

Aalto University
School of Science

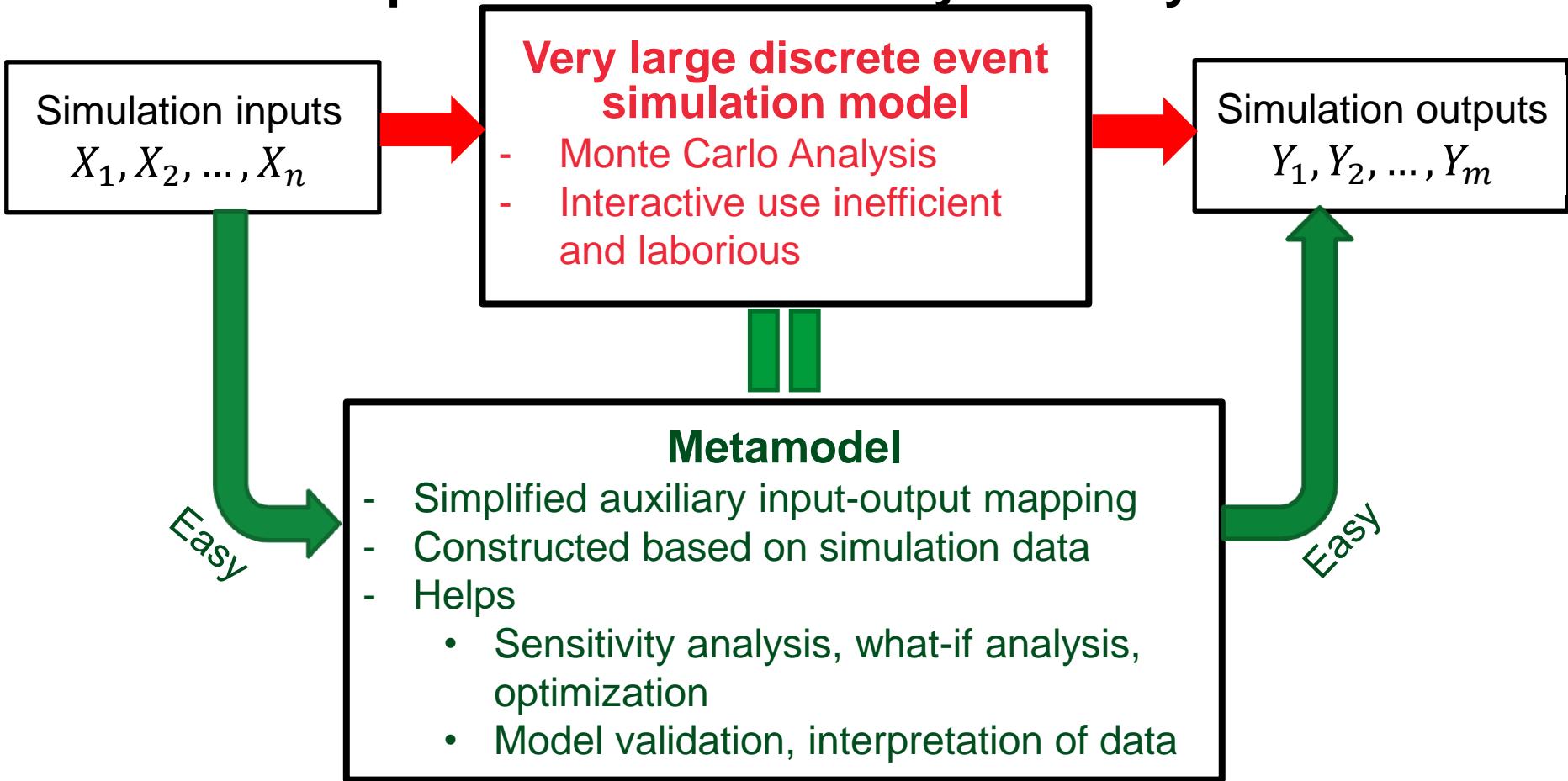
Simulation Metamodeling with Bayesian Networks

Jouni Pousi, Jirka Poropudas, Mikko Harju and Kai Virtanen

Aalto University
School of Science
Systems Analysis Laboratory
sal.aalto.fi
mikko.harju@aalto.fi

