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Bayesian networks (BNs)

» Represent uncertain knowledge
» Reasoning under uncertainty
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Bayesian networks (BNs)

» Represent uncertain knowledge

> Reasoning under uncertainty Conditional probability tables (CPTs)

> Quantify dependence between linked nodes
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Bayesian networks (BNs)

» Represent uncertain knowledge

> Reasoning under uncertainty Conditional probability tables (CPTs)
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Bayesian networks (BNs)

» Represent uncertain knowledge

> Reasoning under uncertainty Conditional probability tables (CPTs)

> Quantify dependence between linked nodes
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Bayesian networks (BNs)

» Represent uncertain knowledge

> Reasoning under uncertainty Conditional probability tables (CPTs)

> Quantify dependence between linked nodes
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Construction of CPTs with parametric methods

ldea:

1. Probabilistic relationship between nodes fits a standard pattern

2. Expert assigns parameters characterizing the pattern } CPT
Benefit:

— Number of parameters << Number of CPT entries = Expert saves time!
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Construction of CPTs with parametric methods

e l|dea:

1. Probabilistic relationship between nodes fits a standard pattern

2. Expert assigns parameters characterizing the pattern } CPT
« Benefit:

— Number of parameters << Number of CPT entries = Expert saves time!

« Challenges we have recognized in
”Ranked Nodes Method” (RNM)
— Parameters lack clear interpretations = Hampers assignment
— Application requires technical insight = Use inefficient
« Our contribution for alleviating efforts of the expert

— Interpretations that facilitate determination of parameters
—  Guidelines for efficient use of RNM

Aalto University
School of Science
[ |




Ranked Nodes (Fenton, Neil, and Caballero, 2007)

Represent by ordinal scales continuous guantities
that lack a well-established interval scale
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Ran ked NOdeS MethOd (RNM) (Fenton, Neil, and Caballero, 2007)

X1: Skill Level X2: Activity Level X3: Disturbance Level
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Ran ked NOdeS MethOd (RNM) (Fenton, Neil, and Caballero, 2007)

X1: Skill Level
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Parameters to be elicited

= Aggregation function | F

= Weights of parent nodes
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Challenges recognized with RNM

1. Parameters lack interpretations = Expert must determine values
by trial and error = Slow and difficult!

2. Application to nodes with interval scales: Ignorant user may form
ordinal scales that prevent construction of sensible CPTs

i) Surface Area [m2] o) Distance to o) Time since
sads 50 0% Centre [km] Overhaul [y]
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0 Rent [€]

r1200 1000 0%
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RNM and nodes with interval scales:
New approach (Laitilaand Virtanen, 2016)

Formation of suitable ordinal scales

— Divide interval scales freely into equal amount of subintervals

— Ask the expert about the mode of child node in scenarios
corresponding to equal ordinal states of parent nodes

=» Update discretizations accordingly

(2 Surface Area [m2] Distance to Time since
sad5 50 0% Centre [km] Overhaul [y]
sad0 45 0% dc0_2 0% tol_5 0%
sa30_40100% [ dc2_5 0% tos_10 0%
sa25 30 0% dc5_10 100% [ to10_15100% [
sa20 25 0% = dc10_20 0% to15 20 0%
\EEU_SU f% E‘/mzu_za 0% =

- Rent [€]

r1200_1000 0%

r1000_900 4%

r900_750  82% |

750 500 14% |l

r500 200 0%

"What is the most likely rent for
a 40 m2 apartment that is 5 km
from the centre and has 10
years since overhaul?”

"I'd say its 900 €.”




RNM and nodes with interval scales:
New approach (Laitilaand Virtanen, 2016)

Determination of aggregation function F and weights wl,...,wn

— Ask the expert about the mode of child node in scenarios
corresponding to extreme ordinal states of parent nodes

= F and wil,...wn determined based on interpretations derived
for weights

2 Surface Area [m2]

sadb 50 0%
sad0 45 0%
sa30 40 0%
sa?5 30 0%
5a20_25100%

Distance to
Centre [km]

de0_2  100% IT]
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2 Rent [€]

r1200 1000 0%
r1000_900 0%
r900_750 18%[

r750 500  75% |

r500_ 200 4%

Time since
Overhaul [y]

tol 5 100% (]

to5 10 0%
to10_15 0%
to15 20 0%
ta20 25 0% [

"What is the most likely rent for
a 20 m2 apartment that is right
in the centre and has just been
renovated?”

"I'd say its 600 €.”




Conclusion

« Parametric methods ease up construction of CPTs for
BNs by expert elicitation

* New approach facilitates use of RNM

=> Further relief to expert elicitation

— Currently applied in a case study concerning performance of air
surveillance network

— Applicable to BNs and Influence Diagrams
=>» Supports decision making under uncertainty

* Future research
— Human experiment: new approach vs. direct parameter estimation
— Generalisation of the approach to nodes without interval scales
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