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 Deep geological disposal of nuclear waste

Background

 Large aleatory uncertainty about the evolution of the 

disposal system

Scenario 1

Scenario 2

Scenario ...
Scenario n

Safety ?
Scenario 

Analysis

 For licensing a repository, safety assessment

 Typically addressed by scenario analysis



Motivation

 Spent-nuclear-fuel repository at Olkiluoto, Finland

 Emphasis on comprehensiveness

 TURMET project objectives:

• Systematize scenario analysis for 

nuclear waste repositories

• Bring methodological advancements to 

help achieve comprehensiveness in 

scenario analysis



Scenario analysis process

 Structure of the process:

• Scenario development

o Identification of the Features, Events & Processes (FEPs)

o System model of the disposal system

o Scenario generation

• Consequence analysis

 Approaches to scenario generation:

• Pluralistic

• Probabilistic

Scenario Development

Identification of

Features, Events and Processes

(FEPs)

Scenario generation

System model (SM)

Consequence Analysis



Challenges
Scenario Development

Identification of

Features, Events and Processes

(FEPs)

Scenario generation

System model (SM)

Consequence Analysis

 Methodological challenges in scenario analysis:

Building a system model as a framework for scenario 

generation
1

Achieving comprehensiveness2

Treating the epistemic uncertainties3



FEPs and safety target FEPs

Safety target

 Set of nodes – FEPs and safety target – and arcs

 Random variables with discrete states
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 State probabilities:

• Independent nodes → Unconditional

• Dependent nodes → Conditional
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Scenarios and subscenarios FEPs

Safety target

 A scenario is a combination of FEP states

 FEPnzz ,...,1z

 For a dependent node, a subscenario is a 

combination of states of its parents
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FEPs

Safety target

Safety

 State of the safety target indicating failure

Failure!

 Total failure probability of the disposal system

 Safety:   failfailp p
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 Suppose one is estimating

Expert judgment

 At a given node, set of experts

 For the state-probability vector, multiple experts’ beliefs

Expert A

(0.50,0.10,0.40)

Expert B

(0.40,0.35,0.25)

Expert C

(0.25,0.15,0.60)
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 Feasible region for the state probabilities:

• Convex combination of experts’ beliefs
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Simulations

 Relationship between the continuous values of a node and of its parents
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 Suppose one is estimating
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 Repeated Monte Carlo sampling j1 j2
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Monte Carlo error
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 Feasible region for the state 

probabilities:

• Belong to their intervals

• Sum up to one



Failure-probability interval

 Optimization to estimate bounds to the failure probability
Estimation of the failure-probability interval 

Bound Lower Upper 
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 Customized algorithm: simplex + reduced gradients
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 Thread expert judgment & simulations – failure-probability 

interval

Experts’ 
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Conclusiveness & comprehensiveness

 It can be challenging to assess safety
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 The failure-probability interval is conclusive if it lies either:

• entirely below the maximum acceptable threshold - Safe

• entirely above the maximum acceptable threshold - Unsafe

 Comprehensiveness:
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Comprehensiveness & simulations

 Achieving comprehensiveness can be challenging if there are limits to the number of simulations

 For instance, if the subscenarios to be simulated are sampled randomly:

• few simulations for all subscenarios

• large Monte Carlo error

• wide state-probability intervals

• wide, possibly nonconclusive, failure-probability interval
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 Can simulations be performed for a restricted set of 

responsibly selected subscenarios?

 For instance, identified by risk-importance measures



Addressing challenges in scenario analysis

 Recall the methodological challenges in scenario analysis:

Building a system model as a framework for scenario 

generation
1

Achieving comprehensiveness2

Treating the epistemic uncertainties3

Bayesian network of FEPs, in 

which scenarios and 

subscenarios are defined

The subscenarios to be analyzed with more 

simulations to obtain a conclusive failure-

probability interval are identified

The epistemic uncertainty about the values 

of the state probabilities is characterized by 

feasible regions



Comparison to former approaches

 Pluralistic  Probabilistic (e.g., Yucca Mountain)

• Scenarios selected by judgment

• Representative/illustrative of the 

future

 Here, probabilistic scenario analysis

• Rigorous mathematical framework

• Great computational availability

• Large sample from initial nodes, then 

simulations in cascade

 Here, less computational 

availability:

• integrate expert judgments and 

simulations

• identify the regions of the probability 

space (subscenarios) to be analyzed




