Bayesian networks for scenario analysis of nuclear waste repositories

Edoardo Tosoni^{a,b}, Ahti Salo^a, Enrico Zio^{b,c}

- a. Systems Analysis Laboratory, Dept of Mathematics and Systems Analysis Aalto University
- b. Laboratory of signal and risk analysis, Dipartimento di Energia Politecnico di Milano
- c. Chair on Systems Science and the Energetic Challenge École Centrale Paris and Supelec

November 2, 2017

Background

- Deep geological disposal of nuclear waste
- For licensing a repository, safety assessment
- Large aleatory uncertainty about the evolution of the disposal system

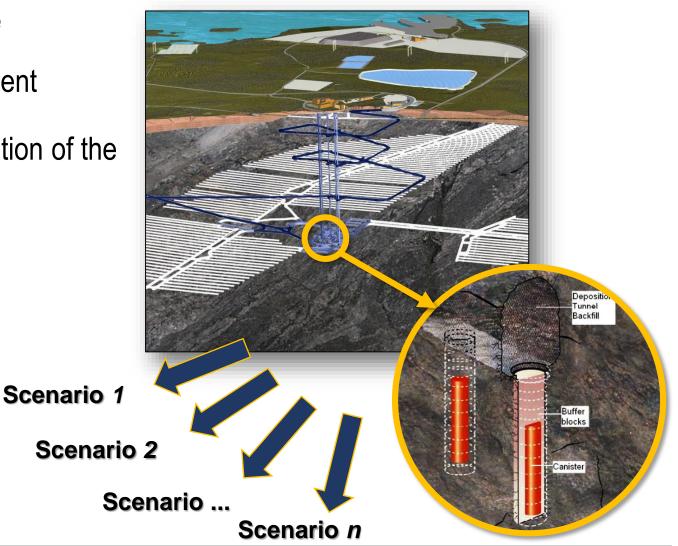
Scenario

Analysis

POLITECNICO

DI MILANO

Typically addressed by scenario analysis



Safety

Motivation

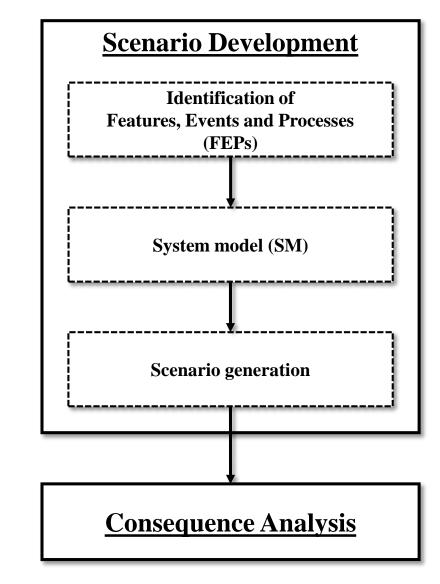
- Spent-nuclear-fuel repository at Olkiluoto, Finland
- Emphasis on comprehensiveness
- TURMET project objectives:
 - Systematize scenario analysis for nuclear waste repositories
 - Bring methodological advancements to help achieve comprehensiveness in scenario analysis

POLITECNICO

Scenario analysis process

- Structure of the process:
 - Scenario development •
 - Identification of the Features, Events & Processes (FEPs)

- System model of the disposal system
- Scenario generation
- Consequence analysis •
- Approaches to scenario generation:
 - Pluralistic •
 - Probabilistic •



Challenges

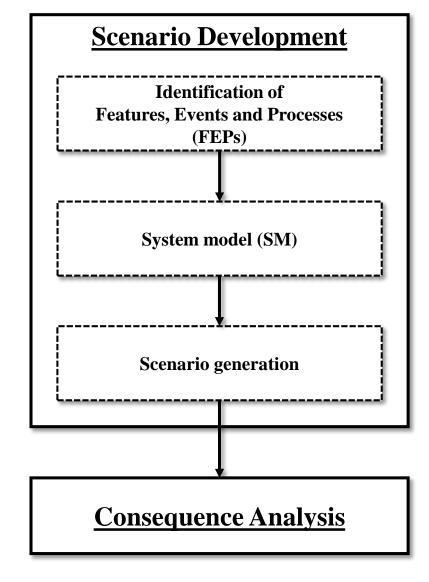
• Methodological challenges in scenario analysis:

