

A Simulated Annealing Algorithm for Noisy Multi-Objective Optimization

Ville Mattila, Kai Virtanen, and Raimo P. Hämäläinen

Systems Analysis Laboratory Aalto University School of Science

Overview

- Noisy multi-objective optimization problem
 - Values of objective functions are uncertain
- Techniques for finding non-dominated solutions
 - Few take into account noise
 - Mostly evolutionary algorithms (EAs), e.g, [Goh&Tan, 2007]
- New simulated annealing (SA) algorithm
 - Features for handling noise and generating candidate solutions
 - Performance superior to existing EAs in numerical tests

Noisy multi-objective optimization problem

 $\min_{\mathbf{I} \leq \mathbf{x} \leq \mathbf{u}} [f_1(\mathbf{x}), \dots, f_H(\mathbf{x})]$

Values of objective functions $f_i(\mathbf{x})$ include uncertainty

- \rightarrow Optimization based on $f_i(\mathbf{x}) + \omega_i$ where $\omega_i \sim \mathcal{N}(\mathbf{0}, \sigma_i^2)$
 - **Decision variable** $\mathbf{x} \in \Re^n$
 - Constraints I and u

General steps of SA in multi-objective optimization

0. Define performance measure *E* for candidate solutions Select temperature *T*

Generate a current solution **x**

- Generate a candidate solution y from the neighborhood of x
- **2.** Set $\mathbf{x} = \mathbf{y}$ with probability min $\left[1, \exp\left(\frac{E(\mathbf{x}) E(\mathbf{y})}{T}\right)\right]$
- 3. Solutions with best values of E into the non-dominated set
- 4. Return to step 1 or stop iteration

Features of the new SA algorithm

- Performance of a solution, E
 - Based on *probabilistic dominance*
 - ightarrow Takes into account multiple objectives and noise
 - Used previously in evolutionary algorithms [Hughes, 2001], not in SA
- Generation of candidate solutions
 - Using information on current non-dominated solutions
 - $\rightarrow\,$ Increase likelihood of obtaining new non-dominated solutions
 - Previously in deterministic single-objective SA [Sun et al., 2008]

Probabilistic dominance

- Probability that **x** dominates **y**
- Product of probabilities that objective function values are smaller for x
 - *M* samples
 *f*_i(**x**) and s²_i(**x**) sample average and variance

$$P(\mathbf{x} \succ \mathbf{y}) = \prod_{i=1}^{H} \Phi\left(\frac{\overline{f}_i(\mathbf{x}) - \overline{f}_i(\mathbf{y})}{\sqrt{s_i^2(\mathbf{x})/M + s_i^2(\mathbf{y})/M}}\right)$$

 Φ cumulative distribution function of standard normal distribution

Performance of candidate solution $E(\mathbf{y})$

 Sum of probabilities that current non-dominated solutions dominate candidate solution y

$$E(\mathbf{y}) = \sum_{\mathbf{z} \in S} P(\mathbf{z} \succ \mathbf{y})$$

Generation of candidate solutions

- Use empirical data to sample new value of decision variable x
 - Recent values in non-dominated set $x^{(1)}, \ldots, x^{(m)} \in [a, b]$
 - Feasible neighborhood of current value [a, b]
- Concentrates to regions where likelihood of obtaining a new non-dominated solution is high

Numerical testing

Reference algorithm

- MOEA-RF, <u>Multi-Objective EA</u> with <u>Robust Features</u>
- Outperformed several existing EAs in [Goh&Tan, 2007]
- Test problems
 - ZDT1, ZDT4, ZDT6 [Zitzler et al., 2007], FON [Fonseca&Fleming, 1998], KUR [Kursawe, 1991]
 - Four noise levels
- Performance measures used
 - Generational distance
 - Spacing
 - Maximum spread
 - Hypervolume ratio

Non-dominated solutions for ZDT1

- Highest noise level
- SA algorithm produces solutions closer to actual non-dominated set

Generational distance for ZDT1

Distance of solutions to actual non-dominated set
 Values lower (better) for the SA algorithm

SA algorithm MOEA-RF, 30 runs with each noise level

A Simulated Annealing Algorithm for Noisy Multi-Objective Optimization Mattila, Virtanen, Hämäläinen 11/18

Spacing for ZDT1

Distance between obtained solutions

Values similar for the algorithms (lower is better)

SA algorithm MOEA-RF, 30 runs with each noise level

A Simulated Annealing Algorithm for Noisy Multi-Objective Optimization Mattila, Virtanen, Hämäläinen 12/18

Maximum spread for ZDT1

Range of objective function values for obtained solutions
 Values higher (better) for the SA algorithm

SA algorithm MOEA-RF, 30 runs with each noise level

A Simulated Annealing Algorithm for Noisy Multi-Objective Optimization Mattila, Virtanen, Hämäläinen 13/18

Hypervolume ratio for ZDT1

Volume dominated by obtained solutions

Values higher (better) for the SA algorithm

Summary of the numerical tests

Our SA algorithm superior accross test problems and noise levels

SA algorithm superior 📕 MOEA-RF superior

Conclusions

New SA algorithm for noisy multi-objective optimization

- Performance of solutions based on probabilistic dominance
- Generation of candidate solutions using non-dominated set
- Outperformed reference EA in numerical tests
- Computational requirements comparable to the EA
- Successful application: Maintenance scheduling of aircraft [Mattila et al., 2011]
- Further development
 - Dynamic sample size for evaluating candidate solutions

References

- C. M. Fonseca and P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms Part II: Application example. *IEEE Trans. Syst., Man, and Cybern. A, Syst. Humans*, 28(1):38–47, 2000.
- C. K. Goh and K. C. Tan. An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization. *IEEE Trans. Evol. Comp.*, 11(3):354–381, 2007.

E. Hughes. Evolutionary Multi-objective Ranking with Uncertainty and Noise. *Proc. 1st Int. Conf. Evol. Multi-Criterion Optim.*, 329–343, 2001.

F. Kursawe. A variant of evolution strategies for vector optimization. Proc. 1st Workshop on Parallel Problem Solving from Nature, 193–197, 1998.

V. Mattila, K. Virtanen, and R. P. Hämäläinen. Multi-objective simulation-optimization with simulated annealing and decision analysis – Maintenance scheduling of a fleet of fighter aircraft.

Manuscript, 2011.

References II

S. Sun, F. Zhuge, J. Rosenberg, R. Steiner, G. Rubin, and S. Napel. Learning-enhanced simulated annealing: Method, evaluation, and application to lung nodule registration. *Appl. Intell.*, 28(1):83-99, 2008.

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results.

Evol. Comput., 8(2):173-195, 2000.

