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Simulation metamodeling
Complex and stochastic dynamic system

Simulation inputs
X1, X5, 0, Xy

Very large discrete event
simulation model

Monte Carlo Analysis
Interactive use inefficient
and laborious

Simulation outputs
Yi,Y5, ..., Y,

Simplified auxiliary input-output mapping
Constructed based on simulation data

Helps

« Sensitivity analysis, what-if analysis,

Metamodel

optimization

* Model validation, interpretation of data
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Increasing the complexity of models
Increases the need for metamodeling

« Several existing approaches
— Regression models, kriging models, splines, games, neural networks...

— Mappings from inputs to the expected values of outputs
— LOSS OF INFORMATION!

_ Inputs Outputs
New features allowed by Bayesian networks

Joint probability distribution of all inputs and outputs
_)

"Mappings between input and output distributions”

— Probabilistic dependencies between variables, in
particular between outputs

— Efficient calculation of conditional probability
distributions — Versatile what-if analyses
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Bayesian networks (BNS)
as simulation metamodels

Queuing model

 Joint probability distribution of

random variables II/
« Simulation inputs and outputs |
— Nodes |
— Discrete random variables \
 Dependencies \
— Arcs

— Conditional probabilities

« Available algorithms
— Calculation of conditional probability distributions
— Construction of BNs (sparse networks more efficient)
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Construction of BN Metamodels

1) Selection of variables
—  Simulation inputs and outputs
2) Collection of simulation data

— All feasible input combinations
simulated

3) Determination of network structure
— Initial structure; —>»
— Dependencies found in data: —>
4) Estimation of probabilities
—  Conditional probability distributions for outputs
—  Input uncertainty

+) Validation

9 Aalto Univer§ity lystems
4 School of Science Analysis Laboratory




Utilization of BN Metamodels

« What-if analysis

Values of some variables fixed —
Conditional probability distributions
for other variables updated

« Applications of what-if analyses

— Dependence between
Inputs and outputs

— Effect of input uncertainty
on outputs

— Dependence between outputs
— Inverse reasoning
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Example: Queuing model

Single queue with Poisson arrivals and
two servers with exponential service times

DEPENDENCE ‘l
BETWEEN |
INPUTS \

« Simulation inputs: A, My, M, (Arrival intensity; Service intensities)

 Simulation outputs: Y, Y, .., Y+ (Average and maximum number of
customers; Number of customers at the end of simulation)
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Dependence between
Inputs and Outputs

« Studied by calculating conditional probability
distributions of outputs for fixed values of inputs

oo [EXIMi=p My =p) |

Only the conditional expected value is presented
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CONDITIONAL
DISTRIBUTIONS
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Effect of Input Uncertainty...

 Inputs considered as dependent random variables

— "Prior uncertainty” assessed by subject matter expert
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... on Distributions of Outputs
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* Probabillity distributions include the effect of input
uncertainty

« Enables calculation of descriptive statistics such as
expected values, variances, and quantiles
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Dependence between Outputs

« Studied by calculating conditional probability
distributions for fixed values of outputs (for example:

Yimax = 7)
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Inverse reasoning

* Probability distributions of inputs updated conditional on
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fixed values of outputs (for example: Y,,,,, = 7)

— "Posterior uncertainty” (cf. "prior uncertainty” related to inputs)
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Dynamic Bayesian networks (DBNSs)
as simulation metamodels

« Time-dependent state variables of the simulation model

« Key time instants treated precisely - approximations
used for other time instants

« Allows for a broader range |
of analyses

— Time evolution of >
probability distributions

« Construction and utilization * ..
more demanding
— DBN metamodeling tool
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Conclusion

« Simulation metamodeling benefits from BNs

— Complete representation of probability distributions

* No loss of information
— cf. existing metamodels representing only expected values

— New analysis capabilities
« For example, input uncertainty and inverse reasoning

— Available software with readily implemented algorithms
« Limitations

— Construction necessitates large simulation data sets

— Continuous variables have to be discretized
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Future research

BN metamodeling
— Continuous variables

* Discretization
P
* Interpolation <>

dy

Multi-Criteria Influence Diagram

— Sequential sampling - |
* Multi-criteria b s
Influence diagrams b

— Tool for decision
support . ><f>
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