Building a **system model** as a framework for scenario generation

Achieving comprehensiveness

3

Treating the epistemic uncertainties



FEPs and safety target

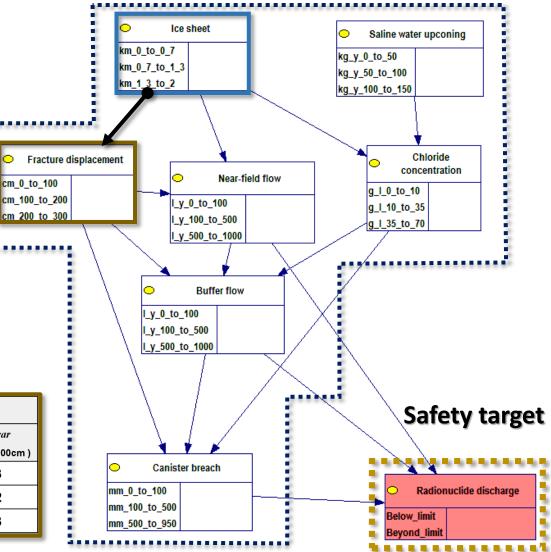
- Set of nodes FEPs and safety target and arcs
- Random variables with discrete states $z^i \in \mathbb{S}^i$

 $x^{d_{shear}} \in \mathbb{X}^{d_{shear}} = \begin{bmatrix} 0 , 300 \ cm \end{bmatrix}$ $Z^{d_{shear}} = z_1^{d_{shear}} \Leftrightarrow X^{d_{shear}} = x^{d_{shear}} \in \begin{bmatrix} 0 , 100 \ cm \end{bmatrix}$

- State probabilities:
 - Independent nodes \rightarrow Unconditional $p_{z^i}^i$
 - Dependent nodes \rightarrow Conditional $p_{z^i|z_-^i}^{i|\nabla_-^i}$

Ice sheet			
ζ ^e 1 [0 – 0.7 km)	<i>ζ^e2</i> [0.7 km – 1.3 km)	<i>z^e₃</i> [1.3 km – 2 km)	
0.56	0.28	0.16	

lce	Fracture displacement		
sheet	Z ₁ dshear [0 – 100 cm)	Z ₂ dshear [100cm – 200cm)	Z ₃ dshear [200cm – 300cm)
z^{e}_{1}	0.91	0.06	0.03
z ^e 2	0.49	0.39	0.12
z ^e 3	0.02	0.05	0.93



FFPs

POLITECNICO

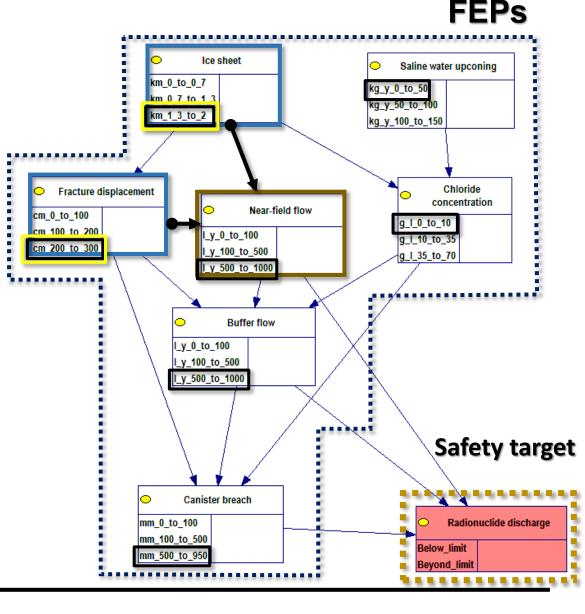
Scenarios and subscenarios

• A <u>scenario</u> is a combination of FEP states

$$\boldsymbol{z} = \left(z^1, \dots, z^{n_{FEP}} \right)$$

For a dependent node, a <u>subscenario</u> is a combination of states of its parents

$$z_{-}^{i} = \left\{ z^{j} \right\}, \forall j \in \mathbb{V}_{-}^{i}, i \in \mathbb{V}^{\mathbb{D}}$$



