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Overview

m Noisy multi-objective optimization problem

m Values of objective functions are uncertain
m Techniques for finding non-dominated solutions

m Few take into account noise

m Mostly evolutionary algorithms (EAs), e.g, [Goh&Tan, 2007]
m New simulated annealing (SA) algorithm

m Features for handling noise and generating candidate
solutions

m Performance superior to existing EAs in numerical
tests
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Noisy multi-objective optimization
problem

min [f(x), ..., fu(x)]

1<x<u

m Values of objective functions f;(x) include uncertainty
— Optimization based on f,(x) + w; where w; ~ N(0, 0?)

m Decision variable x € R"

m Constraints | and u
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General steps of SA in
multi-objective optimization
0. Define performance measure E for candidate solutions
Select temperature T
Generate a current solution x

1. Generate a candidate solution y from the neighborhood of
X

2. Set x =y with probability min [1 , exp (Mﬂ
3. Solutions with best values of E into the non-dominated set
4. Return to step 1 or stop iteration
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Features of the new SA algorithm

m Performance of a solution, E

m Based on probabilistic dominance
— Takes into account multiple objectives and noise
m Used previously in evolutionary algorithms [Hughes, 2001],
not in SA
m Generation of candidate solutions
m Using information on current non-dominated solutions
— Increase likelihood of obtaining new non-dominated
solutions
m Previously in deterministic single-objective SA
[Sun et al., 2008]
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Probabilistic dominance

m Probability that x dominates y

m Product of probabilities that filx) = 1(5) Wy

objective function values are
smaller for x 20

m M samples
m (x) and s?(x) sample F2(x) = Fo(y)
average and variance

fi

H

- fi(x) — fi(y)
P(x -y)= H‘D (\/Sl?(x)/M+ S,?(V)/M>

i=1
@ cumulative distribution function of standard normal distribution

Aalto University A Simulated Annealing Algorithm for Noisy Multi-Objective 6/18
School of Science Optimization .
n Mattila, Virtanen, Hamaldinen



Performance of candidate solution E(y)

m Sum of probabilities that

Non-dominated set S

current non-dominated AN
solutions dominate
candidate solution y o

\O

E(y)=> P>y)

zeS

f1
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Generation of candidate solutions

m Use empirical data to sample
new value of decision variable x

New value

Current value

m Recent values in
non-dominated set
xW o x(M ¢ [a, b

m Feasible neighborhood of

current value [a, b] :
DA {3 S ) ) B Vo () I A

Probability

m Concentrates to regions where
likelihood of obtaining a new
non-dominated solution is high

A Simulated Annealing Algorithm for Noisy Multi-Objective 8/18

Aalto University imulate
School of Science Optimization
n Mattila, Virtanen, Hamaldinen



Numerical testing

m Reference algorithm
m MOEA-RF, Multi-Objective EA with Robust Features
m OQutperformed several existing EAs in [Goh&Tan, 2007]
m Test problems
m ZDTH1, ZDT4, ZDT6 |[Ziizler et al., 2007], FON
[Fonseca&Fleming, 1998], KUR [Kursawe, 1991]
m Four noise levels
m Performance measures used
m Generational distance
m Spacing
m Maximum spread
m Hypervolume ratio
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Non-dominated solutions for ZDT1

m Highest noise level
m SA algorithm produces solutions closer to actual
non-dominated set

0 1
fi

B SA algorithm B MOEA-RF, 30 runs
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Generational distance for ZDT1

m Distance of solutions to actual non-dominated set
m Values lower (better) for the SA algorithm

0.15
01 . ) E
: = ‘
0.05 o B o é
T iy T8 -
B -
Low noise High noise

B SA algorithm B MOEA-RF, 30 runs with each noise level
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Spacing for ZDT1

m Distance between obtained solutions
m Values similar for the algorithms (lower is better)

0.4
o2, . .
i P T
npUBgsds
0 * T
Low noise High noise

B SA algorithm B MOEA-RF, 30 runs with each noise level
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Maximum spread for ZDT1

m Range of objective function values for obtained solutions
m Values higher (better) for the SA algorithm

TTEE L
0.9 ’ N B
+
08 B
Low noise High noise

B SA algorithm B MOEA-RF, 30 runs with each noise level
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Hypervolume ratio for ZDT1

m Volume dominated by obtained solutions
m Values higher (better) for the SA algorithm

l’ -

05 H T

GLow noise High noise

B SA algorithm B MOEA-RF, 30 runs with each noise level

School of Science Optimization

' Aalto University A Simulated Annealing Algorithm for Noisy Multi-Objective
] Mattila, Virtanen, Hamalainen

14/18



Summary of the numerical tests

Our SA algorithm superior accross test problems and
noise levels

Noise level low high
Percentile 0 25 50 75 100 O 25 50 75 100 O 25 50 75 100/ O 25 50 75 100

GD

MS

HV

B SA algorithm superior B MOEA-RF superior



Conclusions

m New SA algorithm for noisy multi-objective optimization

m Performance of solutions based on probabilistic dominance
m Generation of candidate solutions using non-dominated set

m Outperformed reference EA in numerical tests
m Computational requirements comparable to the EA
m Successful application: Maintenance scheduling of aircraft

m Further development
m Dynamic sample size for evaluating candidate solutions
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