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Simulation outputs 

 

Very large discrete event 
simulation model 

- Monte Carlo Analysis 

- Interactive use inefficient 

and laborous 

Simulation metamodeling 

Simulation inputs 

 

Metamodel 
- Constucted based on simulation data 

- Simplified auxilary input-output mappping 

- Helps 

• Sensitivity analysis, what-if analysis, 

optimization 

• Model validation, interpretation of data 

Complex and stochastic dynamic system 



Increasing complexity of models increases 
the need for metamodeling 

• Several existing approaches 

– Regression models, kriging models, splines, games, neural networks 

=> Mappings from inputs to the expected values of outputs  

=> LOSS OF INFORMATION! 

 

New features allowed by Bayesian networks  

 Joint probability distribution of inputs and outputs 

=> 

”Mappings between input and output distributions” 

– Probabilistic dependencies between variables 

– Efficient calculation of conditional probability 

distributions => Versatile what-if analyses 

– Random inputs reflect input uncertainty 

 

 

... ... 

Inputs Outputs 



Bayesian networks (BNs) as simulation 
metamodels 

• Joint probability distribution of 

random variables 

• Simulation inputs and outputs 

– Nodes 

– Discrete random variables 

• Dependencies 

– Arcs 

– Conditional probabilities 

• Available algorithms  

– Construction of BNs 

– Calculation of conditional probability distributions 

Queuing model 



Construction of BN Metamodels 

1) Selection of variables 

– Simulation inputs and outputs 

2) Collecting simulation data 

– All input combinations are simulated 

3) Determination of network structure 

– Initial structure: 

– Dependencies found in data:  

4) Estimation of probabilities 

– Conditional probability distributions for outputs 

– Input uncertainty 

5) Validation 

– Comparison with independent simulation data 



Utilization of BN Metamodels 

• What-if analysis 

Values of some variables fixed =>  

Conditional probability distributions for 

other variables updated 

• Applications of what-if analyses 

– Effect of input uncertainty on outputs 

– Dependence between inputs and 

outputs 

– Dependence between outputs 

– Inverse reasoning 



Example: Queuing model 

DEPENDENCE 

BETWEEN 

INPUTS 

• Simulation inputs:                 (Arrival intensity; Service intensities) 

• Simulation outputs:                   (Average and maximum number of customers; 

Number of customers in the end of simulation) 

Single queue with Poisson arrivals and 
two servers with exponential service times 



Effect of Input Uncertainty... 

• Inputs considered as dependent random variables 

– ”Prior uncertainty” assessed by subject matter expert 
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... on Distributions of Outputs 

• Probability distributions include the effect of input 

uncertainty 

• Enables calculation of descriptive statistics such as 

expected values, variances, and quantiles 



Dependence between 
Inputs and Outputs 

• Studied by calculating conditional probability distributions of 

outputs for fixed values of inputs 

Only the conditional expected value is presented 

 



Dependence between Outputs 

• Studied by calculating conditional probability distributions for 

fixed values of outputs (for example:                )  



Inverse reasoning 

• Probability distributions of inputs updated conditional on 

fixed values of outputs (for example:                )  

– ”Posterior uncertainty” (cf. ”prior uncertainty” related to inputs)  



Conclusion 

• Simulation metamodeling benefits from BNs 

– Complete representation of probability distributions 

• No loss of information 

– cf. existing metamodels representing only expected values 

– New analysis capabilities 

• For example, input uncertainty and inverse reasoning 

– Available software with readily implemented algorithms 

• Limitations 

– Construction necissitates large simulation data sets 

– Continuous variables have to be discretized 



Future research 

• BN metamodeling 

– Continuous variables 

• Discretization 

• Interpolation 

– Error bounds 

• Bootstrapping 

• Multi-criteria influence 

diagrams 

– Tool for decision support 

Multi-Criteria Influence Diagram 
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