

Elevator Dispatching as Mixed Integer Linear Optimization Problem

Mirko Ruokokoski¹ Harri Ehtamo¹
Janne Sorsa² Marja-Liisa Siikonen²

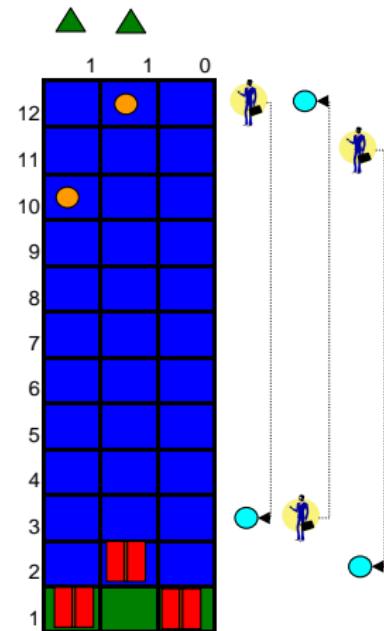
¹Systems Analysis Laboratory
Helsinki University of Technology, HUT

²R&D, High Rise Competence Center
KONE Corporation

INFORMS Annual Meeting October 2008

Elevator group

- ▶ In high-rise and big buildings, elevators are arranged into groups
- ▶ Elevators in a group share joint call panels
- ▶ Elevator dispatching problem deals with one elevator group
- ▶ Example: a group of three elevators in a 12-floor building



Destination Control System

- ▶ Destination operation panels at each landing floor
- ▶ No call buttons inside elevators
- ▶ Calls given from these panels are called destination calls
- ▶ Destination calls are allocated to elevators immediately
- ▶ Passenger information available in allocation
 - ▶ Departure floors
 - ▶ Destination floors
 - ▶ Number of waiting and traveling passengers

Elevator Dispatching Problem (EDP)

- ▶ Allocate destination calls to elevators, immediately after they have been given
- ▶ while satisfying constraints
 - ▶ Capacity constraints
 - ▶ Already allocated passengers
 - ▶ Time window constraints
 - ▶ Commonly accepted rules for an elevator behavior (Closs 1970)
- ▶ and minimizing a cost function
- ▶ *Controlling an elevator group continuously in real time consists of a series of EDP instances*

Closs Rules

- ▶ A car may not stop at a floor where no passenger enters or exits
- ▶ A car may not pass a floor at which a passenger wishes to exit
- ▶ A passenger may not enter a car carrying passengers and traveling in the reverse direction to his required direction of travel
- ▶ A car may not reverse its direction of travel while carrying passengers

Optimization methods

- ▶ Current optimization methods
 - ▶ Practical implementation of Genetic Algorithm (Tyni et al. 2001)
 - ▶ Guarantees locally optimal solutions
- ▶ *Here, the first mixed integer linear optimization formulation for the EDP is defined and solved*
 - ▶ Globally optimal solutions
- ▶ Passenger Allocation to Capacitated Elevators, PACE
 - ▶ Defined on a directed graph
 - ▶ T terminals, P pickup and D delivery nodes
 - ▶ A arcs which satisfy Closs rules

Sets

- ▶ C_1 = Destination calls to be allocated
- ▶ P = Pickup nodes
- ▶ D = Delivery nodes
- ▶ T = Terminal nodes
- ▶ E = Elevators
- ▶ A_e = Arcs of elevator e , $A = \bigcup_{e \in E} A_e$
- ▶ \mathcal{R}_q = Family of minimal infeasible sets of passengers with respect to capacity limitation

Constants

- ▶ τ_{jk}^e = Travel time along arc (j, k) with elevator e + stop time at node j
- ▶ M_{jk}^e = Big constant
- ▶ l_j = lower bound of the time window at node j
- ▶ u_j = upper bound of the time window at node j

Variables

- ▶ $x_c^e = 1$, if passenger c is allocated to elevator e , 0 otherwise
- ▶ t_j = the time at which the service begin at j
- ▶ $v_j^e = 1$, if node j is allocated to elevator e , 0 otherwise
- ▶ $y^e = 1$, if the vacant elevator e goes upwards, 0 otherwise

