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1 Introduction

Portfolio decision analysis (PDA) aims to facilitate the process of selecting
an optimal subset (or portfolio) from a large, discrete set of alternatives (e.g.
projects) subject to various resource constraints, preferences and uncertain-
ties (see, e.g. Salo et al., 2011). These resources can be either financial or
non-monetary, such as human resources. PDA has been successfully applied
in several case studies; for example, a resource allocation model for stan-
dardization activities in a major telecommunication company is developed
in (Toppila et al., 2011). In this model, several standardization activities
(projects) are evaluated in view of different funding levels, and expected
sales are maximized in the presence of incomplete information and project
interactions. Subsequently, decision recommendations are given on which
standardization activities should either be strengthened, weakened or main-
tained at their current funding level.

Despite the success in numerous applications, most PDA models are best
suited for portfolio selection problems where different alternatives (projects)
are evaluated subject to a discrete set of resource funding levels. In most
applications, the resulting model is a binary one, where projects are either
fully funded or otherwise discarded, and the objective is to find an optimal
portfolio subject to budget constraints (see, e.g. Liesiö et al., 2007, 2008).
This approach is adequate for most situations; however, in many resource
allocation problems it would be beneficial to adjust the funding levels con-
tinuously. Such resource allocation problems are typically encountered in
organizations (both private and public) with a centralized decision-making
environment, such as hospitals, universities and supermarket chains. In such
organizations, several decision making units (DMUs) are operating under a
central unit (decision maker, DM) with power to manage resources of those
units (see, e.g. Korhonen and Syrjänen, 2004). The DM is assumed to be
interested in allocating available resources such that the aggregate amount of
outputs produced by the DMUs is maximized and/or the total consumption
of inputs is minimized. The individual DMUs typically consume multiple
inputs and produce multiple outputs, wherefore the allocation problem be-
comes a multi-criteria one that has no unique optimal solution.

In this paper, we present multiple objective linear programming (MOLP)
models to support the DM allocate resources by taking into account the
total consumption of inputs and overall production of outputs simultane-
ously. Additionally, we demonstrate how these models can be modified to
incorporate the DM’s preferences on the unit values of different inputs and
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outputs and identify those solutions that are non-dominated with regard to
such preference information. Decision recommendations can subsequently
be given on, for example, which ongoing projects should be terminated to
free allocated resources and/or which new projects can be accepted within a
given budget. Furthermore, we demonstrate how these models can be used
to evaluate existing projects, thus providing managerial insight into where
available resources should be (re-)allocated, i.e. which projects should re-
ceive additional resources and from which projects those resources should be
taken from in order to improve the overall system performance.

The rest of this paper is structured as follows. Section 2 presents the general
resource allocation model and demonstrates how to incorporate DM’s pref-
erences. Section 3 provides methods for estimating feasible allocations based
on either current resource levels or expert opinions. Section 4 presents the
computation of non-dominated portfolios. Section 5 presents an illustrative
example, demonstrating how the developed models can be used in a real-life
problem to facilitate the decision-making process. Section 6 concludes.

2 Resource allocation model

In what follows, we develop a general resource allocation model for organi-
zations with a centralized decision making environment, where the decision
maker (DM) aims to allocate available resources to several decision making
units (DMUs) so that the total consumption of inputs is minimized and the
the overall production of outputs is maximized. Such organizations can be
private businesses, such as banks or supermarkets, or public institutions, such
as universities or hospitals.

Let us assume that we have n DMUs operating under the DM, each con-
suming m different inputs and producing s different outputs. Let xj =
(xj1, . . . , x

j
m)T ∈ Rm denote the inputs and yj = (yj1, . . . , y

j
s)
T ∈ Rs the out-

puts of DMU j. Any combination of inputs and outputs (x, y)T ∈ Rm+s is
called a mix. The production possibility set P j contains those mixes that are
achievable for DMU j. Throughout this paper, we assume that the sets P j,
j ∈ {1, . . . , n}, are convex.

Definition 1. P j ⊂ Rm+s
+ is the production possibility set for DMU j.

In the portfolio context, DMUs can be considered as ongoing projects or
project proposals that can be combined to form project portfolios. These



3

portfolios are formed by combining the inputs and outputs of the individual
projects (DMUs). All such portfolios form the portfolio possibility set.

Definition 2. Portfolio possibility set is

P := {(x, y)T ∈ Rm+s
+ | x =

n∑
j=1

xj, y =
n∑
j=1

yj, (xj, yj)T ∈ P j}.

The DM is ultimately interested in system-level performance with regard
to the aggregate input-output mix

∑n
j=1(xj, yj)T . According to Definition 2,

this mix forms a portfolio: p =
∑n

j=1(xj, yj)T ∈ P ; thus, adjusting the alloca-
tion of resources among the existing projects can be considered, for instance,
as a continuous portfolio management problem, in which the objective is to
find the optimal allocation in view of the current portfolio.

Without loss of generality, we can assume that the inputs are resources to
be allocated, and the DM seeks to minimize the total resource consumption
and simultaneously maximize the overall output production. Accordingly,
the general multi-objective resource allocation problem can be formulated
as the following multiple objective linear programming (MOLP) model with
m+ s objectives.

v-max
xj ,yj

( n∑
j=1

yj,−
n∑
j=1

xj
)

(1)

s.t. (xj, yj)T ∈ P j j = 1, . . . , n (2)
n∑
j=1

xj ≤ B. (3)

Constraint (2) ensures that the input-output mixes of the individual DMUs
remain within their respective production possibility sets in the allocation.
Constraint (3) corresponds to the budget constraint, which limits the total
amount of resources used in the allocation: the vector B = (B1, . . . , Bm)T

determines an upper bound for each resource type.

Problem (1) - (3) has multiple objectives and no unique optimal solution.
Instead, it has several efficient solutions to which attention can be focused
on (see, e.g. Ehrgott, 2005).

Definition 3. A portfolio p = (x, y)T ∈ P is efficient if and only if there
does not exist another p′ = (x′, y′)T ∈ P such that
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(−x′, y′)T ≥ (−x, y)T and (−x′, y′)T 6= (−x, y)T ,

where the above inequalities hold component-wise. Moreover, the set of effi-
cient portfolios is defined as

PE := {(x, y)T ∈ P | @(x′, y′)T ∈ P s.t. (−x′, y′)T 	 (−x, y)T}. (4)

Instead of maximizing the aggregate output production and minimizing the
total input consumption in the problem (1) - (3), any combination of input
and output variables can be optimized. In that case, those inputs and outputs
that are not selected as objective functions can be treated as constraints.

