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Abstract 

Adversarial risk analysis (ARA) builds on statistical risk analysis and game theory 

to help analyze decision situations which involve two or more intelligent opponents 

who make decisions under uncertainty. During the past few years, the ARA 

approach–which seeks to model the decision making processes of a rational 

opponent–has been applied extensively in areas such as counterterrorism and 

corporate competition. In the context of military combat modelling, however, ARA 

has not been used systematically, even if there have been attempts to predict the 

opponent’s decisions based on wargaming, application of game theoretic equilibria, 

or solicitation of expert opinions. Against this background, we argue that combining 

ARA with military combat modelling holds significant promise for enhancing the 

capabilities of current combat modelling tools. Even if the ARA approach can be 

challenging to apply, it can be very informative because relevant assumptions about 

the resources, expectations and goals that guide the adversary’s decisions must be 

clearly explicated. We identify some promising ways of combining ARA with 

combat modelling and present an illustrative example of how ARA can provide 

insights into a problem where the defender needs to estimate the utility gained from 

hiding its troop movements from the enemy. 

 

Introduction 

Adversarial risk analysis (ARA) combines statistical risk analysis and game theory to provide 

appropriate methods for analyzing decision making situations which involve two or more intelligent 

actors who make decisions with uncertain outcomes. Such situations are encountered, for example, 

in counter-terrorism and corporate competition (Rios Insua et al., 2009). 

Traditional statistical risk analysis was developed to assess and mitigate risks in contexts where the 

loss is governed by chance (or Nature), for instance in the management of complex technological 

systems like nuclear power plants and the design of insurance policies against natural disasters. Apart 

from risks caused by chance events, ARA seeks to capture risks caused by the self-interested and 

possibly malicious actions of intelligent actors, and consequently modelling the decision-making 

behavior of these actors is central to ARA. These kinds of decision models can be based, for example, 

on classical game theory (Myerson, 1991) or psychological considerations (Camerer, 2003).  

Yet game theory is not ideal tool for describing and predicting human behavior. Minmax solutions–

in which each actor seeks to minimize his expected losses across all the actions that are available to 

his opponents–can lead to sub-optimal solutions, because in reality opponents do not usually abide 

the minmax rationality principle. Minmax solutions are also often difficult to compute in real 

situations and necessitate strong assumptions what common knowledge the actors share  (Kadane & 

Larkey, 1982 and Meng et al., 2014). Moreover, the solutions can be overly too pessimistic, because 

the mitigation of the worst possible scenario (which may have an extremely low probability) will 

induce the actors to make choices that a human opponent would not realistically make.  

ARA has many obvious uses in military organizations. Much of the recent ARA literature has focused 

on counterterrorism, and many of the proposed ARA approaches can be applied to support military 

decision making. Zhuang and Bier (2007), for example, apply game theory to devise strategies for 



the allocation of resources between the protection from an intentional attack, on one hand, and from 

natural disasters, on the other hand. ARA methods can be used to guide the allocation of resources 

between strategically important targets as well as the investment planning of military equipment and 

projects. Uses of ARA in finance and procurement are relevant, too, because military organizations 

acquire products and services from external contractors. 

In this paper, we do not survey the broad relevance of the ARA literature in view of military 

applications. Rather, we discuss how ARA can be applied to enhance combat simulation or to serve 

as a complement to it. There are numerous combat models and simulators for calculating the 

outcomes of battles and the losses sustained by the units and weapons systems. Most of these 

simulators do not model human decision making except at the most basic level (Lappi, 2012, 14-20). 

Against this background, ARA holds potential for enhancing simulators by increasing the realism of 

the decision making processes that are embedded in the simulations, which, in turn, may help for 

instance in predicting the opponent’s decisions.  

One major advantage of ARA from the perspective of traditional combat modeling is the possibility 

to calculate the effects of military deception and its usefulness. Game theory has been applied to 

calculate the benefits of deceit before (Reese, 1980), but such applications are still rare. This is partly 

because the solutions of classical game theory presume that both sides have common knowledge 

about each other’s goals and resources, which is not realistic when modeling deceit. ARA does not 

have this limitation. It can even be applied to calculate the usefulness of decoys and dummy systems, 

which makes it possible to estimate if they are worth the cost; this is very difficult for most combat 

simulation models to estimate. 

