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Challenge of expert elicitation  
Construction of CPTs based on  

expert elicitation is  

time consuming and prone to biases 
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Inadequate! 



Construction of CPTs with parametric methods 

• Idea: 

1. Probabilistic relationship between nodes fits a standard pattern 

2. Expert assigns parameters characterizing the pattern  

• Benefit: 

– Number of parameters ˂< Number of CPT entries  Expert saves time! 
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Construction of CPTs with parametric methods 

• Idea: 

1. Probabilistic relationship between nodes fits a standard pattern 

2. Expert assigns parameters characterizing the pattern  

• Benefit: 

– Number of parameters ˂< Number of CPT entries  Expert saves time! 

 

• Challenges we have recognized in   

 ”Ranked Nodes Method” (RNM) 
– Parameters lack clear interpretations  Hampers assignment 

– Application requires technical insight  Use inefficient 

• Our contribution for alleviating efforts of the expert 
– Interpretations that facilitate determination of parameters 

– Guidelines for efficient use of RNM 
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Ranked Nodes (Fenton, Neil, and Caballero, 2007) 

Represent by ordinal scales continuous quantities          

that lack a well-established interval scale 



Ranked Nodes Method (RNM) (Fenton, Neil, and Caballero, 2007) 

0.8 0.6 0.4 0.2 0 1 

V
e

ry
 H

ig
h
 

H
ig

h
 

M
e
d
iu

m
 

L
o
w

 

V
e

ry
 L

o
w

 

X1: Skill Level 

0.8 0.6 0.4 0.2 0 1 

V
e

ry
 H

ig
h

 

H
ig

h
 

M
e

d
iu

m
 

L
o
w

 

V
e

ry
 L

o
w

 

X2: Activity Level 

0.8 0.6 0.4 0.2 0 1 

V
e

ry
 L

o
w

 

L
o
w

 

M
e
d
iu

m
 

H
ig

h
 

V
e

ry
 H

ig
h
 

X3: Disturbance Level 

0.8 0.6 0.4 0.2 0 1 

V
e

ry
 H

ig
h

 

H
ig

h
 

M
e

d
iu

m
 

L
o
w

 

V
e

ry
 L

o
w

 
Y: Work Efficiency Parameters to be elicited 

 

 Aggregation function 
 

 Weights of parent nodes 
 

 

 Uncertainty parameter  
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X3: Disturbance Level 

P(Y=Low | X1=Low, X2=Medium, 

X3=Low) 

Y: Work Efficiency 

µ (    ,    ,    ,    ,    ,    )   x1 x2 x3 w1 w2 w3 F 

TNormal(      ,      ,0,1), µ σ 

= 

µ 

x1 x2 x3 

Parameters to be elicited 
 

 Aggregation function 
 

 Weights of parent nodes 
 

 

 Uncertainty parameter  
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Challenges recognized with RNM 
1. Parameters lack interpretations  Expert must determine values 

by trial and error  Slow and difficult! 

2. Application to nodes with interval scales: Ignorant user may form 

ordinal scales that prevent construction of sensible CPTs 

 



RNM and nodes with interval scales: 

New approach (Laitila and Virtanen, 2016) 

Formation of suitable ordinal scales 

– Divide interval scales freely into equal amount of subintervals 

– Ask the expert about the mode of child node in scenarios 

corresponding to equal ordinal states of parent nodes 

  Update discretizations accordingly 

”What is the most likely rent for 

a 40 m2 apartment that is 5 km 

from the centre and has 10 

years since overhaul?” 

”I’d say its 900 €.” 



RNM and nodes with interval scales: 

New approach (Laitila and Virtanen, 2016) 

Determination of aggregation function F and weights w1,...,wn 

–  Ask the expert about the mode of child node in scenarios 

corresponding to extreme ordinal states of parent nodes    

  F and w1,...wn determined based on interpretations derived 

 for  weights 

”What is the most likely rent for 

a 20 m2 apartment that is right 

in the centre and has just been 

renovated?” 

”I’d say its 600 €.” 



Conclusion 

• Parametric methods ease up construction of CPTs for 

BNs by expert elicitation 

• New approach facilitates use of RNM  

 Further relief to expert elicitation 

– Currently applied in a case study concerning performance of air 

surveillance network 

– Applicable to BNs and Influence Diagrams   

  Supports decision making under uncertainty 

• Future research 

– Human experiment: new approach vs. direct parameter estimation 

– Generalisation of the approach to nodes without interval scales  
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