neighbors around the specific node. If the fraction exceeds a prede-
fined node specific constant, the node becomes infected. The Watts’ model
thus introduces local dependencies and also takes into account the underly-
ing network of connections. These result in a great improvement compared
to the simple epidemic models. The heterogeneities in the thresholds and
in the degree distribution of the underlying network were seen to affect the
possibility of a global cascade.
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2.3 Datasets and data pre-processing

In our study, we use four different datasets describing human communication
networks. The datasets and sources are:

CALL
The call network is constructed from the mobile phone call records of
an European carrier. The network consists of ∼ 5.8 million nodes and
∼ 620 million calls. The data is gathered between 30.9.2009-31.3.2010
and the resolution is 1 second.

SMS
As above, but instead of phone calls, the network consists of SMS mes-
sages from the same time frame excluding Christmas Eve and New
Year’s Eve since the behavior on these days differs radically from all
the rest (see appendix A). The sms network has ∼ 3.1 million nodes
and ∼ 180 million sent text messages.

EMAIL
The email dataset is constructed from the logs of a given university’s
mail server. Only inter-institute emails are considered and some mass
mailers are discarded. The duration of the dataset is ∼82 days with a
resolution of 1 second. The real occurrence time of the emails concealed,
yet the sequence of all the emails is kept unaltered. There are 2993
nodes in the email network that send in total ∼ 2 · 105 emails. [22]

CONFERENCE
The conference dataset is a collection of ongoing face-to-face conversa-
tions of the participants of the ACM Hypertext 2009 conference. The
113 tracked participants of the conference wore radio badges that mon-
itored their proximity to other attendees. Thus, the data is a set of
timestamps and IDs of pairs of participants who are having a conver-
sation during instants t and t+ ∆t. The time resolution ∆t of the the
data is 20 seconds. Start of the recording took place at 8am on 29 of
June and the overall duration of the eventlist is ∼2.5 days. [23, 24]

There are some distinctive features combining and separating the datasets.
In the first three networks an electronic communication device is used and
the sender and the receiver of the event can be physically far away from each
other, whereas in the conference network, the participants are in the same
physical space and the activation of new links (rewiring of the network) occurs
through people leaving from old and joining to new conversation groups.
Another difference separating the datasets is that the call and conference
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Figure 2: The number of hourly events during a certain time interval for all the
four datasets. The conference dataset is represented as a whole whereas a one week
representative sample is shown for the other datasets. In the call and sms data the
day border is at 00:00, in the conference data at 08:00 and the real event times in
the email data are unknown.

networks require activity from both the sender and the receiver in order for
an event to happen (the call is answered) but in sms and email only the
sender’s activity matters. Once a link is active, the information in call and
conference networks can flow to both directions, thus the links are considered
bidirectional. In sms and email networks the direction of information flow is
fundamentally from sender to receiver and thus the links are directed.

The call and sms networks are filtered in such a manner that only links which
have at least one reciprocal event are considered. This is done to ensure that
the networks represent better interactions between equal humans and not for
example calls made in marketing purposes.

Since we are interested in the overall spreading within the networks and thus
want to ensure that the spreading has the theoretical possibility of reaching
every node of the network regardless of the starting node, we extract the
largest connected component (LCC) from the raw data. The nodes which
belong to the LCC are reclaimed from the aggregated version of the corre-
sponding temporal network. The links in the aggregated network are con-
sidered bidirectional. Thus, all the nodes in the LCC are connected via a
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(static) path, but because of the temporality and possible directionality of
the links, some nodes might still be unreachable for the diffusion.

The events in all the datasets are assumed to be instantaneous, i.e. the du-
rations of the events are neglected. For example, in reality each phone call
event has a lifetime of δt, but we assume that the information can be passed
anytime during the call, hence δt is ignored. This approximation does not
have an effect on the overall spreading on the call network since multiple
simultaneous events for a specific node are impossible. In sms and email
networks, the events are instantaneous by nature. In conference dataset the
possible overlapping nature of the events and their durations is built into the
data.