Simulation metamodeling

Complex and stochastic dynamic system



Increasing the complexity of models increases the need for metamodeling

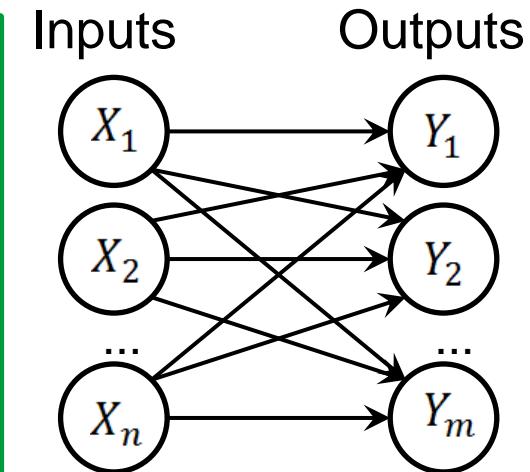
- Several existing approaches
 - Regression models, kriging models, splines, games, neural networks...
 - Mappings from inputs to **the expected values** of outputs
 - LOSS OF INFORMATION!

New features allowed by Bayesian networks

Joint probability distribution of all inputs and outputs

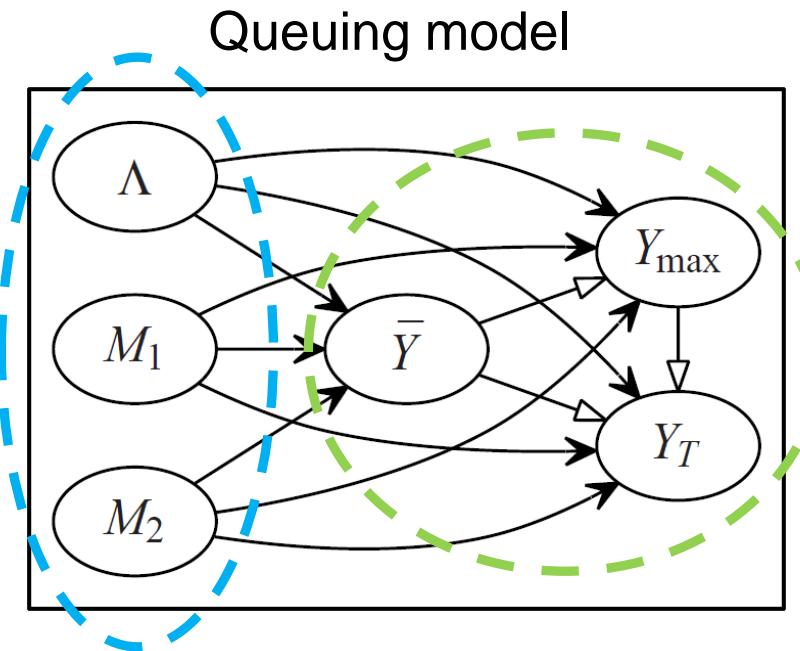
"Mappings between input and output distributions"

- Probabilistic dependencies between variables, in particular between outputs
- Efficient calculation of conditional probability distributions → Versatile what-if analyses



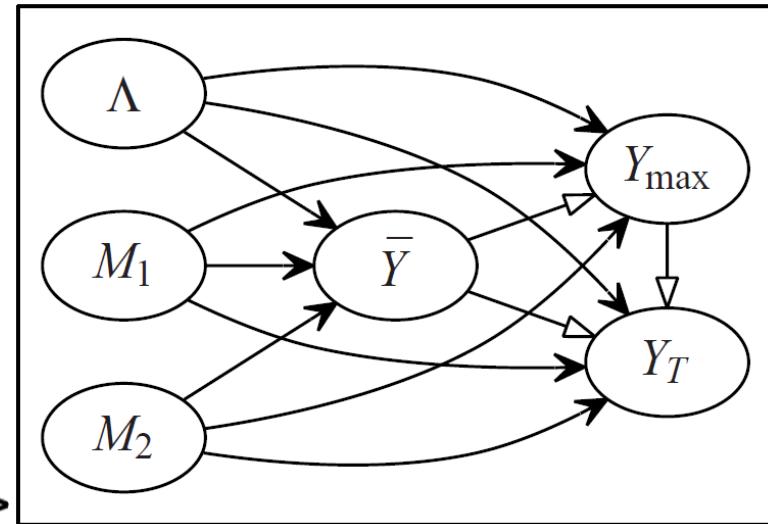
Bayesian networks (BNs) as simulation metamodels

- Joint probability distribution of random variables
- Simulation **inputs** and **outputs**
 - Nodes
 - Discrete random variables
- Dependencies
 - Arcs
 - Conditional probabilities
- Available algorithms
 - Calculation of conditional probability distributions
 - Construction of BNs (sparse networks more efficient)