2.1 Preference modelling and dominance

Improvements in some inputs and/or outputs are typically considered more
valuable than in others. Such preference information can be adopted by mul-
tiplying the inputs and outputs of some portfolio p = (x, y)T ∈ P by weight
vectors u = (u1, . . . , um) ∈ Su and v = (v1, . . . , vs) ∈ Sv such that Iu(x)
denotes the weighted input and Ov(y) the weighted output of the portfolio
p, where

Iu(x) =
m∑
i=1

uixi, (5)

Ov(y) =
s∑
i=1

viyi. (6)

The sets Su and Sv are called information sets that capture preferences of the
decision maker; for instance, assuming that the DM values a unit increase
in output i = 1 more than a unit increase in output i = 2 results in a
linear constraint v1 ≥ v2. Without loss of generality, the components of the
weight vectors u ∈ Su and v ∈ Sv can be scaled so that they sum to one, i.e.
Su ⊆ ∆m and Sv ⊆ ∆s where

∆l = {w ∈ Rl+ |
l∑

i=1

wi = 1}.
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Unless the information sets Su and Sv both contain only a single point, the
weighted input and output values of the feasible portfolios change depending
on the unit values chosen from those sets. Thus, instead of single point
estimates, the weighted inputs Iu(x) and weighted outputs Ov(y) form value
intervals containing the ’true’ values. These value intervals typically overlap;
nevertheless, it is possible to establish dominance relations by comparing the
weighted input/output values using all feasible weight vectors u ∈ Su and
v ∈ Sv.

Definition 4. For any two portfolios p = (x, y)T and p′ = (x′, y′)T , p dom-
inates p′ with regard to information set S = Su × Sv, denoted by p �S p′, if
and only if

Iu(x) ≤ Iu(x
′) for all u ∈ Su,

Ov(y) ≥ Ov(y
′) for all v ∈ Sv,

and one of the inequalities is strict for some u ∈ Su or v ∈ Sv.

A rational DM will never select a dominated portfolio from the portfolio
possibility set P ; hence, attention can be focused on the set of non-dominated
portfolios when searching for the most preferred solution to the resource
allocation problem.

Definition 5. The set of non-dominated portfolios with regard to the infor-
mation set S = Su × Sv is

PN(S) := {p ∈ P | p′ �S p ∀p′ ∈ P}. (7)

Dominance structure between portfolios is dependent on the information set
S = Su × Sv; the set of non-dominated portfolios PN(S) changes depend-
ing on the preference information. In the discrete case where the number
of feasible portfolios is finite, loose preference statements typically result in
a large number of non-dominated portfolios, whereas point estimates pro-
duce a unique optimal portfolio (see e.g. Liesiö et al., 2008). In the con-
tinuous case, accordingly, providing further preference information (stricter
preference statements) produces a subset of the initial set of non-dominated
portfolios.

Adding further constraints on the feasible weights reduces the initial infor-
mation set S = Su × Sv to S̃ ⊂ S. Consequently, it is possible that some
of the portfolios that were non-dominated with regard to the information
set S become dominated in view of the new set S̃; however, if a portfolio is
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dominated initially, it will remain dominated subject to the reduced infor-
mation set S̃ as well. On the other hand, if no preference information exists,
i.e. Su = {u ∈ Rm+ |

∑m
i=1 ui = 1} and Sv = {v ∈ Rs+ |

∑s
i=1 vi = 1},

the set of non-dominated portfolios PN(S) coincides with the set of efficient
portfolios PE, and can thus be calculated with the MOLP problem (1) - (2).
These claims are formally stated in Theorem 1. All proofs are presented in
Appendix A.

Theorem 1.

(i) Let S = Su × Sv and S̃ = S̃u × S̃v be information sets such that S̃ ⊂ S
and int(S) ∩ S̃ 6= ∅. Then PN(S̃) ⊆ PN(S).

(ii) PN(∆m ×∆s) = PE

2.2 Establishing dominance relations

Both Iu(x) and Ov(x) are linear in u and v, respectively. Thus, dominance
between any two portfolios p and p′ can be established by comparing their
weighted input and output values at the extreme points of the sets Su and
Sv. Let us denote these extreme points by ext(Su) = {u1, . . . , utu} and
ext(Sv) = {v1, . . . , vtv} and introduce the following matrices

Uext :=


u1

1 u1
2 · · · u1

m

u2
1 u2

2 · · · u2
m

...
... . . . ...

utu1 utu2 · · · utum

 ∈ Rtu×m (8)

Vext :=


v1

1 v1
2 · · · v1

s

v2
1 v2

2 · · · v2
s

...
... . . . ...

vtv1 vtv2 · · · vtvs

 ∈ Rtv×s. (9)

It suffices to compare the values of the weighted inputs and outputs at every
extreme point to establish dominance. Consequently, dominance relations
can readily be determined with the help of the matrices Uext and Vext.

Lemma 1. Let portfolios p, p′ ∈ P and information set S = Su × Sv. Then

p �S p′ ⇔

{
(Uextx,−Vexty) ≤ (Uextx

′,−Vexty′)
(Uextx,−Vexty) 6= (Uextx

′,−Vexty′)
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where the inequality ≤ holds component-wise.

With this notation, the set of non-dominated portfolios PN(S) with regard
to the information set S = Su×Sv can be obtained from the following tu+ tv
objective MOLP problem

v-max
xj ,yj

[
Vext
( n∑
j=1

yj
)
,−Uext

( n∑
j=1

xj
)]

(10)

s.t. (xj, yj)T ∈ P j j = 1, . . . , n (11)
n∑
j=1

xj ≤ B. (12)

2.3 Decision recommendations for DMUs

Analyzing how the input consumption and output production of individ-
ual DMUs vary across different non-dominated solutions enables the DM to
identify those DMUs that have the most potential and are worth expanding
further. Additionally, the DM can evaluate if a certain low-performing DMU
should be taken out of business completely by allowing the resources of that
unit reach zero in the allocation. It is also possible to force the input/out-
put values of some DMUs to remain unchanged in the process by imposing
limitations on them. The developed model can hence be regarded as an
interactive decision support that allows adjusting the resources of individ-
ual DMUs while focusing on the main goal of improving the overall system
performance.

