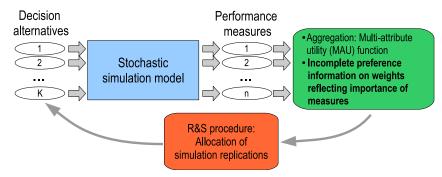



# Ranking and selection (R&S) with multiple performance measures using incomplete preference information

Ville Mattila and Kai Virtanen (ville.a.mattila@aalto.fi)

Systems Analysis Laboratory Aalto University School of Science

# **R&S procedures in simulation-optimization**




 $\rightarrow\,$  Best decision alternative(s) efficiently and with a high level of confidence



R&S with multiple performance measures using incomplete preference information

# New procedure [Mattila and Virtanen, 2013]



- $\rightarrow$  Advantages over existing procedures:
  - Ease of giving preference information
  - Savings in simulation effort
  - Increased confidence in correct selection

# The R&S problem

$$\min_{k\in\{1,\ldots,K\}}\left(E\left(X_{k1}\right),\ldots,E\left(X_{kn}\right)\right)$$

- K decision alternatives, designs
- **X**<sub>*k*</sub> = (*X*<sub>*k*1</sub>,...,*X*<sub>*kn*</sub>), *n* performance measures of a stochastic simulation model for design *k*
- *E*(*X<sub>ki</sub>*) estimated from samples of *X<sub>ki</sub>* obtained through simulation replications of the model
- Computing budget, i.e., number of available simulation replications limited



# **Existing approaches**

- Optimal computing budget allocation (OCBA) [Chen et al., 2000]
  - Performance measures aggregated with MAU function
  - Maximizes probability of correctly selecting design with highest expected utility
  - Requires complete preference information
- Multi-objective OCBA (MOCBA) [Lee et al., 2004]
  - Dominance:

 $k \succ l$  if  $E(X_{ki}) \leq E(X_{li}) \quad \forall i = 1, ..., n$  and at least one inequality is strict

- Maximizes probability of correctly selecting non-dominated designs
- May be tedious, several designs may remain



## Incomplete preference information

• Additive MAU function:  $U(\mathbf{X}_k) = \sum_{i=1}^n w_i u_i(X_{ki})$ 

■ 
$$u_i, w_i \in [0, 1] \; \forall i = 1, ..., n, \sum w_i = 1$$

Incomplete preference information

- Linear constraints for the weights  $\mathbf{w} = (w_1, \dots, w_n)$
- → Feasible set of weights a bounded convex polyhedron with extreme points  $\{w_1, ..., w_H\}$
- Pairwise dominance:

 $k \succ_p I$  if  $E(U(\mathbf{X}_k)) \ge E(U(\mathbf{X}_l)) \quad \forall \mathbf{w} \in {\mathbf{w}_1, \dots, \mathbf{w}_H}$  and at least one inequality is strict

■ Similarity to dominance → MOCBA applied for maximizing probability of correctly selecting pairwise non-dominated designs



## New procedure: MOCBA-p

**0.** Determine  $u_i, i = 1, ..., n$  and  $\{w_1, ..., w_H\}$ 

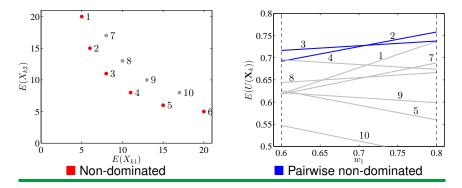
Perform initial replications to all designs

Estimate  $E(U(\mathbf{X}_k))$  and  $Var(U(\mathbf{X}_k))$  for all  $\mathbf{w} \in {\mathbf{w}_1, \dots, \mathbf{w}_H}$ 

1. Perform additional replications according to allocation rules

Dominated designs: proportional to uncertainty about dominance Dominating designs: proportional to allocations of such designs that the one in question dominates most likely

- **2.** Update estimates for  $E(U(\mathbf{X}_k))$  and  $Var(U(\mathbf{X}_k))$
- 3. If computing budget has not been consumed, return to step 1

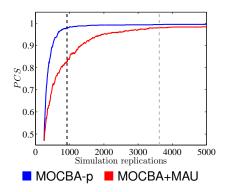

Else, select pairwise non-dominated designs based on estimates for  $E(U(\mathbf{X}_k))$ 



### **Example**

- X<sub>ki</sub> normally distributed
- Linear, decreasing u<sub>i</sub>

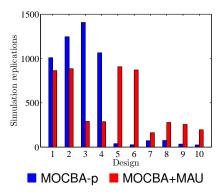
■  $w_1 \in [0.6, 0.8] \rightarrow w_1 = (0.6, 0.4), w_2 = (0.8, 0.2)$ 






R&S with multiple performance measures using incomplete preference information

# **Example: Probability of correct selection**

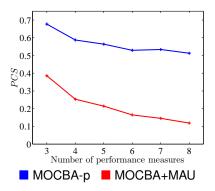

- МОСВА-р
- Reference procedure, MOCBA+MAU
  - 1. Non-dominated designs using MOCBA
  - 2. Pairwise non-dominated using same MAU function as MOCBA-p
- MOCBA-p reaches higher probability with given budget or requires smaller budget for given probability





# **Example: Allocated replications**

- MOCBA-p allocates more replications to pairwise non-dominated designs
- $\rightarrow$  Evaluated with greater accuracy
- → Compared with higher degree of confidence, e.g., to select most preferred one






R&S with multiple performance measures using incomplete preference information

# Increasing number of performance measures

- Setting
  - 100 randomly generated test problems with 50 designs
  - $w_1 \ge w_i, i > 1$
  - Average probability of correct selection over the test problems
- MOCBA-p reaches higher probabilities
- Difference between procedures slightly increases with number of measures



### Conclusions

New procedure for R&S with multiple performance measures

- Complete preference information not required (vs. MAU+OCBA)
- Smaller set of designs remain to be compared after the simulations (vs. MOCBA)
- Pairwise non-dominated designs selected correctly with higher probability or smaller computing budget (vs. MOCBA+MAU)
- Pairwise non-dominated designs evaluated with greater accuracy (vs. MOCBA+MAU)
- Similar procedure developed based on *absolute* dominance and OCBA
  - Returns a higher number of designs compared with MOCBA-p
  - Allows non-additive MAU functions



#### References

C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick . Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization. *Discrete Event Dynamic Systems: Theory and Aplications*, 10:251–270, 2000.



L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman. Optimal Computing Budget Allocation for Multi-objective Simulation Models.

Proc. 2004 Winter Sim. Conf., 586–594, 2004.

V. Mattila and K. Virtanen. Ranking and Selection with Multiple Performance Measures Using Incomplete Preference Information. *Manuscript*, 2013.