Modeling adversarial risks 

In this section, we briefly describe how a situation in which there are adversaries whose actions affect 

each other’s risks can be modeled. Our analysis builds largely on the paper by Rios Insua et al. (2009) 

who give a comprehensive presentation of ARA. For a good overview on how the ARA approach 

compares to classical game theory, we refer to Banks et al. (2011). 

Risk analysis 

The simplest form of a non-adversarial risk management problem is a situation in which the decision 

maker (DM) chooses one alternative from the set of available decision alternatives whose costs are 

uncertain. These cost uncertainties may stem from the fact that the decision outcome is uncertain, or 

because the costs associated with a particular outcome are uncertain, or both. This problem is 

presented as an influence diagram in Figure 1. 

 

Figure 1. A simple influence diagram 

An influence diagram is a directed acyclic graph with three kinds of nodes: rectangle shaped decision 

nodes, oval shaped uncertainty nodes, and hexagonal value nodes. Arrows pointing to value or 
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uncertainty nodes indicate functional or probabilistic dependence, respectively. That means that the 

utility function at the value node depends on its immediately preceding nodes, and the probabilities 

associated with an uncertainty depend on the values of the immediately preceding nodes and are thus 

conditional on them. Arrows pointing into decision nodes indicate that the values of the nodes 

preceding the decision node are known at the time of the decision. (cf. Howard & Matheson, 2005) 

The problem in Figure 1 represents a situation where the decision maker has to make a decision a 

from a set A of possible choices, represented by the rectangle. The cost c associated with this decision 

is uncertain and is modeled through density 𝜋(𝑐|𝑎), represented by the oval node. The result is 

modeled by Von Neumann-Morgenstern utility function u(c). The decision maker seeks the decision 

that maximizes the expected utility 

𝜓 = max
𝑎∈𝐴

[𝜓(𝑎) = ∫ 𝑢(𝑐)𝜋(𝑐|𝑎) ⅆ𝑐]. (1) 

In practice, the costs of a particular action are complex and depend on the outcome. The costs often 

include fixed and random terms. For that reason, organizations seek to perform a risk assessment to 

better identify the disruptive events, and their probabilities and associated costs. Figure 2 shows the 

influence diagram that has been extended to account for the disruptive hazards identified by the risk 

assessment and the additional costs they may cause. 

 

Figure 2. Influence diagram after risk assessment. 

Adversarial risks 

We now consider a situation in which there are two adversaries (Attacker and Defender) whose 

decisions affect the risks that each faces. Figure 3 extends the influence diagram to include the 

adversary in a symmetrical situation in which decisions of both parties affect the risks and costs that 

the other faces, and both seek to maximize their own expected utilities. Even though the roles are 

symmetric in this example, this does not have to be the case. An asymmetrical scenario could also be 

modeled with an asymmetrical influence diagram. 

We denote the sets of possible actions of Attacker and Defender with A and D respectively. Their 

utility functions are 𝑢𝑎(⋅) and 𝑢𝑑(⋅). The sets containing their beliefs about different probabilities are 
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𝑃𝑎 and 𝑃𝑑. As can be seen in the influence diagram in Figure 3, one of the nodes, Hazard, is common 

to both sides. This can represent the possible complications arising from risks common to both sides, 

such as weather for example. The other cost nodes are not common, and represent the random costs 

for both parties and they could be very different. 

The expected utilities for both the Attacker and the Defender depend upon the actions of both. 

Specifically, by extending on (1), we obtain the Attacker’s expected utility for choosing action 𝑎 ∈ 𝐴 

when the Defender chooses action ⅆ ∈ 𝐷 

𝜓𝐴(𝑎, ⅆ) = ∫ 𝑢𝐴(𝑐)𝜋𝐴(𝑐|𝑎, ⅆ) ⅆ𝑐, (2) 

where 𝜋𝐴(𝑐|𝑎, ⅆ)𝜖𝑃𝐴 represents the Attacker’s beliefs about his costs corresponding to the decision 

pair (𝑎, ⅆ). It is noteworthy that these beliefs do not necessarily have to match reality, because we 

are only modeling the decision the Attacker makes. The expected utility for the Defender is 

analogous. 

This representation of ARA matches normal form games in which both players take simultaneous 

decisions. One could also build an influence diagram that applies to sequential games, such as 

Stackelberg games, in which the players make their move alternately. The ARA methodology can be 

applied to solve such games, too (cf. Banks et al., 2011 and Rios & Rios Insua, 2012). 