In the presence of incomplete preference information, solving the problem
(10) - (12) results in a continuous set of non-dominated portfolios PN(S)
that correspond to different production plans (i.e. input-output mixes of
the DMUs); these plans are readily available (as decision variables) upon
solving the problem. Consequently, the inputs and outputs of the individual
DMUs form value intervals containing those input-output mixes that are
achievable across the different non-dominated solutions. The minimum and
maximum bounds of these intervals (min(x,y)T∈PN (S) x

j
i and max(x,y)T∈PN (S) x

j
i

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , s} for inputs, similarly for outputs)
are realized in the extreme points of the set of non-dominated portfolios;
since a suitable solution algorithm, such as Benson’s algorithm (Benson,
1998), produces these extreme points, the value interval bounds can readily
be obtained by simple pairwise comparisons.
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As an implication of Theorem 1, the lower bounds of the value intervals
increase and the upper bounds decrease with the introduction of additional
preference information. Let S be the information set containing the initial
preferences, and let S̃ ⊂ S be the refined information set resulting from
further preference statements. According to theorem 1, we have PN(S̃) ⊆
PN(S); hence, the set of non-dominated portfolios can only become smaller.
Consequently, the value intervals can never expand; instead, they can only
shrink with additional preference information.

Corollary 1. Let S = Su × Sv and S̃ = S̃v × S̃u be information sets such
that S̃ ⊂ S and int(S) ∩ S̃ 6= ∅. Then

min
(x,y)T∈PN (S̃)

xji ≥ min
(x,y)T∈PN (S)

xji , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , s}

max
(x,y)T∈PN (S̃)

xji ≤ max
(x,y)T∈PN (S)

xji , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , s}

min
(x,y)T∈PN (S̃)

yji ≥ min
(x,y)T∈PN (S)

yji , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , s}

max
(x,y)T∈PN (S̃)

yji ≤ max
(x,y)T∈PN (S)

yji , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , s}.

In view of Corollary 1, the DM can first select loose preference statements,
calculate the set of non-dominated portfolios and estimate whether the re-
sults are satisfying or not in terms of individual DMUs’ input consumption
and output production. If the results are not satisfying, an option is to pro-
vide further preference information in form of additional weight constraints,
thus reducing the value intervals of the input-output mixes. Additionally,
imposing stricter limitations on the input and output values of some DMUs
may also result in a smaller set of non-dominated portfolios and reduced
value intervals.

3 Estimating the production possibility sets for
DMUs

3.1 Estimating from observed data using Data Envel-
opment Analysis

Data Envelopment Analysis (DEA; Charnes et al., 1978) is a non-parametric
method that allows constructing the production possibility set (PPS) based
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on linear combinations of the DMUs’ observed (current) input-output mixes.
Suitable linear combinations are specified by a set of feasible weight vectors
that determines the shape of the PPS and also the underlying DEA model
type. The border of the PPS contains the efficient frontier in which outputs
cannot be increased without also increasing inputs. DMUs belonging to this
frontier are characterized as efficient, whereas the relative efficiency of an
inefficient DMU depends on its distance to the efficient frontier; this distance
can be transformed into an efficiency score using different efficiency measures.

Specifically, we assume that the PPS is of the same form for each DMU
j ∈ {1, . . . , n}, defined as

P j := {(xj, yj)T ∈ Rm+s
+ | xj ≥ X̂λj, yj ≤ Ŷ λj, λj ∈ Λf}, (13)

where the matrices X̂ = (x̂1, . . . , x̂n) ∈ Rm×n and Ŷ = (ŷ1, . . . , ŷn) ∈ Rs×n
comprise the observed input-output mixes, and Λf denotes the set of feasible
weight vectors which determines the shape of the set P j. In this paper, we
assume that Λf is a continuous set, defined as

Λf := {λ ∈ Rn+ | Aλ ≤ b}, (14)

where A ∈ Rr×n and b ∈ Rr specify r linear constraints. Since the DMUs’
observed input-output mixes belong to the PPS by default, it can be assumed
that the unit vectors ei ∈ Λf for all i ∈ {1, . . . , n}.

Modifying the set Λf produces different DEA models that correspond to
different production possibility sets. The two most common models are CCR
(Charnes et al., 1978) and BCC (Banker et al., 1984); for these models, the
sets of feasible weight vectors are defined as

ΛCCR := {λ ∈ Rn+},

ΛBCC := {λ ∈ Rn+ |
n∑
i=1

λi = 1}.

In the CCR model, all non-negative linear combinations of the DMUs’ ob-
served input-output mixes are feasible. CCR model evaluates all DMUs such
that those DMUs having the same input-output mix ratio receive same effi-
ciency scores, regardless of their size. This results in a constant returns to
scale assumption (see, e.g. Charnes, 1994).
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Figure 1: Illustration of the PPS based on both CCR and BCC models. The letter
’E’ denotes the efficient frontier of the PPS in the corresponding model.

In the BCC model, on the other hand, only convex combinations of the
DMUs’ observed input-output mixes are possible. This implies variable re-
turns to scale assumption, where the size of a DMU has an impact on its
efficiency. Specifically, BCC evaluates the efficiency of a DMU in relation to
those DMUs with similar size. This also implies that the smallest and the
largest DMUs always receive high efficiency scores.

Figure 1 presents an illustrative example where four DMUs (A, B, C and D),
each consuming one input and producing one output, are used to estimate
production possibility sets based on both CCR and BCC models. It can be
seen that DMUs A, B and D are efficient in the BCC model, whereas only
DMU B remains efficient in the CCR model. On the other hand, DMU C is
inefficient in both models; however, its efficiency score (with regard to most
efficiency measures) is smaller in the CCR model than in the BCC model
due to its larger distance to the border of the PPS. More generally, since the
PPS in the BCC model is a subset of the corresponding PPS in the CCR
model, the relative efficiency of a DMU in the CCR model is always smaller
than or equal to that in the BCC model.

Efficient frontier of the PPS contains all the input-output combinations that
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are efficient, i.e. those input-output mixes whose outputs cannot be increased
without also increasing inputs. Accordingly, the efficient frontier P j

E for each
DMU j ∈ {1, . . . , n} can be defined as

P j
E := {(xj, yj)T ∈ P j | @(x′, y′)T ∈ P j s.t. (−x′, y′)T 	 (−xj, yj)T}. (15)

As can be seen in Figure 1, the efficient frontier in the CCR model coincides
with the border of the PPS. The efficient frontier in the BCC model, however,
does not contain the whole border of the corresponding PPS. Border points
that are not contained in the efficient frontier are typically called weakly
efficient (see, e.g. Charnes, 1994).