The four datasets have different statistical properties. For example, in the
sense of both topological and temporal characteristics, the conference net-
work is very dense while the sms network is very sparse. Figure 2 shows the
number of hourly events for each of the datasets for a certain period of time
and reveals some characteristic properties of temporal networks. For instance,
the call and the sms networks have clear daily and weekly patterns: the high-
est activity is reached late in the evening and there’s less activity on the
weekends. Siesta spent during the early afternoon explains the peculiar drop
in the number of hourly calls. Naturally, the activity in the conference data
happens during daytime. The basic properties of the networks are presented
in Table 1.

Table 1: Statistical properties of empirical networks used in the study. Figures
from the aggregated counterparts of the temporal networks are flagged with (a).
The properties are: number of nodes N , number of events N(e), number of links
m, average degree 〈k〉, average clustering coefficient 〈c〉, data period length T , data
time resolution ∆t and whether the links are directed (→) or bidirectional (↔).

N N(e) m (a) 〈k〉 (a) 〈c〉 (a) T ∆t link
CALL 5.8·106 620·106 15·106 5.0 0.23 180 d 1 s ↔
SMS 3.1·106 180·106 5.7·106 3.7 0.10 176 d 1 s →

EMAIL 2993 2.0·105 21736 14.5 0.21 82 d 1 s →
CONFERENCE 113 20818 2196 38.9 0.54 2.5 d 20 s ↔
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3 Methods

3.1 Threshold spreading models

The fundamental idea in our models is to include the concept of thresholds
to temporal networks, thus providing a good framework for studying infor-
mation spreading in real human interaction networks. Our model can be seen
as a temporal extension to the Watts’ cascade model [17]. From now on, the
lexicons of information and infection spreading are used interchangeably and
thus a node becomes infected when it receives a piece of information. At the
initial state every member of the network is susceptible and then one initial
spreader gets chosen at random. The information has then the possibility
to advance to other nodes via the events the initial spreader takes part in.
Whenever a susceptible node is in contact with an infected one it calculates
the fraction of infected neighbors around itself. This fraction is then com-
pared with a predefined threshold which defines what level of neighborhood
infection is needed in order for the information to diffuse. In a sense, each
node must make a binary decision with externalities, i.e. whether to accept
an information or not, according to the knowledge about nodes neighbors’
state [25].

Each node obeys SI-dynamics where the infection rate is replaced with the
fraction. Thus, if the predefined threshold is exceeded, the diffusion occurs
with certainty. Whenever a new node accepts the information (becomes in-
fected), it acts as a possible spreader in the events taking place after the
infection. Once infected, the node stays infected forever. Nevertheless, we
want to include a component in the model which decreases the importance
of old events. In the context of information spreading between humans, it is
natural to assume that eventually people forget the interactions. This behav-
ior is achieved by defining a time range τ which rules how far back in history
the events are noteworthy. In other words, the time range τ represents the
memory of the node. Thus, the fraction of infected neighbors around one
node at time t is calculated as the sum of infected neighbors which have
been in contact with the specific node during interval [t − τ, t] divided by
the degree of the node. Note that the degree is the static value calculated
from the aggregated network and not a sum of all the neighbors, infected
or susceptible, that have been in contact with a node during given interval.
Since the underlying networks do not evolve by definition, i.e. no new nodes
or links enter the system, the static degree is the correct measure describing
the connectance of a node in the context of information diffusion between
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humans.

Model I: More formally, the diffusion is controlled by the fraction φ(i, t|τ)
which is the measure of node specific infectious events for node i divided by
the degree di of the node. An event is called infectious for node i if it is a
contact between infected node and node i, and the possible directionality of
the event is towards node i. The node specificity means that possible multiple
contacts coming from one node are counted as single. Thus, the fraction can
be defined as

φ(i, t|τ) :=
1

di

∑
j(6=i)

χ(j, t′), t′ ∈ [t− τ, t], (I)

where the indicator function χ is 1 if node j has had at least one infectious
contact with node i during the interval [t− τ, t] and 0 otherwise. The sum-
mation is over all the other nodes of the network except node i. The diffusion
spreads to node i if φ(i, t) ≥ f , where f is a predefined constant and common
for all the nodes.