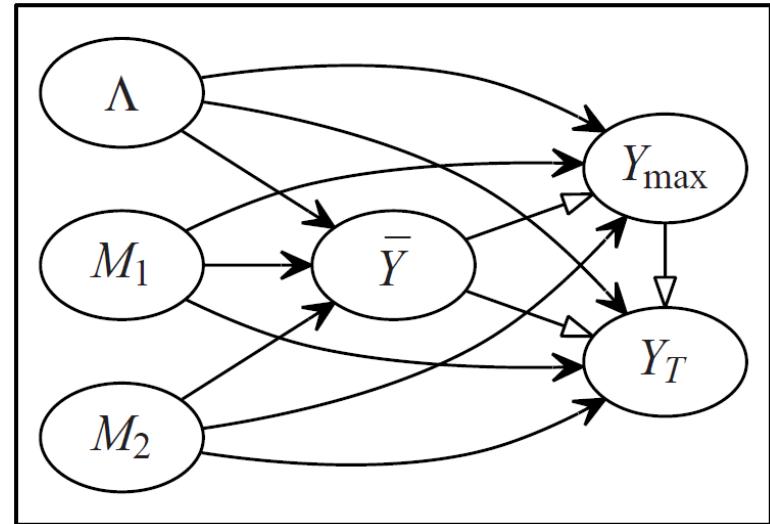
Construction of BN Metamodels

- 1) Selection of variables
 - Simulation inputs and outputs
- 2) Collection of simulation data
 - All feasible input combinations simulated
- 3) Determination of network structure
 - Initial structure: \longrightarrow
 - Dependencies found in data: \longrightarrow
- 4) Estimation of probabilities
 - Conditional probability distributions for outputs
 - Input uncertainty
- +) Validation



Utilization of BN Metamodels

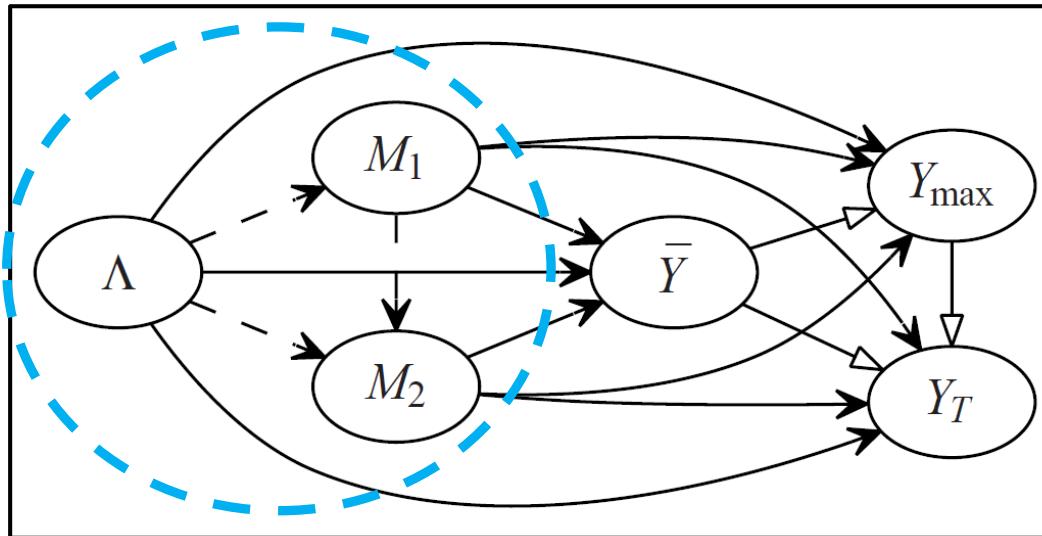
- What-if analysis
 - Values of some variables fixed → Conditional probability distributions for other variables updated
- Applications of what-if analyses
 - Dependence between inputs and outputs
 - Effect of input uncertainty on outputs
 - Dependence between outputs
 - Inverse reasoning



Example: Queuing model

Single queue with Poisson arrivals and two servers with exponential service times