3.1.1 Measuring efficiency

DEA provides means for estimating the efficiencies of individual DMUs with
regard to the efficient frontier. Specifically, different efficiency measures can
be used to calculate efficiency scores that may help the DM focus its attention
to those units with most potential. The input-oriented efficiency score θj of
DMU j can be obtained by solving the following linear programming (LP)
problem

θj = min
θ∈R
{(θx̂j, ŷj)T ∈ P j}. (16)

Accordingly, the input-oriented efficiency score is acquired by reducing the
inputs as much as possible while keeping the outputs constant until a point
belonging to the border of the set P j is reached. Similarly, the output-
oriented efficiency score σj of DMU j is obtained by increasing the outputs
while retaining constant input values:

σj = max
σ∈R
{(x̂j, σŷj)T ∈ P j}. (17)

In order to make the input- and output-oriented efficiency scores comparable,
the inverse value 1/σj of the output-oriented efficiency score of DMU j is
usually reported, wherefore both orientations produce efficiency scores in
the range [0, 1]. Thus, the DMUs located in the (weakly) efficient frontier
receive an efficiency score 1, and the score of an inefficient DMU depends on
its distance to the (weakly) efficient frontier.
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Additionally, other efficiency measures can also be used, such as additive,
slacks based (SBM) or hybrid measures (see, e.g. Charnes, 1994). However,
they are not considered in this report, but could be incorporated in the
models with only minor modifications.

Obviously, the underlying DEA model type affects the efficiency scores of
the DMUs. Nevertheless, these scores provide insight into the performances
of the individual units in relation to the other DMUs. In some cases, it
is reasonable to assume that the relative efficiencies of the DMUs remain
unchanged after resource allocation. Golany and Tamir (1995) suggest this
kind of approach and claim that it is likely for those DMUs that were ineffi-
cient in the past to remain inefficient, despite the best efforts of the decision
maker. Constraints that preserve the efficiency scores with regard to input-
and output-oriented efficiency measures can be included in the resource al-
location model by replacing the constraint (2) with

(θjxj, σjyj)T ∈ P j, j = 1, . . . , n (18)

where θj and σj are calculated with (16) and (17), respectively.

3.2 Estimating the PPS based on expert opinions

In some situations, such as establishing a new organization or managing the
resources of future projects, it might be difficult (or impossible) to estimate
the PPS based solely on DMUs’ observed input-output mixes. On the one
hand, such information might not exist; on the other hand, constructing the
PPS this way might not produce accurate enough estimates of the DMUs’
growth potential. For example, some DMUs might be able to expand their
output production beyond the estimated PPS when receiving additional re-
sources. On the other hand, the estimated PPS may overestimate the true
growth potential of certain DMUs, especially when no other DMU with sim-
ilar size exists.

In order to overcome these issues, the PPS for each DMU can be constructed
based on information elicited from all the experts involved in the portfolio
management process (see, e.g. Toppila et al., 2011). This can be executed by
organizing a decision conference and requesting the experts to provide point
estimates for DMUs’ possible output values with pre-determined resource (in-
put) consumption levels. These levels should be selected so that they provide
a rich representation over the possible allocations that the DMUs might be
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able to obtain. In case there are multiple point estimates (by various experts)
for the output values of each resource consumption level, a weighted average
of these points, for instance, can be used as a basis for further adjustment.
The elicitation process is iterated as long until a consensus about the output
values is achieved. The estimated input-output mixes are subsequently used
to construct the production possibility set.

Specifically, let x̂j(k), k ∈ {1, . . . , q} denote the pre-determined resource
consumption levels and ŷj(k), k ∈ {1, . . . , q} the corresponding output value
estimates for DMU j. Furthermore, let X̂j = (x̂j(1), . . . , x̂j(q)) ∈ Rm×q
and Ŷ j = (ŷj(1), . . . , ŷj(q)) ∈ Rs×q denote the matrices comprising the q
estimated inputs and outputs for DMU j, respectively. With this notation,
the PPS for each DMU j ∈ {1, . . . , n} can be constructed, for example, as
convex combinations of the estimated input-output mixes:

P j =
{

(xj, yj)T ∈ Rm+s
+ | xj = X̂jλj, yj = Ŷ jλj, λj ∈ Rq+,

q∑
i=1

λji = 1}. (19)

Figure 2 illustrates the estimated PPS for some DMU j consuming one input
xj and producing one output yj. In this case, four possible input-output
mixes (xj(k), yj(k)), k ∈ {1, . . . , 4} are used to estimate the PPS P j. As
implied by (19), P j coincides with the convex hull of these input-output
mixes.

4 Computation of non-dominated portfolios

The set of non-dominated portfolios PN(S) with regard to the information
set S = Su × Sv can be obtained by solving the MOLP problem (10) - (12).
Before a suitable MOLP algorithm can be applied, some initial preparations
are required. First step is to find the extreme points Uext and Vext of the infor-
mation sets Su and Sv, respectively; these extreme points can be solved using
a suitable vertex enumeration algorithm. In case the PPS is estimated using
DEA, the input- and/or output-oriented efficiency scores can be calculated
with (16) and (17), respectively, and possibly included in the model. These
calculations are LP-problems that are easily solved using any LP routine.

According to Theorem 1, the set of efficient portfolios PE coincides with the
set of non-dominated portfolios when no preference statements have been
given, i.e. PE = PN(Su×Sv) when Su = ∆m and Sv = ∆s. Consequently, we
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Figure 2: Illustration of the PPS for some DMU j based on (19).

can focus solely on computing the non-dominated portfolios. The resource
allocation model (10) - (12) is a continuous tu + tv objective MOLP problem,
thus having an infinite number of non-dominated solutions. Fortunately, a
suitable solution algorithm, such as Benson’s algorithm (Benson, 1998) or
multi-objective Simplex (Ehrgott, 2005), produces all the extreme points
over the set of non-dominated portfolios. Subsequently, all non-dominated
portfolios can be constructed as convex combinations of these extreme points,
and the DM can select the most preferred portfolio based on its preferences.

The problem (10) - (12) has a total of n2 +n(s+m) decision variables when
the production possibility sets are estimated from observed data by (13);
therefore, solving all the non-dominated portfolios becomes computationally
demanding when the number of DMUs (n) increases. Problems start emerg-
ing especially with the multi-objective Simplex algorithm: its computation
time increases rapidly with the number of decision variables. Benson’s algo-
rithm, on the other hand, operates in objective space, and its running time is
not as dependent on the amount of decision variables (see, e.g. Hamel et al.,
2013).

Unlike the multi-objective Simplex, Benson’s algorithm can efficiently find all
the non-dominated extreme points of a MOLP problem having a substantial
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amount of decision variables and constraints. However, the performance of
the Benson’s algorithm depends heavily on the number of objective functions
in the problem. Fortunately, this number is relatively small in many prac-
tical applications; additionally, in larger problems the number of objective
functions can typically be reduced by transforming some of the objectives to
constraints instead, and possibly introducing limitations on their values.

