

Simulation Metamodeling using Bayesian Networks

Jirka Poropudas, Jouni Pousi, and Kai Virtanen

Aalto University School of Science Systems Analysis Laboratory sal.aalto.fi kai.virtanen@aalto.fi

Simulation metamodeling

Complex and stochastic dynamic system

Increasing complexity of models increases the need for metamodeling

- Several existing approaches
 - Regression models, kriging models, splines, games, neural networks
 - => Mappings from inputs to **the expected values** of outputs
 - => LOSS OF INFORMATION!

New features allowed by Bayesian networks

Joint probability distribution of inputs and outputs

"Mappings between input and output distributions"

- Probabilistic dependencies between variables
- Efficient calculation of conditional probability distributions => Versatile what-if analyses
- Random inputs reflect input uncertainty

Bayesian networks (BNs) as simulation metamodels

- Joint probability distribution of random variables
- Simulation inputs and outputs
 - Nodes
 - Discrete random variables
- Dependencies
 - Arcs
 - Conditional probabilities
- Available algorithms
 - Construction of BNs
 - Calculation of conditional probability distributions

Construction of BN Metamodels

- 1) Selection of variables
 - Simulation inputs and outputs
- 2) Collecting simulation data
 - All input combinations are simulated
- 3) Determination of network structure
 - Initial structure: —>>
 - Dependencies found in data: ——
- 4) Estimation of probabilities
 - Conditional probability distributions for outputs
 - Input uncertainty

Aalto University School of Science

- 5) Validation
 - Comparison with independent simulation data

Utilization of BN Metamodels

What-if analysis

Values of some variables fixed => Conditional probability distributions for other variables updated

- Applications of what-if analyses
 - Effect of input uncertainty on outputs
 - Dependence between inputs and outputs
 - Dependence between outputs
 - Inverse reasoning

Example: Queuing model

Single queue with Poisson arrivals and two servers with exponential service times

- Simulation inputs: Λ , M_1 , M_2 (Arrival intensity; Service intensities)
- Simulation outputs: \overline{Y} , Y_{max} , Y_T (Average and maximum number of customers; Number of customers in the end of simulation)

Effect of Input Uncertainty...

- Inputs considered as dependent random variables
 - "Prior uncertainty" assessed by subject matter expert

... on Distributions of Outputs

- Probability distributions include the effect of input uncertainty
- Enables calculation of descriptive statistics such as expected values, variances, and quantiles

Dependence between Inputs and Outputs

 Studied by calculating conditional probability distributions of outputs for fixed values of inputs

Only the conditional expected value is presented

Dependence between Outputs

• Studied by calculating conditional probability distributions for fixed values of outputs (for example: $Y_{max} = 7$)

Inverse reasoning

- Probability distributions of inputs updated conditional on fixed values of outputs (for example: $Y_{max} = 7$)
 - "Posterior uncertainty" (cf. "prior uncertainty" related to inputs)

stems

Analysis Laboratory

Conclusion

- Simulation metamodeling benefits from BNs
 - Complete representation of probability distributions
 - No loss of information
 - cf. existing metamodels representing only expected values
 - New analysis capabilities
 - · For example, input uncertainty and inverse reasoning
 - Available software with readily implemented algorithms
- Limitations
 - Construction necissitates large simulation data sets
 - Continuous variables have to be discretized

Future research

- BN metamodeling
 - Continuous variables
 - Discretization
 - Interpolation
 - Error bounds
 - Bootstrapping
- Multi-criteria influence diagrams
 - Tool for decision support

Multi-Criteria Influence Diagram

References

- Friedman, L. W. 1996. The simulation metamodel. Norwell, MA: Kluwer Academic Publishers.
- Henderson, S. G. 2003. Input model uncertainty: why do we care and what should we do about it?, *Winter Simulation Conference 2003*.
- Kleijnen, J. P. C. 2008. Design and analysis of simulation experiments. New York, NY: Springer-Verlag.
- Jensen, F. V., and T. D. Nielsen. 2007. *Bayesian networks and decision graphs*. New York, NY: Springer-Verlag.
- Neapolitan, R. E. 2004. Learning Bayesian Networks. Upper Saddle River, NJ: Prentice Hall.
- Poropudas, J., and K. Virtanen. 2007. Analyzing air combat simulation results with dynamic Bayesian networks, *Winter Simulation Conference 2007*.
- Poropudas, J., and K. Virtanen. 2009. Influence diagrams in analysis of discrete event simulation data, *Winter Simulation Conference 2009*.
- Poropudas, J., and K. Virtanen. 2010. Simulation metamodeling in continuous time using dynamic Bayesian networks, *Winter Simulation Conference 2010*.
- Poropudas, J., and K. Virtanen. 2011. Simulation metamodeling with dynamic Bayesian networks, *European Journal of Operational Research*.
- Poropudas, J., Pousi, J., and K. Virtanen. 2011. Multiple input and multiple output simulation metamodeling using Bayesian networks, *Winter Simulation Conference 2011*.
- Poropudas, J. 2011. *Bayesian networks, Influence Diagrams, and Games in Simulation Metamodeling,* Doctoral dissertation, Aalto University School of Science.