 

Figure 3. Influence diagram with an adversary 

Bayesian framework for ARA 
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A problem like the one presented in Figure 3 can be readily solved using classical game theory if we 

assume that the costs and utility functions of both players are common knowledge. If the players do 

not possess correct and accurate information about the costs, resources, and goals of the adversary, 

(which is often the case in reality), the Nash equilibrium solution does not exist. 

ARA solves this problem by using a Bayesian strategy to express uncertainty about the adversary’s 

decision. If we examine the problem from the Attacker’s point of view, the uncertainty means that 

the Defender’s decision is a random variable as presented in Figure 4. To solve this problem, the 

Attacker needs more than just 𝜋𝐴(𝑐|𝑎, ⅆ)𝜖𝑃𝐴 and 𝑢𝐴(𝑐). Specifically, he also needs 𝑝𝐴(ⅆ), which is 

the probability that the Defender chooses defense d as estimated by the Attacker. To find that, he is 

assumed to use mirroring to form an estimate of both the Defender’s utility function 𝑢𝐷(𝑐) and the 

Defender’s costs 𝜋𝐷(𝑐|𝑎, ⅆ). That means that the Attacker assumes the Defender is acting rationally 

and is using a similar strategy to predict the actions of the Attacker. 

If the Attacker tried to estimate the Defender’s utility function and cost function by assuming that the 

Defender is doing the exact same thing that he is doing, the Attacker would need to think what the 

Defender thinks he thinks. To avoid infinite regress, the chain is usually cut there and the Attacker 

just forms an educated guess about the Defender’s thoughts about the Attacker’s estimated utilities 

and costs. Obviously the thinking could be taken even further, but it usually not a realistic way to 

resolve the problem.  

 

Figure 4: Influence diagram from the Attacker's point of view. 

Alternative approaches for modeling adversary’s decision making 

The ARA methodology is quite similar to Bayesian level-k thinking. The approach to the modeling 

of opponents thoughts as outlined here resembles most closely level-2 thinking. Rothschild et al. 

(2012) have taken the approach further and applied actual level-k thinking to the ARA approach. 

Their methodology is not without drawbacks, because the level-k approach requires some additional 

assumptions and the problems become intractable even more rapidly due to their increasing 

complexity. Possibly the greatest advantage gained from the level-k thinking approach is the ability 

to easily perceive how the level of adversary’s thinking affects the optimal decision. 

Caswell et al. (2011) have presented a model that evaluates the decision process using a Bayesian 

network with an embedded semi-Markov decision process. Compared to the ARA approach their 
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model can be used to present the adversary’s decision process with greater accuracy. However, as 

with any decision analysis model the results are only as good as inputs, and a detailed description of 

the adversary’s thought process would also require extremely detailed information about the 

adversary’s resources, values and goals. 

Zuckerman et al. (2012) have taken a more distinct approach by modeling adversarial activity using 

Beliefs-Desires-Intentions (BDI) based model, which are commonly used to describe teamwork and 

cooperation. This approach also has the ability to model the adversary as a more nuanced rational 

agent instead of an omniscient utility maximizer. The model is still somewhat unrefined as it is only 

applicable in zero-sum games like environments with easily decomposable goals, but it is a good 

starting point. 

Applying ARA to military combat modeling 

In this section, we discuss possibilities of applying ARA to military combat modeling and modeling 

processes. These ideas are still mostly untested, and they are presented as suggestions for worthwhile 

topics for future research.  

Distribution of resources 

A significant proportion of ARA literature is focused on preventing terrorist threats and, more 

specifically, on how limited resources should be best allocated to combat these threats (cf. Pat-Cornell 

& Guikema 2002, Kardes & Hall 2005, Zhuang & Bier 2007, Golany et al. 2009, and Kroshl et al. 

2015). Resource allocation is a problem that military faces always, not just when combating terrorism. 

The methods developed for allocating resources against terrorist threats are easy to apply to combat 

environment, because one of the biggest challenges faced when using these methods is assessing the 

effects of each of the adversary’s possible decisions. Combat modeling already has the tools for 

estimating the results of combat when the adversary has committed to a specific strategy.  

This is probably the easiest way to benefit from ARA in the context of combat modeling. Studying 

the ARA research related to counter terrorism and applying ARA methods to combat situations by 

calculating the risks related to each possible adversary’s decision using combat modeling tools offers 

potentially significant results without any new model development. 