In problems with four or more objective functions and several hundred de-
cision variables, Benson’s algorithm may take too much time, and the algo-
rithm typically returns several non-dominated solutions that are very close
to each other (see, e.g. Shao and Ehrgott, 2008). In such cases, one can use
a modified version of Benson’s algorithm that approximates the true non-
dominated set (Shao and Ehrgott, 2008). The modified algorithm produces
ε-non-dominated solutions: for every true non-dominated point, there ex-
ists, within an Euclidean distance less than ε ∈ R+, an ε-non-dominated
point in the approximated set. Since the approximation error ε is absolute
rather than relative, the non-dominated extreme points of the approximated
set are close to the actual non-dominated set. However, the modified al-
gorithm produces less non-dominated extreme points when the value of ε
increases, implying that some of the true non-dominated extreme points are
not accounted for. This is likely not a major issue, because the number
of non-dominated points is typically overwhelming, even with the modified
algorithm with small enough values of ε.

5 Illustrative example

To illustrate our framework, we consider a real-life data set consisting of
n = 25 supermarkets (DMUs) belonging to a Finnish supermarket chain
(Korhonen and Syrjänen, 2004). We assume that the DMUs are operating
under the same decision maker (DM). Each DMU consumes m = 2 inputs,
man-hours x1 and floor area x2, and produces s = 2 outputs, sales y1 and
profit y2. The DMUs’ observed (current) input-output mixes and the corre-
sponding output-oriented BCC efficiency scores are presented in table 1.

Suppose that the DM is planning on hiring new personnel, and is aiming
to allocate available man-hours among the DMUs so that the total output
production (i.e. sales and profit) is maximized. The amount of new employees
to be hired corresponds at most to a 15% increase in total man-hours (budget
constraint). Additionally, it is possible to re-allocate the current resources
among the DMUs, but with the condition that the output production of



16

Table 1: Observed input and output values of 25 supermarkets belonging to a
Finnish supermarket chain. (Korhonen and Syrjänen, 2004)

Supermarket Man-hours Floor area Sales Profit BCC-O
(103 h) (103 m2) (106 Mk) (106 Mk) Efficiency

j x̂j1 x̂j2 ŷj1 ŷj2 1/σj

1 79.1 4.99 115.3 1.71 0.821
2 60.1 3.30 75.2 1.81 0.772
3 126.7 8.12 225.5 10.39 1
4 153.9 6.70 185.6 10.42 1
5 65.7 4.74 84.5 2.36 0.769
6 76.8 4.08 103.3 4.35 0.806
7 50.2 2.53 78.8 0.16 1
8 44.8 2.47 59.3 1.30 1
9 48.1 2.32 65.7 1.49 1
10 89.7 4.91 163.2 6.26 1
11 56.9 2.24 70.7 2.80 1
12 112.6 5.42 142.6 2.75 0.824
13 106.9 6.28 127.8 2.70 0.673
14 54.9 3.14 62.4 1.42 0.736
15 48.8 4.43 55.2 1.38 0.803
16 59.2 3.98 95.9 0.74 0.978
17 74.5 5.32 121.6 3.06 0.930
18 94.6 3.69 107.0 2.98 0.817
19 47.0 3.00 65.4 0.62 0.969
20 54.6 3.87 71.0 0.01 0.804
21 90.1 3.31 81.2 5.12 0.858
22 95.2 4.25 128.3 3.89 0.876
23 80.1 3.79 135.0 4.73 1
24 68.7 2.99 98.9 1.86 0.973
25 62.3 3.10 66.7 7.41 1

Total 1 901.5 102.94 2 586.1 81.69
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each DMU must not decrease. Furthermore, for obvious reasons, it could
be difficult (or impossible) to (re-)allocate floor area among the DMUs in a
reasonable manner. Hence, the floor area of each DMU is assumed to remain
constant in the allocation.

Essentially, the DM strives to maximize the total output production by allo-
cating available man-hours among the DMUs while retaining the floor area
of each DMU constant. Suppose that, in addition to this, the DM wishes to
perform a benefit-cost analysis to evaluate how much profit and sales can be
achieved when the amount of hired man-hours varies between 0% - 15%. Such
an analysis could be performed by solving the problem multiple times with
different budget constraints. However, an easier method is to introduce the
total consumption of man-hours as an objective to be minimized, in addition
to maximizing the aggregate sales and profit. Solving the resource alloca-
tion problem with these objectives produces all the non-dominated solutions
with varying budget constraints in the specified range. The production pos-
sibility set for each DMU is estimated from the observed data based on the
BCC model, i.e. Λf = ΛBCC = {λ ∈ Rn+ |

∑n
i=1 λi = 1} in (13). These

assumptions lead to the following problem formulation

v-max
xj ,yj ,λj

( 25∑
j=1

yj,−
25∑
j=1

xj1

)
(20)

s.t. (xj, yj)T ∈ P j =
{

(xj, yj)T ∈ R2+2
+ | xj ≥ X̂λj, yj ≤ Ŷ λj,

λj ∈ ΛBCC}, j = 1, . . . , 25 (21)
yj ≥ ŷj, j = 1, . . . , 25 (22)

xj2 = x̂j2, j = 1, . . . , 25 (23)
25∑
j=1

x̂j1 ≤
25∑
j=1

xj1 ≤ 1.15
25∑
j=1

x̂j1. (24)

Solving the problem (20) - (24) with the exact Benson’s algorithm takes
approximately 70 seconds using a laptop with 2.1 GHz dual-core processor
and 2 GB RAM. The algorithm returns 87 non-dominated extreme solutions
that can be achieved with 644 different production plans (i.e. input/output
combinations of the DMUs).

Figure 3 presents the overall sales yΣ
1 =

∑n
j=1 y

j
1 and profit yΣ

2 =
∑n

j=1 y
j
2

that correspond to the non-dominated extreme solutions when the amount
of extra man-hours is allowed to vary between 0% - 15%. The two frontiers
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Figure 3: Non-dominated solutions with varying budget constraints that corre-
spond to 0% - 15% increases in total man-hours.

highlighted in the figure correspond to the non-dominated solutions when (i)
no new employees are hired and (ii) the maximum amount of new employees
are hired (corresponding to a 15% increase in total man-hours). The points
located between these two frontiers correspond to the non-dominated extreme
solutions when the number of extra man-hours is greater than 0% but smaller
than 15%. According to the results, the DM can increase the total sales at
most by 23.4%, total profit as much as 117.6% or both more evenly, depending
on the selected budget level and the DM’s preferences.