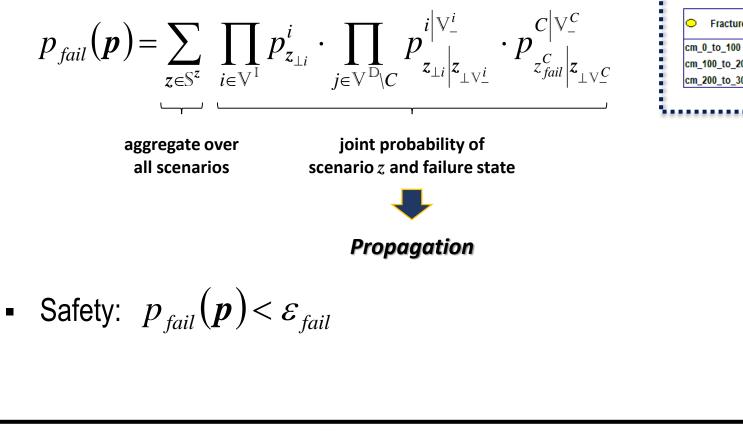
Safety

- State of the safety target indicating *failure*

Aalto University

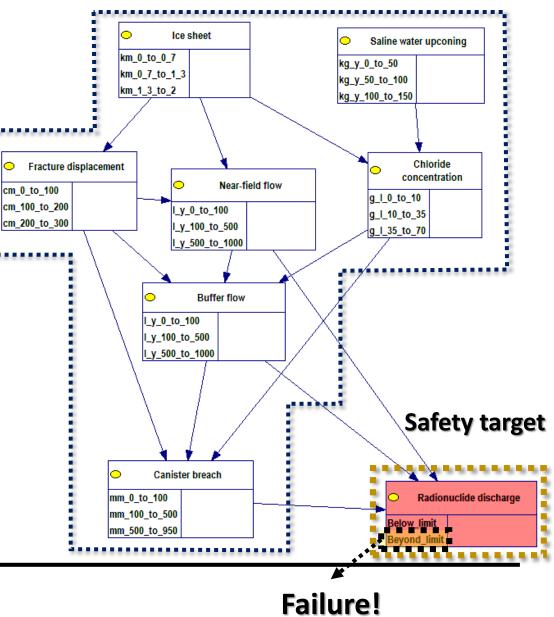
School of Science

- Total failure probability of the disposal system



POLITECNICO

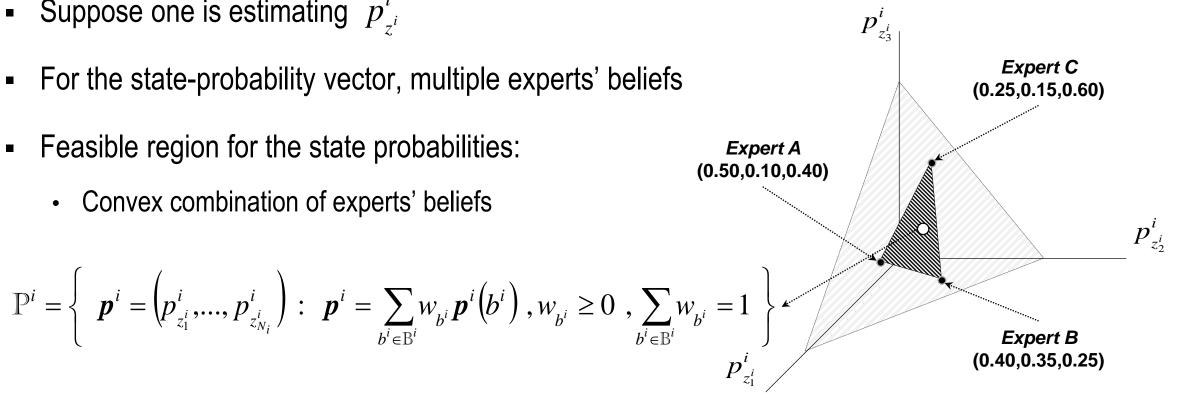
DI MILANO



FEPs

Expert judgment

- At a given node, set of experts
- Suppose one is estimating $p_{z^i}^l$
- For the state-probability vector, multiple experts' beliefs
- Feasible region for the state probabilities:
 - Convex combination of experts' beliefs