Formulation of PACE (1/2)

$$\begin{aligned} \min \quad & \sum_{i \in P} \frac{1}{|P|} t_i \\ \text{s.t.} \quad & \sum_{e \in E'} x_c^e = 1 \quad \forall c \in C_1 \\ & x_c^e \in \{0, 1\} \quad \forall c \in C_1, e \in E' \\ & t_k \geq t_j + \tau_{jk}^e - (2 - v_j^e - v_k^e) M_{jk}^e \quad \forall e \in E', (j, k) \in A_e \\ & t_j = 0 \quad \forall j \in T \\ & e_j \leq t_j \leq l_j \quad \forall j \in P \cup D \end{aligned}$$

Formulation of PACE (2/2)

$$\sum_{c \in R^e} x_c^e \leq |R^e| - 1 \quad \forall R^e \in \mathcal{R}_q$$

$$\sum_{c \in C_1} x_c^e \leq |C_1|y^e \quad \forall e \in E'$$

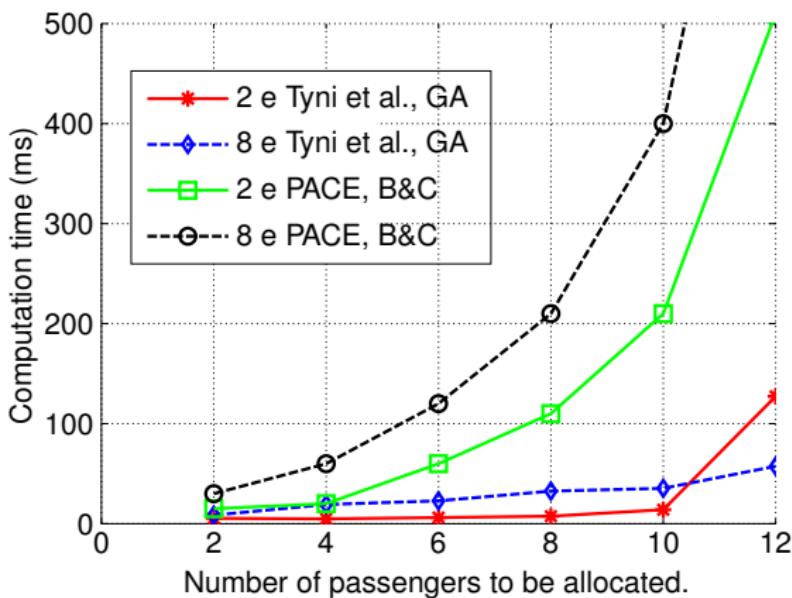
$$1 - y^{e+|E|} = y^e \quad \forall e \in E$$

$$y^e \in \{0, 1\} \quad \forall e \in E'$$

Solution mathematics

- ▶ Our formulation allows exact method
- ▶ We use modified branch-and-cut algorithm (B&C)
- ▶ We have analyzed valid inequalities for PACE (Ruokokoski et al. 2008):
 - ▶ Symmetry breaking constraints
 - ▶ Can be used in other vehicle indexed routing problems
 - ▶ Bounds on time variables

Computation time comparison



Conclusion

- ▶ Features of the PACE
 - ▶ Mixed integer linear formulation defined and solved by B&C
 - ▶ Globally optimal solutions
 - ▶ Computation time with B&C short up to 10 passengers to be allocated
 - ▶ In practice, PACE with B&C can be used in Destination Control
 - ▶ Can be used as a benchmark system in continuous call allocation
 - ▶ Forms a base for heuristic methods
- ▶ Future research
 - ▶ Implement our method into a simulation environment
 - ▶ Modification so that arbitrary heuristic method can be used
 - ▶ Modification so that passenger forecasts can be used in allocation

References

- J. Sorsa H. Ehtamo, M.-L. Siikonen, M. Tyni, J. Ylinen, 2008: *Elevator Dispatching as Bilevel Stochastic Optimization Problem*. Working paper.
- M. Ruokokoski, H. Ehtamo, S. Sorsa, M.-L. Siikonen, 2008: *Passenger Allocation to Capacitated Elevators*. Working paper.
- M. Tyni, J. Ylinen, 2001: *Genetic Algorithms in Elevator car Routing Problem*. Proc. of the GECCO-2001, San Francisco, pp. 1413-1422.
- G.D. Closs, 1970: *The computer control of passenger traffic in lift systems*. Ph.D. thesis, The Victoria University of Manchester.