When combined with data farming ARA approach can also be used to calculate how limited resources 

such as troops should be divided across different battlefields. Kovenock & Roberson (2010) for 

example have examined using game theory how resources should be allocated for multiple battlefields 

when the objectives and available resources for both sides are known. ARA methodology can be used 

to perform similar analysis with fewer assumptions. 

Modeling decision making 

Simple adversarial intent models have been used in professional wargaming to simulate intelligent 

forces (Santos & Zhao 2006). Despite that, currently many combat models do not include algorithms 

that are capable of modeling the human thought process behind tactical or higher level decisions 

(Washburn & Kress, 2009, 111-130). Depending on the model, practically all higher level decisions 

(above the levels of soldiers or platoons) are made by the operator. As a result, the time required to 

create a scenario is usually significantly longer than the time required to calculate the results (Lappi, 

2012).  



The fact that the operator user defines the actions taken by the troops in the modeled scenario is not 

always a hindrance. It also offers benefits, including the ability to fine tune the scenario to match 

events of a historical battle (Lappi et al., 2014) or to easily examine and change the actions taken by 

the troops. Relying on the operator in making all the significant decisions can, however, become 

problematic when a really large number of scenarios is required, which is often the case when data 

farming more complex cases. (Lappi et al., 2015) Varying the scenario is done by modifying 

numerical parameters such as troop strengths or number of available weapon systems, but that 

approach is somewhat limited in its applications. In longer and more complex scenarios small changes 

that affect outcome of the battle in its early stages can for example cause the assumptions made about 

the troop movements in the later stages become invalid. 

Including a model that would allow the units inside the simulation make simple tactically sensible 

decisions would widen the range of problems that can be analyzed using data farming. The ARA 

methodology could be used as a basis for such decision making algorithm. Here, ARA has advantages 

over using game theory to calculate a Nash equilibrium, because the ARA framework makes it 

possible to better account for uncertainties and possible misinformation that are present on the 

battlefield. For a Nash equilibrium to exist both players need to have more information about the 

objectives and resources of the opponent than is often realistic in a combat situation.  

However, there are some limitations to applying ARA to decision modeling. Because the method is 

so calculation intensive, it is not ideal for modeling low level or continuous decision making. The 

most effective way to apply ARA would be to limit the choice to between a few possible strategies. 

In contrast, considering very frequent decisions with a large number of distinct alternatives would 

lead to intractable models. Simplifying the problem by reducing the choices to move sequences 

instead of trying to calculate all possible actions has been long used in constructing AI systems for 

games such as Go and Chess and it has been recently applied even in video game AI development 

(Churchill et al. 2012). 

Simulating larger chains of events 

The ARA methodology can also be applied to aid in modeling military operations that are too large 

to simulate as a single scenario. The scale can become an issue if the number of units involved is too 

large, or the operation takes place over such a long timeframe that the number of possible paths based 

on the events becomes excessive. Kangas and Lappi (2006) present how methods of probabilistic risk 

analysis can be used in conjunction with stochastic combat modeling to analyze longer chains of 

events. The ARA approach could be used to build on those results and take the analysis one step 

further. In addition to predicting the success chances of larger operations, it would also be possible 

to predict those of the adversary’s choices that can affect the path of events.  

Practically any combat model can be used with ARA methodology on condition that the probabilities 

for each side winning the battle as well as the expected losses on both sides can be calculated. This 

includes practically all stochastic combat models and even some of the deterministic ones. The 

selection of the combat model must fit the problem at hand. Sometimes the best choice is a platform 

level Monte Carlo simulation, and sometimes it is a high level attrition model like FATHM (Brown 

& Washburn, 2000). 

In some cases, it can be possible to use ARA to model these longer chains of events without having 

to rely on an actual stochastic combat modeling software like Sandis (cf. Kangas and Lappi, 2006). 

There are also alternative, lighter stochastic computational models that can be used to predict the 



outcome of a duel between two platoon sized forces (Lappi et al., 2012; Åkesson, 2012; Roponen, 

2013). These models can be used to significantly cut down the time for calculating all the success 

probabilities and the expected losses in different stages of the chain. There are also additional time 

savings from not having to create a complete model scenario, which, as noted earlier, is a time 

consuming process. The use of the lighter duel simulation methods could even be automatized to a 

certain degree, because they require far fewer input parameters. 