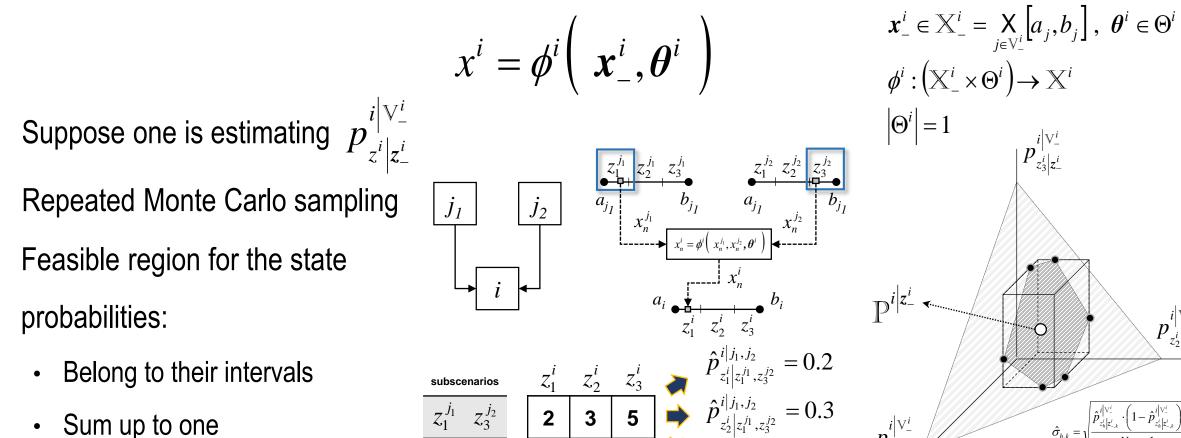


Simulations

Aalto University

Science

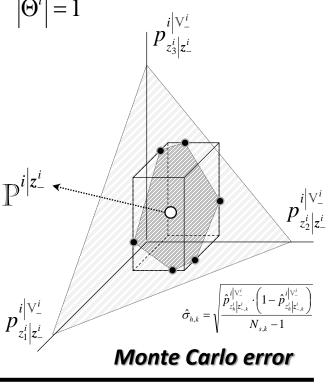
Relationship between the continuous values of a node and of its parents $x^i \in \mathbb{X}^i = [a_i, b_i]$



POLITECNICO

MILANO

DI



Failure-probability interval

Feasible regions

for state

probabilities

р

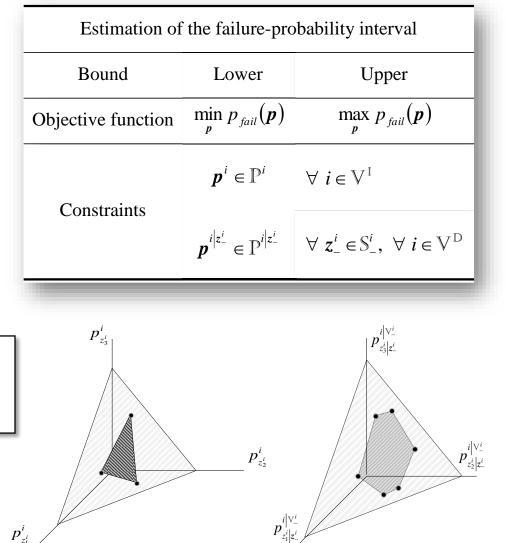
- Optimization to estimate bounds to the failure probability
- Customized algorithm: simplex + reduced gradients
- Thread expert judgment & simulations failure-probability interval

Optimization

Failure-

probability

interval



Experts'