Model II: A simple variation to the first model can be achieved by leaving
out the scaling with the degree. The result is a hard threshold model which
highlights the absolute connectivity of a network. In this case the value to
study, k(i, t|τ), is the number of node specific infectious events for node i.
Formally it can be written as

k(i, t|τ) :=
∑
j(6=i)

χ(j, t′), t′ ∈ [t− τ, t]. (II)

The diffusion spreads if k(i, t) ≥ K, where K is again a predefined constant
and common for all nodes. In practice, only small values of K can enable
cascades of notable sizes, because already with K = 2 diffusion can advance
only via mutually overlapping triangles. Higher values of K require even
denser networks. With hard threshold model the value of K must of be taken
into account when choosing the initial spreader(s). For example, with K = 2
we must infect the both participants of a one random event.

There is a connection between these models and elementary SI-spreading.
Model (II) with parameter K = 1 equals exactly to SI-model with infection
rate 1. Also, model (I) with a small enough threshold values equals to model
(II) with K = 1. The fractional threshold can thus be interpreted as a limiter
which governs the type of spreading process the nodes obey according to their
degree: they can either obey deterministic SI-dynamics or threshold dynam-
ics. For example, nodes with small degree always have very high values of
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φ(i, t|τ), even with short memory and few infectious hits, thus they get easily
infected and obey SI-model with infection rate 1. The threshold dynamics
explicitly activate for nodes with degrees di > f−1, because then they need
infectious hits from more than one source in order to become infected.

Model III: The first two models are deterministic and only dependent on
the initial spreader and the constant. We define also a stochastic variant of
the first. Instead of comparing the figure φ(i, t|τ) to the predefined constant,
we use the value φ(i, t|τ) directly as the probability of infection. Thus a node
i gets infected if

φ(i, t|τ) ≥ U, (III)

where U is an uniform random number from interval [0, 1].

As in the first two models, in the third model a node is given the opportu-
nity of becoming infected after each received infectious event. A significant
difference of this stochastic model and the first two is, that in the stochastic
model, the bursts of a single link are meaningful. In the first two models only
the latest hit from each of node’s links is counted, assuming it fits within the
memory, and therefore the bursts in a single link do not increase the likeli-
hood of infection. In the stochastic model the bursts have a positive impact
on the likelihood of infection through the increased number of opportunities
of becoming infected.

Figure 3 shows an example of the spreading process for all the three models.
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Figure 3: An example of the diffusion spreading for all the three models in a
temporal network with bidirectional links and memory τ = 5. Infected nodes are
encircled with orange. The red links are currently active and infectious hits that
are still within the memory of a node are emphasized with light red background.
The calculated values of φ or k are seen within the corresponding node. In model
II with K = 2 the nodes A and B are initially infected. With model III the random
numbers used in the checking of the rule are seen close to the nodes in question.
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3.2 Shuffling methods

The effect of structural properties on the spreading is known. Since the aim
is to study how the temporal correlations affect the system, one needs a
methodology to selectively destroy a few specific correlations while keeping
all other temporal and structural characteristics intact. This is achieved by
comparing the diffusion with the original event sequence to different null
models. The null models destroy some and preserve other features of the net-
works, thus enabling us to deduce the important ones. The null models used
and their effect to the network are introduced underneath. An illustration
presenting the effects of the different shuffling schemes is seen in Figure 4.

RANDOM TIME SHUFFLE (RT)
The time stamps of all the events are randomly shuffled. This destroys
all the temporal correlations of events between links and nodes but
preserves the global activity such as daily patterns. Also, all the static
properties of the nodes and network, such as degrees, are preserved.