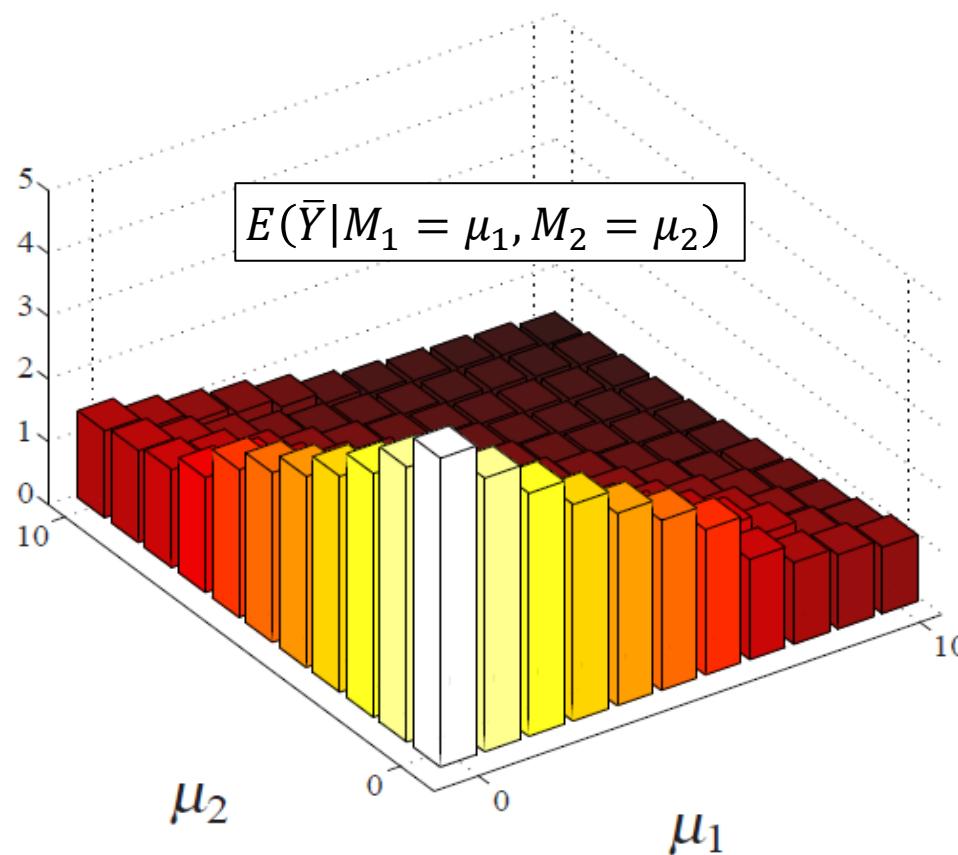
DEPENDENCE
BETWEEN
INPUTS



- Simulation inputs: Λ, M_1, M_2 (Arrival intensity; Service intensities)
- Simulation outputs: \bar{Y}, Y_{max}, Y_T (Average and maximum number of customers; Number of customers at the end of simulation)

Dependence between Inputs and Outputs

- Studied by calculating conditional probability distributions of outputs for fixed values of inputs

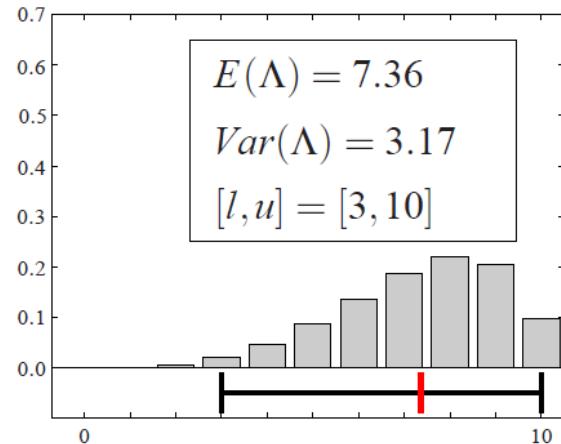


Only the conditional expected value is presented

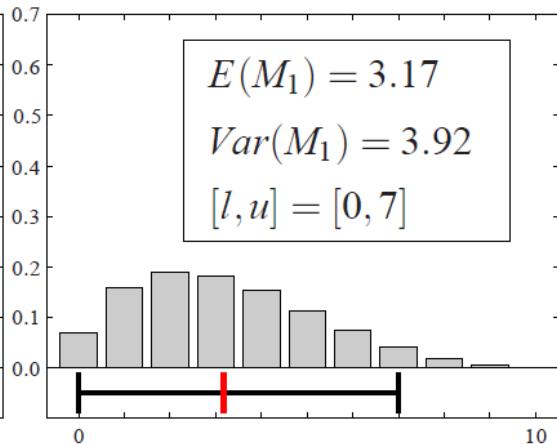
Effect of Input Uncertainty...