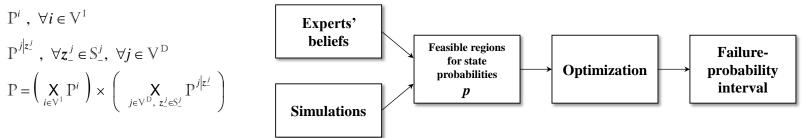
beliefs

Simulations

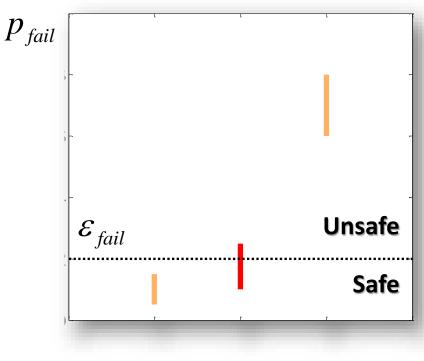
Conclusiveness & comprehensiveness

- It can be challenging to assess safety
- The failure-probability interval is conclusive if it lies either:
 - entirely below the maximum acceptable threshold Safe
 - entirely above the maximum acceptable threshold Unsafe
- Comprehensiveness:

$$\mathbb{P}: \left(\forall \boldsymbol{p} \in \mathbb{P} \Rightarrow p_{fail}(\boldsymbol{p}) < \varepsilon_{fail} \right) \lor \left(\forall \boldsymbol{p} \in \mathbb{P} \Rightarrow p_{fail}(\boldsymbol{p}) \geq \varepsilon_{fail} \right)$$



POLITECNICO

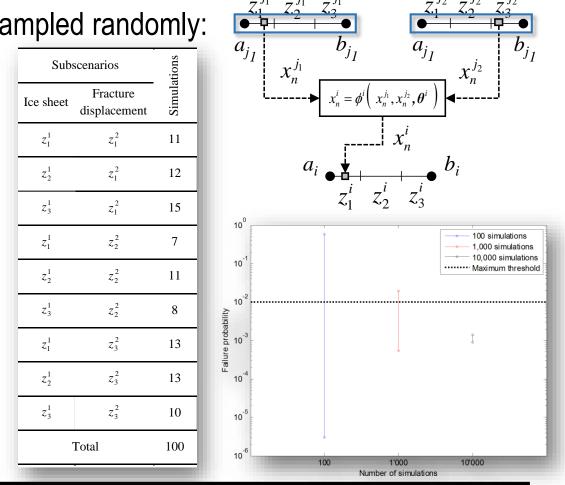


Comprehensiveness & simulations

- Achieving comprehensiveness can be challenging if there are limits to the number of simulations
- For instance, if the subscenarios to be simulated are sampled randomly:

 $\hat{\sigma}_{\scriptscriptstyle h,k}$

- few simulations for all subscenarios
- large Monte Carlo error
- wide state-probability intervals
- wide, possibly nonconclusive, failure-probability interval
- Can simulations be performed for a restricted set of responsibly selected subscenarios?
- For instance, identified by risk-importance measures



Addressing challenges in scenario analysis

Recall the methodological challenges in scenario analysis:

Building a **system model** as a framework for scenario generation

Bayesian network of FEPs, in which scenarios and subscenarios are defined

Achieving comprehensiveness

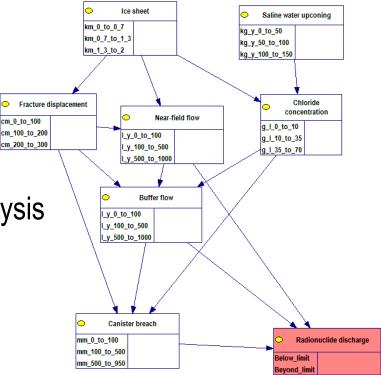
The subscenarios to be analyzed with more simulations to obtain a conclusive failureprobability interval are identified

Treating the epistemic uncertainties

The epistemic uncertainty about the values of the state probabilities is characterized by feasible regions

Comparison to former approaches

- Pluralistic
- Scenarios selected by judgment
- Representative/illustrative of the future
- Here, probabilistic scenario analysis



- Probabilistic (e.g., Yucca Mountain)
- Rigorous mathematical framework
- Great computational availability
- Large sample from initial nodes, then simulations in cascade
- Here, less computational

availability:

- integrate expert judgments and simulations
- identify the regions of the probability space (subscenarios) to be analyzed