EQUAL WEIGHT LINK SEQUENCE BIN SHUFFLE (EQW)
The links are sorted according to the total number of events and binned
such that each bin has at least two links. Then, entire event sequences
are randomly shuffled between the links in a certain bin. The shuffling
destroys the link-link correlations of events, but preserves the burstiness
of each link and static properties of the network. Event sequences of
links connected to a same node have the possibility to be exchanged
with each other. [14]

INTER LINK EVENT SEQUENCE SWITCH (IL)
The event sequence of each link is switched onwards with periodic
boundary condition by a random integer in the interval [0, T ], where T
is the occurrence time of the last event in the sequence. Hence we can
destroy the link-link correlations while keeping the event sequences of
the links as original as possible.
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Figure 4: Illustration of the effects of the different shuffling methods. The first two
panels list the events of a specific link ordered by time. The third panel illustrates
the effect of the IL-shuffle on one link. The red bars are single events on a link
connecting two nodes and at the same time representing time interval [0, T ].
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4 Results

The models are simulated numerically by running the spreading process with
the original event list and all of the null models. The infection is started from
an event randomly chosen from the first p percents of the events and ran till
the end of the event list. The program stores the fraction of the size of the
infected cluster versus the number of active nodes in the specific run. Number
of simulations is 103 for the call and sms datasets and 104 for the smaller
email and conference datasets.

The initial infected node and the starting event for models (I) and (III) are
chosen so that we first check which nodes are active during the first p percents
of events. Then we choose a random node from the set of active nodes and
finally a random event where this chosen node is active. This results in equal
probability for a node and an event that are active within the first p percents
of the events to be chosen as the initial spreader. For the case (II), we must
infect both of the participants of the chosen event in order to be able to get
any spreading with K = 2. The value p = 0.15 was chosen because large
enough percentage of nodes are active within the first p percents of events
and the infection has still at least 1 − p = 0.85 percents of events left to
spread. In Figure 5 we see the fraction of active nodes during the first p
percents of events versus the total number of nodes in the network for all the
four datasets.

In Figures 6, 7 and 8 we see the average fraction of infected nodes at the
end of the eventlist (〈I(tend)/N〉) as a function of memory τ for the models
(I), (II) and (III), respectively. The I(t) represents the number of infected
nodes at time t. The possible threshold values in the figures are chosen so
that they reveal the most interesting phenomena. The standard error for each
datapoint is less than 1.1 · 10−2 and thus confidence intervals are not drawn
for clarity.

For the call network we see that the event list with random shuffling infects
the greatest part of the network (6a). The original event sequence infects
considerably lower amount of nodes. The explanation for the performance of
the RT-shuffle is evident when we study the effects the shuffling has on the
events: it spreads the events of the links more evenly by destroying all the
correlation between events and links, therefore increasing the likelihood of a
node obtaining infectious hits from multiple unique nodes. On the other hand,
the destruction of link-link correlations in the null model has a negative effect
on the spreading, but clearly the great positive effect of the even spreading
of the events overcomes this issue. The EQW and IL -shuffles behave in
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Figure 5: The fraction of active nodes during the first p percents of events. The
chosen value of p = 0.15 is emphasized with the dashed line. In the call and sms
networks the value of p = 0.15 corresponds to ∼27 days, in the email network ∼12
days and in the conference network ∼9 hours.

quite similar fashion, both infecting less than the original. This is due to the
destruction of link-link correlations these shuffling methods have. Thus our
results demonstrate that link-link correlations exist in call network and they
enhance the diffusion. The behavior as a function of memory τ corresponds
well to what we would expect from reality: the memory starts to have a
significant increase in the spreading when it last longer than ∼0.5 hours and
the increase in the memory becomes negligible after approximately one week.

The call network with second model (7a) and withK = 1 reaches almost a full
infection. As stated, with K = 1 this model corresponds to the deterministic
SI-model, and thus τ is meaningless. The reason why the RT-shuffle infects a
bit more than the other shuffling methods, even though the behavior is now
independent of memory, is that it enables small subcomponents which are
active only in a reasonably short time interval compared to the total duration
of the event sequence get more easily infected. With K = 2, the spreading is
zero as we might expect, since spreading can not proceed to nodes which are
connected to the infected component of the network through just one link.
The results of the stochastic model (III) (8a) agree well with the results of
the model (I). The dramatic drop in the absolute value of the size of the
infected component between the stochastic and the fractional models results
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from the fact that high degree nodes are very unlikely to get infected, and
especially that the low degree nodes do not get infected with certainty.