Figures 4 and 5 present the range of possible input and output levels for indi-
vidual DMUs across the non-dominated solutions. The ranges are visualized
in terms of relative input and output changes ∆xj = xj/x̂j and ∆yj = yj/ŷj,
respectively. As can be seen in Figure 4, the relative changes in floor area
(∆xj2) remain unchanged for every DMU j ∈ {1, . . . , 25} in accordance with
(23). The relative changes in man-hours (∆xj1), on the other hand, vary
for most DMUs across the non-dominated solutions. Interestingly, however,
the resources (i.e. man-hours) of DMUs j ∈ {3, 4, 10, 11, 23, 25} remain un-
changed, resulting in constant sales and profit as well, as can be seen in
Figure 5. This can be explained by examining Table 1; accordingly, all the
DMUs mentioned above are characterized as efficient (based on their effi-
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Figure 4: Relative changes in inputs over the non-dominated solutions.

ciency scores), and are thus located on the (weakly) efficient frontier of the
PPS. This indicates that these DMUs are performing well with regard to
the other DMUs; however, according to the results, their marginal rates of
return are not high enough to warrant additional resources. It is important
to note that these results are dependent on the assumptions made about the
underlying PPS: if some model other than BCC had been used, the results
might differ to some extent.

Based on Figure 4, it is evident that resources are always extracted from
DMUs j ∈ {18, 21, 22, 24} and re-allocated among the other DMUs. Fur-
thermore, DMUs j ∈ {2, 5, 7, 8, 9, 14, 15, 16, 19, 20} always either receive
additional resources or retain their initial amount. Moreover, DMUs j ∈
{1, 6, 12, 13, 17} either receive or distribute some of their resources, depend-
ing on the selected allocation.

As can be seen in Figure 5, the relative changes in sales (∆yj1) and profit
(∆yj2) for each DMU j ∈ {1, . . . , 25} are always greater than or equal to
1 in accordance with (22); this corresponds to our initial assumption that
the outputs of each DMUs must not decrease. According to Table 1, some
DMUs generate extremely low profits, resulting in substantial relative profit
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Figure 5: Relative changes in outputs over the non-dominated solutions.

improvements in case they receive additional resources. Unfortunately, this
also generates difficulties in visualizing all the improvements in a reasonable
manner: for instance, DMU 20 is able to increase its profits by a factor of
360 - 805, depending on the solution, whereas most DMUs are only capable
of increasing their profits by a factor of less than 10.

5.1 Incorporating preference information

Suppose that the DM is not fully satisfied with the results and is unable to se-
lect the optimal portfolio due to the overwhelming number of non-dominated
solutions and corresponding production plans. In order to facilitate this selec-
tion, the DM provides preferences on the unit values of the outputs (i.e. sales
and profit). Incorporating such preference information into the model and
subsequently computing the non-dominated solutions may reduce the set of
non-dominated portfolios significantly, thus facilitating the decision-making
process.

Suppose that the DM aims to compensate the costs resulting from the hiring
of new employees by generating a sufficient amount of profit. To achieve
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Figure 6: Non-dominated solutions (based on preferences with profit focus) with
varying budget constraint corresponding to 0% - 15% increases in total man-hours.

this, the DM strives to emphasize increases in profits by stating that a unit
increase in profits is more important than a 12 unit increase in sales. This
corresponds to the linear constraint v2 ≥ 12 ·v1 and results in an information
set Sv with extreme points v1 = (0, 1) and v2 = (1, 12)/13. These preferences
are incorporated in the model by defining the matrix Vext = (v1, v2)T and
replacing the objectives (20) by

v-max
xj ,yj ,λj

[
Vext

( 25∑
j=1

yj
)
,−

25∑
j=1

xj1

]
. (25)

Solving the problem (21) - (24) with the objectives (25) produces 15 non-
dominated extreme solutions that can be achieved with 40 different pro-
duction plans. Figure 6 presents the overall sales yΣ

1 =
∑n

j=1 y
j
1 and profit

yΣ
2 =

∑n
j=1 y

j
2 that correspond to these solutions with varying budget levels.

Comparing Figures 3 and 6, it is evident that the set of non-dominated
extreme solutions based on the given preferences is indeed a subset of the
initial set of non-dominated extreme solutions that was computed in the
absence of any preference information. Since the number of non-dominated
extreme solutions is significantly lower, the process of selecting the optimal
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Figure 7: Relative changes in man-hours over the non-dominated solutions.

portfolio becomes substantially easier.

Figure 7 presents the relative changes in the DMUs’ man-hours over both the
initial set of non-dominated solutions and the refined set of non-dominated
solutions computed with regard to the DM’s preferences. It can be seen
that the value intervals shrink with the introduction of additional preference
information, as implied by Corollary 1. Comparing the two situations, we
can observe that, for instance, DMUs j ∈ {1, 2, 7, 8, 17} henceforth always
receive additional man-hours, as opposed to the initial case with no pref-
erences. The DM can exploit this information, for example, by preparing
to allocate at least the minimum amount of resources to the corresponding
DMUs, regardless of the selected final solution.

Similarly, Figure 8 presents the relative changes in the DMUs’ sales over
the initial and the refined set of non-dominated solutions. We can observe
that DMUs 7 and 24 no longer generate additional sales, and most DMUs
generally produce less sales when the preferences of the DM are included
in the model. This makes sense since these preferences emphasize increases
in profits rather than sales, and these two outputs are somewhat connected
such that higher profits can be achieved with lower sales.
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Figure 8: Relative changes in sales over the non-dominated solutions.

Figure 9 presents the absolute changes (rather than relative ones) in the
DMUs’ profits due to the difficulties of visualizing the relative changes. It
can be seen that the minimum (guaranteed) amount of profit produced by
the DMUs increases with the introduction of preferences with profit focus,
as opposed to the initial case with no preference information.

The benefits of incorporating the preferences to the resource allocation prob-
lem are obvious: the number of different non-dominated extreme solutions
and production plans is significantly smaller; moreover, the DM may now
estimate the performances of the individual DMUs more accurately, since
the ranges of possible input and output values have been reduced.

5.1.1 Forcing an allocation

According to Table 1, DMU 13 is the most inefficient unit; additionally, it is
one of the largest DMUs in terms of input consumption. Nevertheless, based
on the results in Figure 7, it (DMU 13) may possibly receive additional man-
hours, depending on the selected production plan.

