

A decision-analytic approach for the optimal allocation of resources to diagnostic testing and treatment

July 28, 2016 Yrjänä Hynninen, Eeva Vilkkumaa, Ahti Salo ORAHS 2016

Context

- A patient either has or does not have a disease
- Treating patients gives benefit but has personal and societal costs
 - 1. Treating a sick patient (true positive)
 - 2. Treating a healthy patient (false positive)
 - 3. Not treating a sick patient (false negative)
 - 4. Not treating a healthy patient (true negative)
- Diagnostic tests provide information about the patient's health
 - Tests are not fully reliable (false positives, false negatives)
 - Tests can be costly (e.g., genetic testing)
 - Diagnosis is often based on multiple tests

Identifying effective test-treatment strategies

- Individual level
 - Which tests should be carried out? •
 - In which order is it optimal to carry them out? ٠
 - When should one stop testing and • decide on a treatment action?

No treatment

Analysis Laboratory

Treatment

Identifying effective test-treatment strategies

- Population level
 - How to divide the population of patients into different segments?
 - How to allocate resources to each segment?
 - Which tests and treatments to carry out to each segment?
- Important allocation decisions
 - Testing vs. treatment
 - High risk patients vs. low risk patients
 - Preventive care vs. reactive care
 - Cardiovascular diseases vs. cancer

Departure point

- Tests often used in combinations and sequences
- Resources often limited
- The benefit of a population is maximized instead of an individual patient or subpopulation

• Our contribution: a method for identifying optimal test-treatment strategies and optimal allocation between testing and treatment

Systems Analysis Laboratory

5

Our decision-analytic approach

- Patient has a prior probability of having the disease (risk)
- Patient can be tested using multiple tests and testing stages
 - Probability of disease is updated based on test results using Bayesian methods
 - Tests have direct costs and they improve the accuracy of diagnosis
- Patient can be treated using a single treatment
 - Treatments have direct costs and health-related and financial outcomes
- Test-treatment strategies are measured by their expected

Net benefit = (Health outcomes) $\times \lambda$ – (Financial outcomes) – (Direct costs)

6

Problem is solved in two stages

- 1. Identify non-dominated pathways
 - i.e. pathways in which the expected net benefit cannot be increased without increasing direct costs
 - for each prior probability of disease (0%, 1%,...,100%)
 - for variety of direct cost levels
 - using dynamic programming
- 2. Choose the pathways which maximize the net benefit of the whole population
 - using known population distribution
 - at given level of direct costs
 - using mixed integer linear programming

Illustrative example

- Four treatment actions
 - Expected net benefits are known
- Four tests
 - Each has two possible results
 - Conditional probabilities of obtaining the results are known
 - Costs are known
- One testing stage

Conditional net benefits						
Treatment	No disease	Disease	Cost			
No treatment	10 000 €	0€	0€			
Treatment 1	9 000 €	4 000 €	100€			
Treatment 2	8 000 €	6 000 €	300€			
Treatment 3	6 000 €	7 000 €	800€			

Conditional probabilities of test results

Test	Test result	No disease	Disease	Cost
1	Negative	0.85	0.32	150€
	Positive	0.15	0.68	
2	Negative	0.65	0.15	200€
	Positive	0.35	0.85	
3	Negative	0.90	0.10	400€
	Positive	0.10	0.90	
4	Negative	1.00	0.00	€ 008
	Positive	0.00	1.00	

Computation

 First, non-dominated pathways for each prior risk group

 Second, pathways for each population group such that the expected population-level net benefit is maximized

Results – optimal pathway

- Optimal pathway of decisions
 - for each prior probability
 - for each relevant direct cost level
- Decision support tool for practice, micro level decision making

Results – optimal segmentation

- Optimal segmentation of patients
 - for each direct cost level
- Basis of care recommendations

Results – optimal allocation

Results – expected net benefit of optimal strategy

- Expected net benefit of a population at different cost levels
- Marginal net benefit of an investment
- Can be compared with other investments
- Support for macro level managerial decisions

Analysis Laboratory

13

Future topics

- Real data application
- Extensive sensitivity analysis for the value of λ
- Incorporating time dynamics and changing state of health