The temporal and topological sparsity of the sms network hampers the
spreading of infection, best seen in the zero infection in the stochastic model
(8b) and in the τ -independence for other models (6b,7b). With small enough
values of f the infection spreads (6b), but then the model corresponds to the
model (II) with K = 1 (7b) and to the deterministic SI. Therefore, if the
network is sparse in the sense of topology and the correlation between links
is low, it is very unlikely to have a sufficiently infected neighborhood and the
whole concept of threshold spreading becomes arguable.

The results of the conference network with τ > 20s and with the models (I)
and (III) resemble in outline to those of the call network. A notable occur-
rence with these models is the behavior of the diffusion with memory less than
the resolution of the data, τ < 20s. In this region the memory of the nodes
is erased during each regrouping of the people (rewiring of the network). It
is seen that the original order of events is the best for the spreading, which
makes intuitively sense, because breaking the natural order of conversation
groups is likely to hamper the information flow. The average degree of nodes
in the conference network is high, resulting in a network dense enough for the
model (II) with K = 2 (7c) to have non-zero outcome. In this curve we also
see the strong phenomenon of the original event sequence performing best
for the memory lengths less than 20 seconds. For the stochastic model (8c),
due to increased amount of possibilities of becoming infected, the RT-shuffled
data is slightly better than the original even in the short memory region but
because of the small size of the network, the absolute difference is only a few
infected people. Again, the behavior of the spreading as a function of the
memory of the nodes τ agrees well with the real world.

The structure of the email network causes the EQW-shuffle behave in a man-
ner that produces anomalies in the results. This is seen with the model (I),
where the EQW-shuffle dominates the RT-shuffle with small threshold values
but succumbs to it with high values (6d). This phenomenon is emphasized
in Figure 9, where the difference between EQW and RT -shuffles is plotted
against the threshold f with a few different values of the memory τ . With
small threshold values the difference is positive, declining to negative values
as the threshold is increased and finally settling to zero at the region where
there is no spreading. This behavior can be explained by studying the exact
links that are switched in the EQW-shuffle. In the email network, the links
that have high number of events are likely to be connected to the same node.
This results in that the EQW-shuffling preserves the temporal sequences of
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Figure 6: Model (I): numerical results of the average fraction of infected nodes at
the end of the eventlist as a function of memory τ . Number of simulations is 103

for call and sms datasets and 104 for conference and email datasets. The gap in the
curves of the conference dataset indicates the point where the data resolution (20s)
is crossed. The slight slope in the conference dataset with IL-shuffle and memory
less than 20s is due to the fact that the resolution of the switch in the IL-shuffle
is 1 second.
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Figure 7: Model (II): numerical results of the average fraction of infected nodes
at the end of the eventlist as a function of memory τ . Number of simulations is 103

for call and sms datasets and 104 for conference and email datasets. The gap in
the curves of the conference dataset indicates the point where the data resolution
(20s) is crossed.
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Figure 8: Model (III): numerical results of the average fraction of infected nodes
at the end of the eventlist as a function of memory τ . Number of simulations is 103

for call and sms datasets and 104 for conference and email datasets. The gap in
the curves of the conference dataset indicates the point where the data resolution
(20s) is crossed. Note the different scales of y-axis.
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Figure 9: Difference between the EQW and RT -shuffles in the email data with
model (I) as a function of f .

the backbone of the network, i.e. the nodes with links with high number
of events, almost intact. In contrast, in the call network the EQW-shuffle
switches the event sequences between totally separate nodes. In addition
of preserving the backbone of the network, the EQW-shuffle functions es-
sentially like the random time shuffle for the nodes with links that have
small number of events, thus enhancing the diffusion. When the threshold
is increased and thus the degree of a node needed for threshold dynamics
decreases, the larger probability of hits from multiple sources provided by
the RT-shuffle results in a larger infected component. Hypothesis of the pre-
served backbone indicates that even with large thresholds there should be a
difference in what kind of nodes and components get infected with the RT
and EQW -shuffles. For instance, we might expect that there is a difference
in the diameter and in the degree distribution of the infected component, but
to be able to explicitly state this, we would need to do further studies.