- Inputs considered as dependent random variables
 - "Prior uncertainty" assessed by subject matter expert

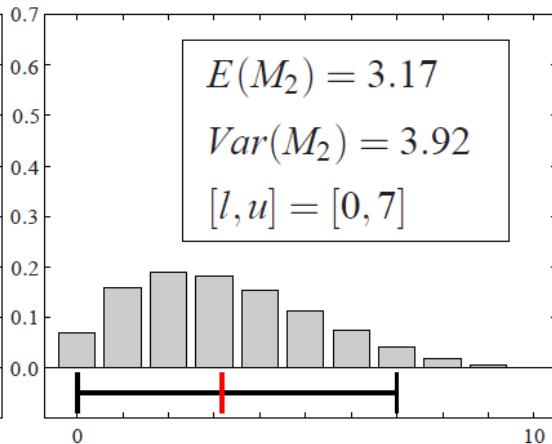
MARGINAL DISTRIBUTIONS



(a) $P(\Lambda = \lambda)$.

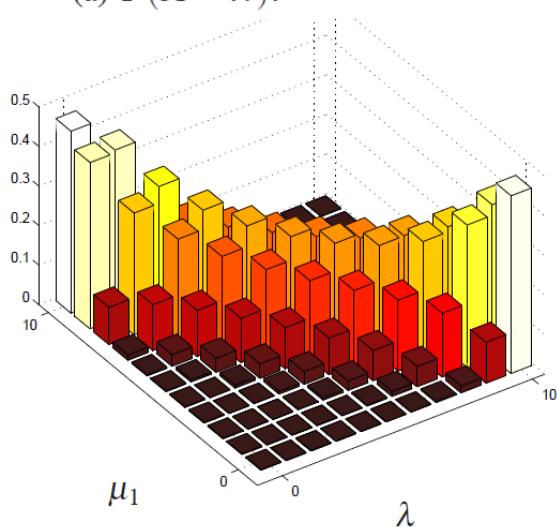


(b) $P(M_1 = \mu_1)$.

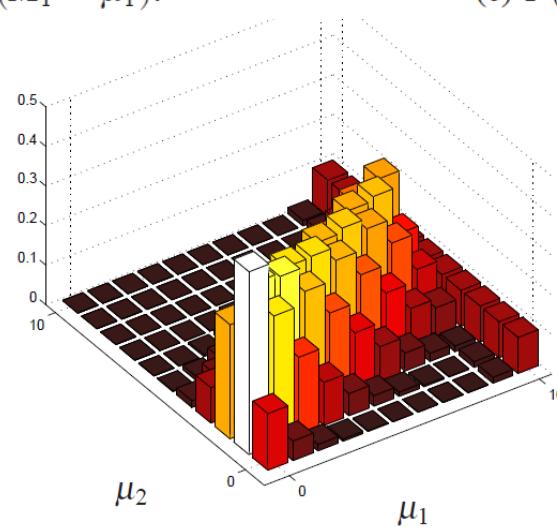


(c) $P(M_2 = \mu_2)$.