Modeling the effectiveness of military deceit 

Using deceit to gain upper hand against an adversary is an absolutely integral part of military tactics 

and strategy. Still, the effects of deceit are very difficult to predict and simulate with existing 

operational analysis and combat modeling software. Because the effects cannot be readily reduced to 

mathematical formulas, modeling the effects of deceit relies usually on expert opinions. In the context 

of combat modeling, this usually means that the required expert opinions are provided by the software 

operator.  

A common alternative is to use wargames to model the uncertainties associated with human decision 

making, but this approach also has some problems as even wargames are forced to ignore certain 

aspects of reality.  Questions of solvability do not arise in wargames because optimal tactics are not 

sought. Because wars are fought by humans, humans are also used to model the decision process. The 

first problem that stems from this approach is, that the player can make decisions in a game that he 

would not make in a real world as long as it produces good results in the simulation. For example 

casualties might not carry the same weight in a simulated environment. The second problem is that 

wargames often capture typical decision making instead of optimal by having players only play a 

very small number of games. Lack of repetition overstates the effectiveness of new weapon systems, 

because the opponent does not have time to learn and adapt his tactics to counter those. The lack of 

repetition is deliberate to some extent as it is feared that the players would learn to use the artificialties 

of the wargame to their advantage instead of developing better military strategies. Another reason for 

the lack of repetitions is that wargaming is time consuming and expensive. (Washburn & Kress, 2009, 

111-130)  

The ARA approach could be used to assess the effects that deceit tactics could have on the decision 

making of the adversary. Specifically, the ability to model the effects of the adversary’s altered 

perceptions would be a very useful complement to the elicitation of expert opinions. Mathematical 

equations are, after all, immune to effects of optimistic thinking. 

Examples of situations that could be modeled with ARA relatively easily include cases in which the 

adversary is deliberately misinformed about the strength of the opposing forces. This can be achieved 

for example by hiding troop movements and employing dummy units or decoys. ARA can be then 

used to estimate the effect of the deceit on adversary’s decision making and whether that effect is 

beneficial or not. An example of such estimation process is given in the next section. 

Supporting decision making 

Arguably the most important reason for military combat modeling is its use for supporting strategic, 

tactical or technical decision making process (Tolk, 2012, 55-78). However, it is not an easy task to 

translate the results of combat models into actual decisions or recommendations (Davis & 

Blumenthal, 1991). 



The ARA framework could be applied to translate the data, produced by the mathematical models, to 

answer more concrete questions such as what will happen if we do not allocate more troops to a 

specific airfield, or where is the enemy likely to attack if we do X? As the answers to these questions 

depend on the decisions made by the opponent they are mathematically and computationally very 

difficult, but it is possible to answer them using the ARA methodology. (What is prohibitively hard 

to calculate today may not be so five years from now, thanks to the rapid increase in computing 

power.) 

One way of using ARA to translate simulation results to an easily applicable form is to perform a 

portfolio analysis of all relevant strategies. Similar methods have already been used in assessing cost-

efficiencies of different weapon system combinations (Kangaspunta et al., 2012). In the same vein, 

ARA could be used to predict the most likely responses of the adversary and to calculate the expected 

utilities of each strategy under different conditions. The applicability of this approach depends on the 

ability to streamline and automate the process so that informative results concerning strategies can be 

provided while saving time in comparison with manual analyses of combat simulations.  

 

Example of applying ARA to a tactical problem 

To demonstrate how ARA can be applied in practice, we use it here to solve a relatively simple tactical 

problem with the aim of giving a general idea of the methodology which, we believe, can be applied 

to much more complex situations. 

The problem 

Consider the following situation in which there are two adversaries: the Defender and the Attacker. 

The Defender is moving in more troops to protect a valuable target, and the Attacker has to decide 

whether he will try and capture the valuable target or use is his troops somewhere else. 

To make the problem easier to understand and calculate, we have reduced the decision of the Defender 

and the Attacker to simple binary choices. The Defender decides whether or not to hide the 

movements of his reinforcements from the Attacker. The Attacker will decide, after observing the 

perceived strength of the defender, whether or not he will attack the target. If the Defender decides to 

hide his reinforcements, the Attacker will not know about them and will therefore decide whether or 

not to attack based on incomplete information. We solve this problem from the point of view of the 

Defender. Figure 5 shows the influence diagram from the Defender’s point of view.  