Another interesting outcome in the email dataset is that the IL-shuffle is
never worse than the original sequence. Initially one could reason that be-
cause of email forwarding, there is a high amount of link-link correlation
in the network. However, these kind of directed trains of correlated events
do not result in better diffusion for the threshold models because the direc-
tionality of the correlated events do not point towards the same node. In
the results obtained from simulations using undirected links we saw that the
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original temporal network performs significantly better than the IL-shuffled
version. This is due to message forwarding and especially multi-messaging
(multiple recipients for a single message) which, if bidirectional information
flow is allowed, are perfect for threshold spreading. In addition, the email
network is dense enough for the model (II) to spread with K = 2 (7d) and
again, the time scales the models output are reasonable and nicely in relation
with the time scales of the other datasets.
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5 Discussion

The aim of this special assignment was to study the threshold models of in-
formation spreading in empirical temporal networks describing human inter-
actions. We defined three different threshold models and studied how social
behavior has an effect on the spreading dynamics with four different datasets
through computer simulations. The first two datasets were constructed from
mobile phone calls and mobile phone short text messages from one European
carrier. The third dataset was built from inter-institutional emails within a
given university. The fourth dataset was gathered during a conference with
the help of ID badges that recorded the proximity of other such badges.
We used different shuffling methods on the original event sequences of the
datasets to reveal which temporal characteristics have an effect on the diffu-
sion.

From the results obtained, we want to point out three key findings. First,
when combining the results from all the datasets and all the models, we can
state that the hypothesis of bursty event patterns slowing down spreading
[11] holds even for our threshold based models. This is seen in the better
performance of the random time shuffled event sequence compared to the
original sequence (excluding the anomalies in email data). Karimi et al.,
in addition of seeing the burstiness slowing down the spreading with their
version of fractional threshold model, state that in a version of the hard
threshold model the burstiness actually facilitates spreading [19]. The latter
phenomenon was also seen by Takaguchi et al. in [20]. The difference to our
results ensues from the fact that their models count all the hits regardless
of the source whereas our models require the node specificity of them. This
difference in the models results in different significance for the bursts in a
one link. Note especially that our finding of the bursty patterns hampering
the diffusion holds also in our stochastic version of the fractional threshold
model, which values the bursts in a one link.

The second key finding was that the temporal correlations in the multiple
links of a node was seen to facilitate the diffusion. This phenomenon is seen
in the worse performance of the IL-shuffled event sequence than the original
event sequence in suitable datasets (call, conference). The IL-shuffle destroys
the link-link correlations by switching the event sequence of every link on-
wards with periodic boundary conditions by a random number.

The third important outcome from our threshold models was that the be-
havior as a function of the memory τ of the nodes match reality well. For
example, memory more than one week does not promote the diffusion of in-
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formation in the call network. Also, some features unique to specific datasets
were revealed. Maybe the most interesting one of these was that the original
event sequence, corresponding to the natural regrouping of participants, was
best for information flow in the conference data with memory less than the
data resolution. With so short memory, the participants don’t remember the
discussion that took place in the old conversation group when entering a new
one. Thus they need to either carry the information with them to the new
conversations or “seek” a conversation group where the members are already
infected.

Further work with our threshold models of information spreading might in-
clude deeper examining of the infected clusters and the properties of the
infected nodes. This approach might help us to see if there are some specific
nodes that are important or even crucial for the information diffusion. We
might also want to define heterogeneous thresholds for the nodes based on
their degree, so that the effect that small degree nodes always obey deter-
ministic SI-dynamics could be circumvented.
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[14] M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, J. Saramäki, and M. Karsai,
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A Preprocessing of the SMS data

When we looked at the number of daily events from the sms data, we noticed
that the number of events is significantly different on four specific days than
on all the rest. This phenomenon can be seen in Figure A1. These four days
are actually around Christmas Eve and New Year’s Eve when people send a
large amount of short text messages to their acquaintances.

Since we are interested in studying the spreading processes under normal
conditions, we remove these fours days from the dataset. The number of
daily events from the processed data is also seen in the Figure A1.

We did not see this kind of drastic change in activity during the holiday
season in the call data and therefore no days were removed from it.
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Figure A1: The number of daily events of the original and processed sms data.
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