CONDITIONAL DISTRIBUTIONS

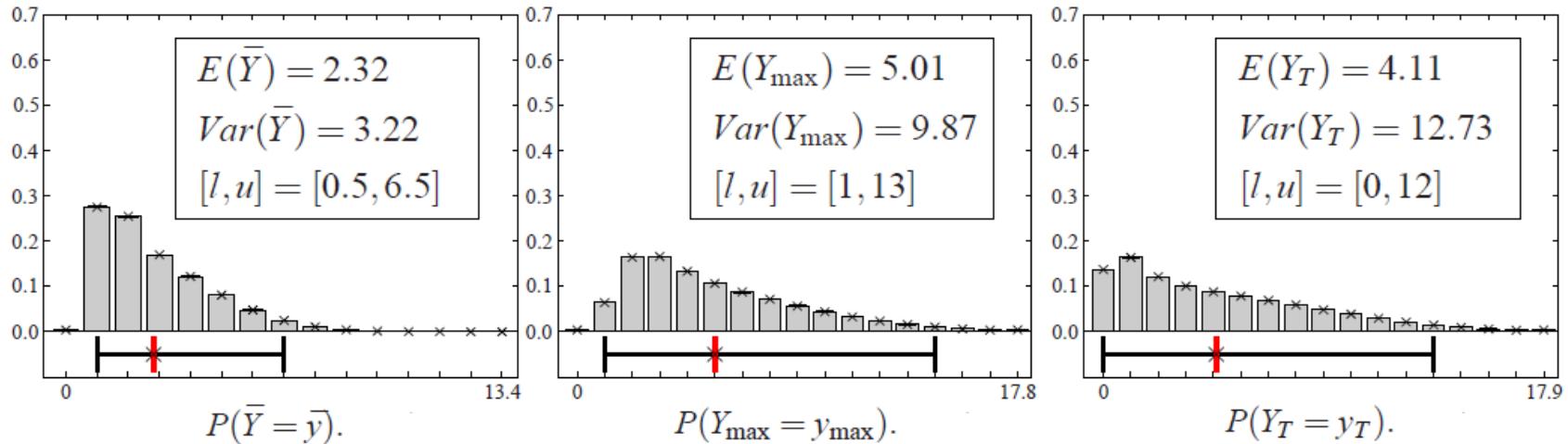


(a) $P(M_1 = \mu_1 | \Lambda = \lambda)$.



(b) $P(M_2 = \mu_2 | \Lambda = 8, M_1 = \mu_1)$.

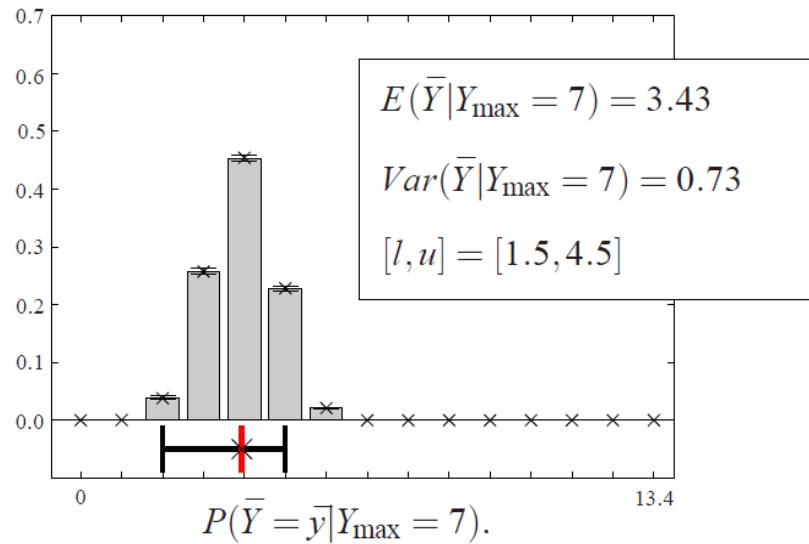
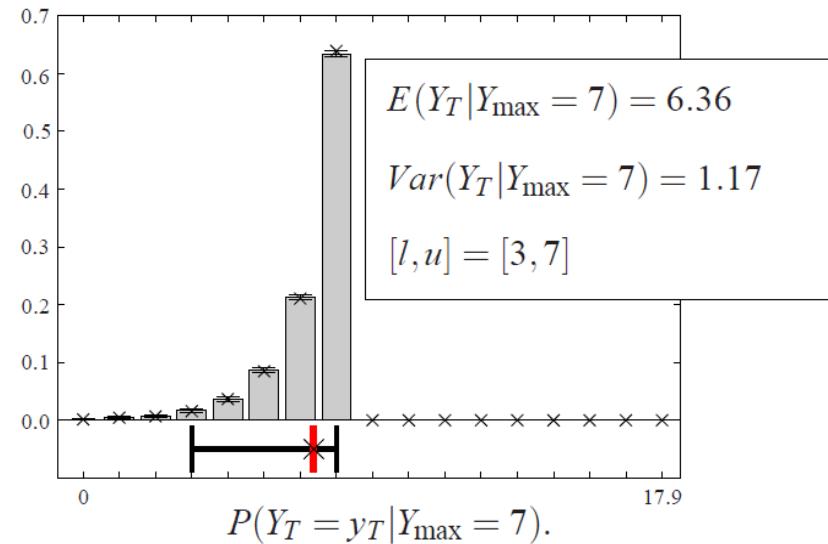
... on Distributions of Outputs



- Probability distributions include the effect of input uncertainty
- Enables calculation of descriptive statistics such as expected values, variances, and quantiles