 

Figure 5. Influence diagram of the example case from the point of view of the Defender. 

We denote the options the Defender and the Attacker as 𝐷 = {0,1} and 𝐴 = {0,1} respectively. The 

only uncertainty in this case is the outcome of the battle S (say, success or failure for the Defender to 

keep hold of the target). The utility functions over the costs are 𝑢𝐷(𝑐𝐷 , 𝑐𝐴) and 𝑢𝐴(𝑐𝐷, 𝑐𝐴), with costs 

dependent on the actions of the Attacker. 
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In order to solve this problem, it is necessary to assess the probabilities over the costs, conditional on 

(𝑎, ⅆ, 𝑆); and about S, conditional on (𝑎, ⅆ). In this case, the Attacker and the Defender have different 

assessments: for example, for success, these are 𝑝𝐷(𝑆 = 1|𝑎, ⅆ) and 𝑝𝐴(𝑆 = 1|𝑎, ⅆ), respectively. It 

is likely that the Attacker’s assessment of the success of the assault differs from that of the Defender, 

because the Attacker is not aware of any choices being made by the Defender (see Figure 6). The 

expected utility for the Attacker, resulting from (𝑎, ⅆ) is 

𝜓𝐴(𝑎, ⅆ) = 𝑝𝐴(𝑆 = 0|𝑎, ⅆ)∑∑[𝑢𝐴(𝑐𝐴, 𝑐𝐷)𝜋𝐴(𝑐𝐴, 𝑐𝐷|𝑎, ⅆ, 𝑆 = 0)]

𝑐𝐷𝑐𝐴

+ 𝑝𝐴(𝑆 = 1|𝑎, ⅆ)∑∑[𝑢𝐴(𝑐𝐴, 𝑐𝐷)𝜋𝐴(𝑐𝐴, 𝑐𝐷|𝑎, ⅆ, 𝑆 = 1)]

𝑐𝐷𝑐𝐴

. 
(3) 

The Defender’s expected utility is similar. 

 

Figure 6. Influence diagram of the example case from the point of view of the Attacker. 

We now solve the game from the Defender’s point of view. The Defender has 15 men defending the 

target and has 15 more men coming in as reinforcements. He has the option of hiding the presence of 

the reinforcements from the Attacker. The Defender estimates that the Attacker has at least 20 men 

but no more than 35, and he thinks that the most likely number is 30, so he fits a triangular distribution 

as seen in Figure 7.  

 

Figure 7: Defender's estimation of Attacker's strength as a probability mass distribution. 

Using the strength estimates of both forces, the Defender can use, for example, a stochastic combat 

model to calculate 𝑝𝐷 and 𝜋𝐷. Specifically, the Defender assesses that the utility gained from the 

situation follows the function 

𝑢𝐷(𝑆, 𝑎, 𝑐𝐴, 𝑐𝐷) = 35𝑆 + 5𝑎 + 0.1𝑐𝐴 − 𝑐𝐷 , 
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where 𝑆 = 1 corresponds to the situation where the Defender manages to hold the target area, 𝑎 = 1 

corresponds to the situation where the Attacker decides to attack, instead of using the troops 

elsewhere, and 𝑐𝐴 and 𝑐𝐷 are the Attacker’s and the Defender’s losses respectively. 

It is not enough to solve the problem for the Defender to know 𝑝𝐷, 𝜋𝐷 and 𝑢𝐷. To calculate the 

expected utility from decision d, he first needs to estimate 𝑝𝐷(𝑎|ⅆ). Towards this end, the Defender 

needs to solve the problem from the viewpoint of the Attacker. He assumes that the Attacker is also 

an expected utility maximizer. The problem is presented from the Attacker’s point of view in Figure 

6. 

The Defender estimates that the Attacker thinks the Defender has 13 to 17 men (with all values 

equally probable), and will not find out about the reinforcements if the Defender decides to hide their 

movement. If the Defender decides not to hide the reinforcements, he estimates the Attacker will 

think the Defender has 28 to 32 men (again, all values in this range equally probable). Using those 

strengths for his estimates he can use the same stochastic combat model used to solve 𝑝𝐷 and 𝜋𝐷 to 

calculate 𝑝𝐴 and 𝜋𝐴. 