Suppose that the DM consequently decides that DMU 13 should not receive
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Figure 9: Absolute changes in profits over the non-dominated solutions.

additional resources (man-hours) and wishes to identify those non-dominated
extreme solutions that satisfy the additional constraint (x13

1 ≤ 0). The re-
fined set of non-dominated extreme solutions can be computed directly from
the current set by eliminating those solutions where DMU 13 receives a posi-
tive amount of man-hours. Figure 10 presents these non-dominated extreme
solutions.

Based on the results, it is no longer beneficial to consume the maximum
available budget (15%) with the introduction of the constraint that prevents
DMU 13 from increasing its resources.

5.2 Evaluating the approximate Benson’s algorithm

In this section, we evaluate the accuracy and performance of the approximate
Benson’s algorithm (Shao and Ehrgott, 2008) by solving resource allocation
problems with up to four objective functions and several hundred decision
variables. We use the supermarket data in Table 1 and formulate a problem
similar to that presented in (Korhonen and Syrjänen, 2004).

Suppose that the DM is only interested in maximizing the aggregate output
production by allocating available resources (inputs) among the DMUs. The
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Figure 10: Non-dominated solutions (profit focus) with varying budget when re-
sources of DMU 13 are not allowed to increase.

resources of each DMU are allowed to increase at most 30% and decrease
at most 10%, and the total amount of resources is allowed to increase only
1% from the current amount. Furthermore, the BCC-O efficiency scores of
the DMUs must remain unchanged. The PPS for each DMU is estimated
from observed data based on the BCC model, i.e. Λf = ΛBCC = {λ ∈
Rn+ |

∑n
i=1 λi = 1} in (13). These assumptions lead to the following MOLP-

problem.

v-max
xj ,yj ,λj

25∑
j=1

yj (26)

s.t. (xj, σjyj)T ∈ P j =
{

(xj, yj)T ∈ R2+2
+ | xj ≥ X̂λj, yj ≤ Ŷ λj,

λj ∈ ΛBCC}, j = 1, . . . , 25 (27)
0.9x̂j ≤ xj ≤ 1.3x̂j, j = 1, . . . , 25 (28)
25∑
j=1

xj ≤ 1.01
25∑
j=1

x̂j. (29)
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Problem (26) - (29) has two objective functions and 725 decision variables. As
such, it is easily solvable with Benson’s algorithm (in comparison, the prob-
lem is practically unsolvable with the multi-objective Simplex due to the large
number of decision variables). We use Löhne’s (2012) Matlab implementa-
tion of Benson’s algorithm in solving the set of non-dominated solutions. The
implementation also allows adjusting the approximation parameter ε.

Solving the problem (26) - (29) with the exact Benson’s algorithm takes ap-
proximately 30 seconds using a laptop with 2.1 GHz dual-core Intel processor
and 2 GB RAM. The algorithm returns 68 non-dominated extreme solutions
that can be achieved with 115 different allocation plans (i.e. input/output
combinations of the DMUs).

In comparison, the approximate algorithm solves the problem in less than 5
seconds with an approximation error of ε = 0.1. However, the approximate
algorithm returns only 11 non-dominated extreme solutions, corresponding
to 17 different allocation plans. Figure 1 presents the aggregate outputs
yΣ

1 =
∑n

j=1 y
j
1 and yΣ

2 =
∑n

j=1 y
j
2 that correspond to the non-dominated

extreme solutions for both algorithms.

As can be seen in figure 11, the end points of the true non-dominated set are
accounted for in the approximation. Additionally, the approximate algorithm
provides a decent representation of the true non-dominated set. This is also
the case in several case studies (see, e.g. Shao and Ehrgott, 2008; Hamel
et al., 2013). Thus, since the number of non-dominated extreme points is
typically overwhelming, it is most likely not necessary to calculate all of
them to obtain reliable results. In this case, accommodating the value of the
approximation parameter ε becomes a priority.

Changing the value of ε can have a significant impact on both the compu-
tation time and the number of non-dominated extreme points produced by
the algorithm. To illustrate, suppose that in addition to maximizing the
aggregate outputs, the DM wishes to minimize the total resource consump-
tion. This results in the problem (26) - (29) with the following additional
objectives

v-min
xj ,yj ,λj

25∑
j=1

xj. (30)

With the addition of (30), the problem has four objective functions instead of
two, thus increasing the execution time of the algorithm dramatically. Table
2 presents computation times (s), number of non-dominated extreme points
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Figure 11: True and approximate non-dominated set of the problem (26) - (29).

Table 2: Computation times for the problem (26) - (30) with different values of ε.

ε time #ND #LP

ε = 0.8 255 s 343 2366
ε = 0.6 602 s 501 4887
ε = 0.4 1442 s 859 9506
ε = 0.2 7263 s 1862 24639

(#ND) and number of LPs solved (#LP) with different values of ε for the
problem (26) - (30). The effect of increasing the value of ε is evident: a
change from ε = 0.2 to ε = 0.8 decreases the computation time nearly by a
factor of 30.

6 Conclusions

In this paper, we have presented a resource allocation model for organizations
with a centralized decision-making environment, in which the decision maker
(DM) strives to allocate available resources among several decision making
units (DMUs) to improve the organization as a whole. The developed model
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is based on a multiple objective linear programming (MOLP) formulation,
extending the previous work of Korhonen and Syrjänen (2004). We applied
principles of Portfolio Decision Analysis (PDA; Salo et al., 2011) to build a
framework that supports the DM in selecting the optimal solution from a
large set of non-dominated allocation portfolios.

The presented model was applied to a hypothetical resource allocation prob-
lem (based on a real-life data set), in which the DM of a supermarket chain
is planning to hire additional employees and allocate them among the indi-
vidual DMUs (supermarkets) so that the aggregate outputs (i.e. sales and
profit) are maximized. A benefit-cost analysis was performed in order to
help the DM in evaluating the amount of overall sales and profit that could
be achieved with varying budget constraint. The set of non-dominated port-
folios was first computed without preference information; subsequently, the
DM’s preferences were incorporated in the model and the refined set of non-
dominated portfolios was finally calculated in view of those preferences.

Initially, several non-dominated extreme solutions were found; however, with
the introduction of the DM’s preferences, the number of such solutions de-
creased significantly, thus facilitating the process of selecting the optimal
portfolio. Additionally, an example was presented, demonstrating how to
further narrow down the set of non-dominated solutions by imposing an
upper bound on the resource consumption of a single DMU. Furthermore,
DMU-level information across the non-dominated solutions was presented,
enabling the DM to assess the performances of the individual DMUs while
focusing on the main goal of maximizing the aggregate sales and profit.