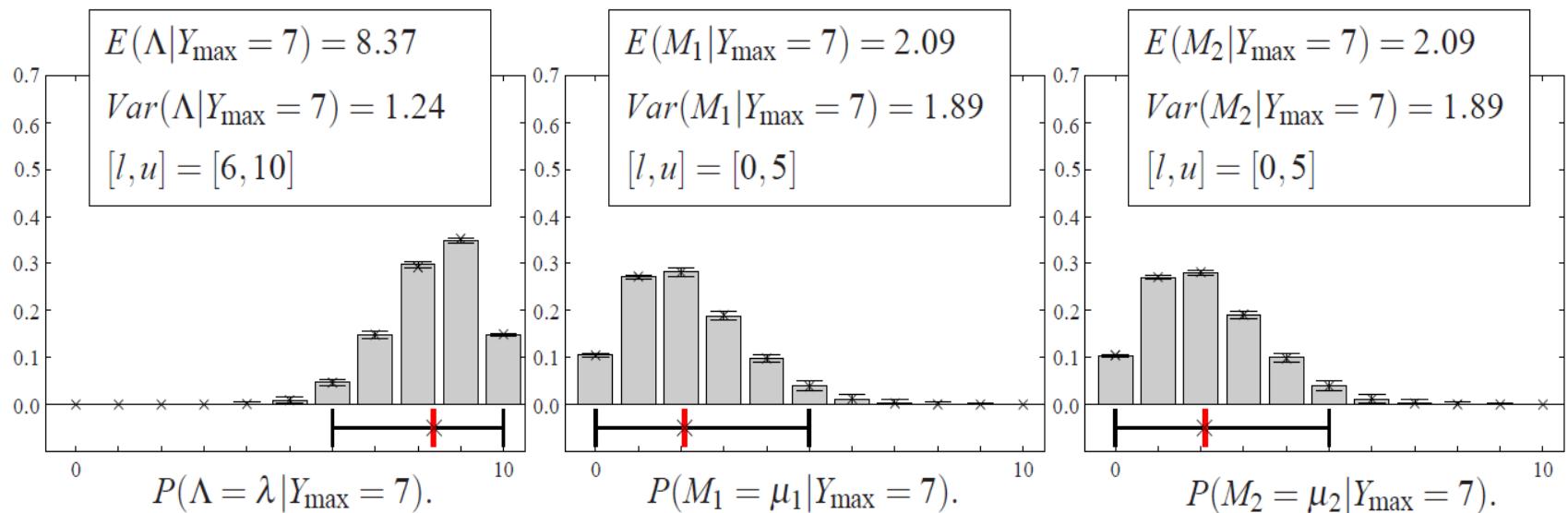
Dependence between Outputs

- Studied by calculating conditional probability distributions for fixed values of outputs (for example: $Y_{max} = 7$)



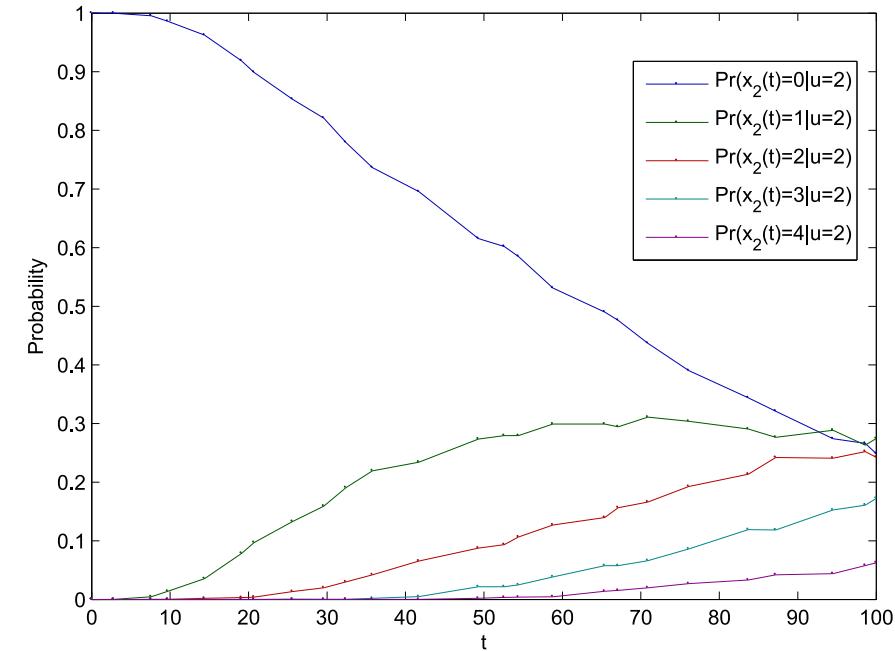
Inverse reasoning

- Probability distributions of inputs updated conditional on fixed values of outputs (for example: $Y_{max} = 7$)
 - "Posterior uncertainty" (cf. "prior uncertainty" related to inputs)