The Defender estimates that the Attacker’s utility function is similar to his own. However, the 

Defender does not know for sure how valuable the target is to the Attacker and what is the loss of 

opportunity that the Attacker suffers from not being able to use the troops elsewhere. He models this 

uncertainty by adjusting the weights of successful attack 𝑆 and the decision to commit troops to the 

effort 𝑎. Thus, he estimates that the Attacker’s utility function is 

𝑢𝐴(𝑆, 𝑎, 𝑐𝐴, 𝑐𝐷) = −(35 + 𝑈1)𝑆 − (5 + 𝑈2)𝑎 + 0.1𝑐𝐷 − 𝑐𝐴, 
 

(5) 

where 𝑈1 and 𝑈2 are assumed uniform on [−5, 5] to make calculations simpler. 

Let us look at solving the problem step by step. To solve the problem, the Defender will:  

1. Calculate the success probabilities and expected losses for both sides for all the possible 

combinations of strengths of both sides as perceived by the attacker. 

2. Calculate the Attacker’s expected utilities 𝜓𝐴 for attacking and not attacking for all possible 

strengths of the Attacker’s force taking into account the uncertainties with 𝑢𝐴. 

3. Compare the expected utilities to get an estimate for the probability of an attack for each 

possible strength of the Attacker as seen in Figure 8. 

4. Consider the probability of an attack with a specific strength of the attacker (Figure 8) and the 

probability for each of those strengths (Figure 7) to calculate 𝑝𝐷(𝑎|ⅆ). 

5. Calculate 𝜓𝐷 for all possible values of a. 

6. Use 𝑝𝐷(𝑎|ⅆ) to determine the decision d which maxizes his expected utility. 

 



 

Figure 8: Probability of an attack as a function of the Attacker's strength, when the Defender has not 

hidden his reinforcements. 

We used the approximative method in Roponen (2013) to simulate a duel between two forces in order 

to calculate 𝑝𝐷, 𝜋𝐷, 𝑝𝐴 and 𝜋𝐴, because this program code for this method was available and provided 

the results quickly and with sufficient accuracy. This program code examined all the possible 

strengths of both sides, calculated the expected utilities and determined the attack probabilities 

𝑝𝐷(𝑎|ⅆ). The attack probability when the Defender hides the reinforcements 𝑝𝐷(𝑎|ⅆ = 1) = 1, and 

when he hides the reinforcements 𝑝𝐷(𝑎|ⅆ = 0) ≈ 0.33. Then the expected utilities of the Defender 

were calculated from 𝑝𝐷 and 𝜋𝐷 as 

𝜓𝐷(𝑎, ⅆ = 1) ≈ 13.44, and 𝜓𝐷(𝑎, ⅆ = 0) ≈ 27.88.    (6) 

Thus the Defender decides that hiding the reinforcements is not in his best interests.  

The result may seem counterintuitive; yet it does make sense when one realizes that (i) the safety of 

the target is of greater value to the Defender more than the losses sustained by the Attacker and (ii) 

the Defender does not necessarily outnumber the Attacker even with the reinforcements at hand. 

Discussion 

Adversarial risk analysis (ARA) is still a relatively new research area which is becoming more 

prominent in the context of counter-terrorism and corporate competition. As we have argued in this 

paper, ARA has much to offer for military combat modeling, not least because ARA is able to 

combine the statistical approach of risk analysis–which is already widely employed in combat 

modeling–with a game-theoretical perspective that helps predict the actions of one’s opponents. 

In particular, we have outlined possible uses for the ARA approach in the context of military combat 

modeling, operations analysis, and decision making in general. The ideas in this paper are still 

tentative and call for more research and development before they can be fully implemented. Real 

problems are extremely complex and solving them using the ARA methodology can be challenging. 

Actual battles involve thousands of decisions, and there are major uncertainties about the goals and 

resources. Yet, by selecting those decision contexts in which ARA is particularly appropriate will 

make it possible to benefit from the major opportunities that ARA has to offer. 

We also presented a relatively simple example in which ARA was combined with stochastic combat 

modeling. In this example, most calculations for solving the ARA part of the model were relatively 

straightforward and could be readily implemented into program code (there are numerous tools for 

calculating the outcomes of battles; see, Kangas, 2005). This suggests that it is possible to develop 
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software tools for problems that are more complex than in our example by building well-founded 

models of how the opponent’s utilities affect his decision making. Indeed, there is much potential in 

using the ARA approach to tackle realistic problems in the context of stochastic combat modelling. 

This, we believe, would help push the boundaries of ARA research in this important application area.  
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