We used Löhne’s (2012) Matlab implementation of Benson’s algorithm to
solve the resource allocation problems presented in this paper. Computa-
tionally, the algorithm had little trouble solving the studied problem with
three objective functions and 725 decision variables using a laptop with 2.1
GHz dual-core processor and 2 GB RAM. In addition, we evaluated the
performance and accuracy of the approximate Benson’s algorithm using the
previous supermarket data. Based on the results, the approximate algorithm
is capable of solving similar resource allocation problems with (at least) up
to four objective functions and several hundred decision variables in a rea-
sonable time; additionally, the algorithm produced a decent approximation
of the true set of non-dominated solutions in the studied example.

This paper paves way towards building an interactive decision support sys-
tem that facilitates the selection of an optimal portfolio by allowing the DM
to (i) incorporate preference statements on the unit values of different in-
puts and outputs, (ii) define aspiration levels for the individual DMUs’ input
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consumption and output production and (iii) perform a benefit-cost analysis
to identify all the non-dominated portfolios with varying budget constraints.
Future avenues for improving the model could include, for instance, incor-
porating interdependencies between DMUs, modelling various uncertainties
and developing robust decision rules to support the DM.
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A Appendix

Proof of Theorem 1 (i). Suppose contrary to the statement that there exists
a portfolio p′ = (x′, y′) ∈ PN(S̃) such that p′ /∈ PN(S). Consequently, there
exists a portfolio p = (x, y) ∈ PN(S) such that p �S p′. According to
definition 4, this means that the following hold:

Iu(x) ≤ Iu(x
′) for all u ∈ Su, (31)

Ov(y) ≥ Ov(y
′) for all v ∈ Sv (32)

and one of the inequalities is strict for some u∗ ∈ Su or v∗ ∈ Sv. Since S̃ ⊂ S,
we must also have

Iu(x) ≤ Iu(x
′) for all u ∈ S̃u, (33)

Ov(y) ≥ Ov(y
′) for all v ∈ S̃v. (34)

Let (ũ, ṽ) ∈ S̃u × S̃v and (u0, v0) ∈ int(S̃u) × int(S̃v) such that ũ = αu0 +
(1−α)u∗ and ṽ = αv0 + (1−α)v∗ for some α ∈ (0, 1). According to (31) and
(32), either Iu∗(x) < Iu∗(x′) or Ov∗(y) > Ov∗(y′) must hold. Suppose that
Iu∗(x) < Iu∗(x′); we get

Iũ(x)− Iũ(x′) =
m∑
i=1

ũixi −
m∑
i=1

ũix
′
i

=
m∑
i=1

(αu0
i + (1− α)u∗i )xi −

m∑
i=1

(αu0
i + (1− α)u∗i )x

′
i

=
m∑
i=1

(αu0
i + (1− α)u∗i )(xi − x′i)

= α

m∑
i=1

u0
i (xi − x′i) + (1− α)

m∑
i=1

u∗i (xi − x′i)

= α(Iu0(x)− Iu0(x′)) + (1− α)(Iu∗(x)− Iu∗(x′))

< 0.

Otherwise, if Ov∗(y) > Ov∗(y′), we get
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Oṽ(y)−Oṽ(y
′) =

s∑
i=1

ṽiyi −
s∑
i=1

ṽiy
′
i

=
s∑
i=1

(αv0
i + (1− α)v∗i )yi −

s∑
i=1

(αv0
i + (1− α)v∗i )y

′
i

=
s∑
i=1

(αv0
i + (1− α)v∗i )(yi − y′i)

= α
s∑
i=1

v0
i (yi − y′i) + (1− α)

s∑
i=1

v∗i (yi − y′i)

= α(Ov0(y)−Ov0(y
′)) + (1− α)(Ov∗(y)−Ov∗(y′))

> 0.

Thus, either Iũ(x) < Iũ(x
′) or Oṽ(y) > Oṽ(y

′), which together with (33)
and (34) imply that p �S̃ p′ in accordance with Definition 4. This is a
contradiction to p′ ∈ PN(S̃); thus, it must be that p′ ∈ PN(S).

Proof of Theorem 1 (ii). The set of efficient portfolios PE is calculated from
problem (1) - (3) and the set of non-dominated portfolios PN(S) with regard
to information set S = Su × Sv is calculated from (10) - (12). Thus, it is
sufficient to show that (1) is identical to (10) when there is no preference
information, i.e. Su = ∆m and Sv = ∆s, since the problems (1) - (3) and
(10) - (12) are then identical.

The extreme points of the simplices ∆m and ∆s correspond to the unit vec-
tors; thus, the extreme point matrices Uext and Vext are identity matrices.
Consequently, (10) is identical to (1) and the proof is complete.
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Proof of Lemma 1. From definition 4, we have

p �S p′ ⇔

{
Iu(x) ≤ Iu(x

′) ∀u ∈ Su
Ov(y) ≥ Ov(y

′) ∀v ∈ Sv

⇔

{
maxu∈Su

∑s
i=1 ui(xi − x′i) ≤ 0

minv∈Sv

∑m
j=1 vj(yj − y′j) ≥ 0

⇔

{∑s
i=1 ui(xi − x′i) ≤ 0 ∀u ∈ ext(Su)∑m
j=1 vj(yj − y′j) ≥ 0 ∀v ∈ ext(Sv)

⇔

{
Uextx ≤ Uextx

′

Vexty ≥ Vexty
′

since the minimum and maximum of LP-problems are always found in the
extreme points of the feasible sets.

Furthermore, according to Definition 4, there exists some u ∈ Su such that
Iu(x) < Iu(x

′) or some v ∈ Sv such that Ov(y) > Ov(y
′). This is equal to

{
minu∈Su

∑s
i=1 ui(xi − x′i) < 0 or

maxv∈Sv

∑m
j=1 vj(yj − y′j) > 0

⇔

{∑s
i=1 ui(xi − x′i) < 0 for some u ∈ ext(Su) or∑m
j=1 vj(yj − y′j) > 0 for some v ∈ ext(Sv)

⇔

{
Uextx < Uextx

′ or
Vexty > Vexty

′

Thus, we also have (Uextx,−Vexty) 6= (Uextx
′,−Vexty′) and the proof is com-

plete.

Proof of Corollary 1. According to Theorem 1, PN(S̃) ⊆ PN(S). Thus, the
ranges of the individual DMUs’ possible input-output mixes across PN(S̃)
must belong to PN(S) as well. The claims then follow.
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