Dynamic Bayesian networks (DBNs) as simulation metamodels

- Time-dependent state variables of the simulation model
- Key time instants treated precisely - approximations used for other time instants
- Allows for a broader range of analyses
 - Time evolution of probability distributions
- Construction and utilization more demanding
 - DBN metamodeling tool

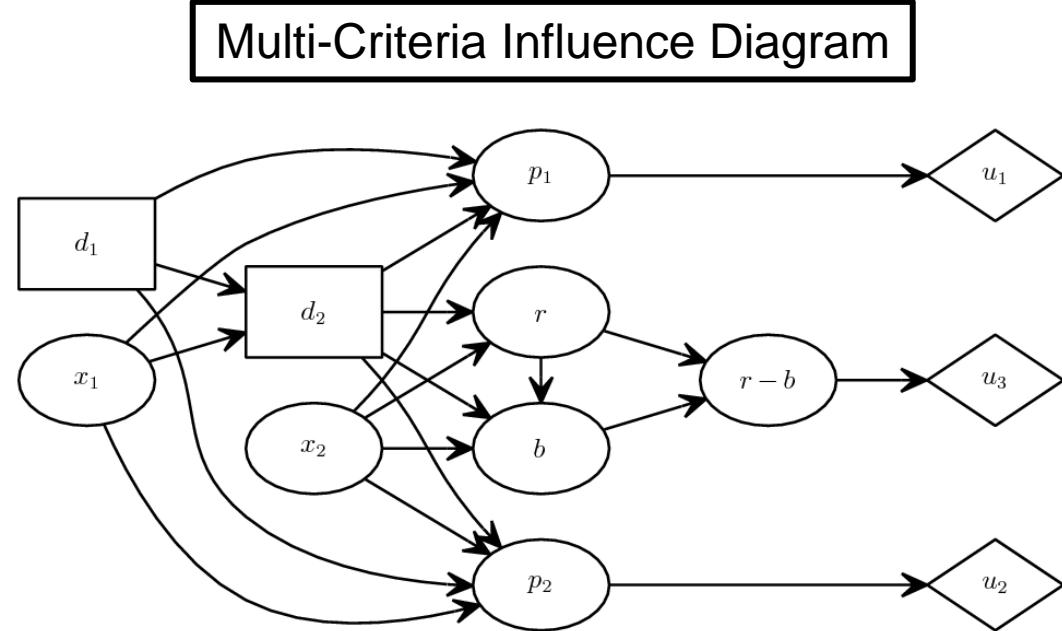


Conclusion

- Simulation metamodeling benefits from BNs
 - Complete representation of probability distributions
 - No loss of information
 - cf. existing metamodels representing only expected values
 - New analysis capabilities
 - For example, input uncertainty and inverse reasoning
 - Available software with readily implemented algorithms
- Limitations
 - Construction necessitates large simulation data sets
 - Continuous variables have to be discretized

Future research

- BN metamodeling
 - Continuous variables
 - Discretization
 - Interpolation
 - Sequential sampling
- Multi-criteria influence diagrams
 - Tool for decision support



References

Friedman, L. W. 1996. *The simulation metamodel*. Norwell, MA: Kluwer Academic Publishers.

Harju, M. 2013. *Automated Construction of Dynamic Bayesian Networks in Simulation Metamodeling*, Doctoral dissertation, Aalto University School of Science.

Henderson, S. G. 2003. Input model uncertainty: why do we care and what should we do about it?, *Winter Simulation Conference 2003*.

Kleijnen, J. P. C. 2008. *Design and analysis of simulation experiments*. New York, NY: Springer-Verlag.

Jensen, F. V., and T. D. Nielsen. 2007. *Bayesian networks and decision graphs*. New York, NY: Springer-Verlag.

Neapolitan, R. E. 2004. *Learning Bayesian Networks*. Upper Saddle River, NJ: Prentice Hall.

Poropudas, J., and K. Virtanen. 2007. Analyzing air combat simulation results with dynamic Bayesian networks, *Winter Simulation Conference 2007*.

Poropudas, J., and K. Virtanen. 2009. Influence diagrams in analysis of discrete event simulation data, *Winter Simulation Conference 2009*.

Poropudas, J., and K. Virtanen. 2011. Simulation metamodeling with dynamic Bayesian networks, *European Journal of Operational Research*.

Poropudas, J. 2011. *Bayesian networks, Influence Diagrams, and Games in Simulation Metamodeling*, Doctoral dissertation, Aalto University School of Science.

Pousi, J., Poropudas, J., Harju, M., and K. Virtanen. 2013. Simulation metamodeling with Bayesian networks, *Journal of Simulation*, to appear.