

Spatial multi-attribute decision analysis with attribute specific spatial weights and incomplete preference information

Mikko Harju

Systems Analysis Laboratory Dept. of Mathematics and Systems Analysis Aalto University School of Science

Juuso Liesiö Management Science Dept. of Information and Service Management Aalto University School of Business

Kai Virtanen

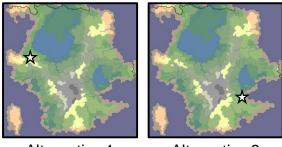
Systems Analysis Laboratory Dept. of Mathematics and Systems Analysis Aalto University School of Science Department of Military Technology National Defence University

EURO 2019 23rd-26th June, Dublin

Spatial decision analysis

Typically used in site selection problems

• E.g., what is the best site for a rescue helicopter base?



Alternative 1

Alternative 2

Conventional MCDA in spatial problems

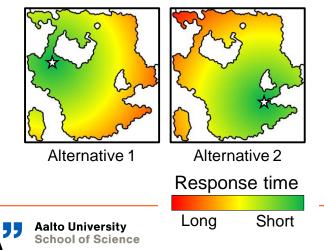
- Decision alternatives are judged directly based on properties of site candidates
- E.g., additive value representation

$$v(z) = \sum_{j=1}^{m} b_j v_j(z_j)$$

Spatial value function

Decision alternatives judged based on their impact across the region

• Treated as functions that assign a consequence to each location



Spatial value representation

- Locations $s \in S$, subregions $S' \subseteq S$
- Consequences $c \in C$
- Decision alternatives $z \in Z = C^S$ $V(z) = \int v(z(s)) d\alpha(s)$
 - Spatial value function $V: Z \to \mathbb{R}$
 - Consequence value function $v: C \to \mathbb{R}$
 - Spatial weighting measure $\alpha: 2^S \rightarrow [0, 1]$

Multiple attributes

E.g., additive multi-attribute consequence value function

$$v(c) = \sum_{i=1}^{m} b_j v_j(c_j)$$
$$V(z) = \int \sum_{i=1}^{m} b_j v_j(z_j(s)) d\alpha(s)$$

Are the underlying preference assumptions still valid?

- "The same consequence value function can be applied everywhere"
- What if the relative importance of attributes varies across the region?

Attribute-specific spatial weighting

$$V(z) = \sum_{j=1}^{m} b_j V_j(z_j) = \sum_{j=1}^{m} b_j \int v_j(z_j(s)) d\alpha_j(s)$$

Attribute-specific spatial value functions V_j

• Aggregated based on attribute weights b_j

Attribute-specific consequence value functions v_i

• Gives the value of consequences with respect to the attribute

Attribute-specific weighting measures α_j

• Gives the importance of subregions with respect to the attribute

Incomplete preference information

Preferences represented by $V(z) = \sum_{j=1}^{m} b_j \int v_j(z_j(s)) d\alpha_j(s)$

- Consequence value functions v_j assumed to be known
- Spatial weightings α_j (and attribute weights b_j) not known

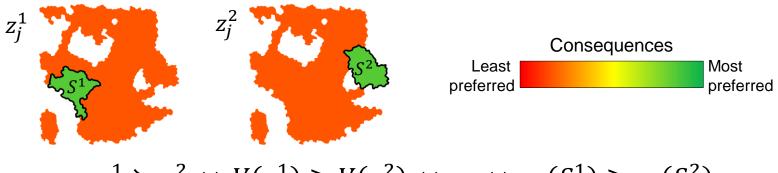
Incomplete weighting information

- Preference statements provided by the DM
- Feasible weightings compatible with all preference statements **Non-dominated alternatives**
- Based on the set of all feasible weightings
- More preference information \rightarrow fewer non-dominated alternatives

Spatial preference statements

Technically comparisons of pairs of alternatives

- The alternatives are identical in all but one attribute (C_1) is more important then C_2^2 with respect to i''.
- " S^1 is more important than S^2 with respect to j":



 $z^1 \ge z^2 \Leftrightarrow V(z^1) \ge V(z^2) \Leftrightarrow \dots \Leftrightarrow \alpha_j(S^1) \ge \alpha_j(S^2)$

" S^1 at least twice as important as S^2 "

- Direct statement of importance problematic
 - Is the statement unambiguous?
 - Are there biases?
- Indirect statement also possible
 - "S¹ can be split into two parts, each of them at least as important as S²"
 - The exact partition is irrelevant

Can be generalized to " S^1 at least $\frac{k_1}{k_2}$ times as important as S^2 "

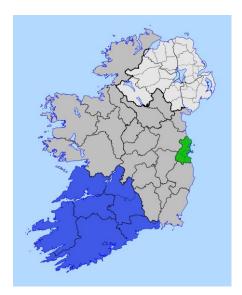
" S^1 at least twice as important as S^2 "

- Direct statement of importance problematic
 - Is the statement unambiguous?
 - Are there biases?

Aalto University School of Science

- Indirect statement also possible
 - "S¹ can be split into two parts, each of them at least as important as S²"
 - The exact partition is irrelevant

Can be generalized to " S^1 at least $\frac{k_1}{k_2}$ times as important as S^2 "



" S^1 at least twice as important as S^2 "

- Direct statement of importance problematic
 - Is the statement unambiguous?
 - Are there biases?
- Indirect statement also possible
 - "S¹ can be split into two parts, each of them at least as important as S²"
 - The exact partition is irrelevant

Can be generalized to " S^1 at least $\frac{k_1}{k_2}$ times as important as S^2 "

" S^1 at least twice as important as S^2 "

- Direct statement of importance problematic
 - Is the statement unambiguous?
 - Are there biases?
- Indirect statement also possible
 - "S¹ can be split into two parts, each of them at least as important as S²"
 - The exact partition is irrelevant

```
Can be generalized to "S^1 at least \frac{k_1}{k_2}
times as important as S^2"
```



 $\alpha_i(S^{1a}) \geq \alpha_i(S^2),$ $\alpha_i(S^{1b}) \geq \alpha_i(S^2)$ $\Rightarrow \alpha_i(S^1) \geq 2\alpha_i(S^2)$

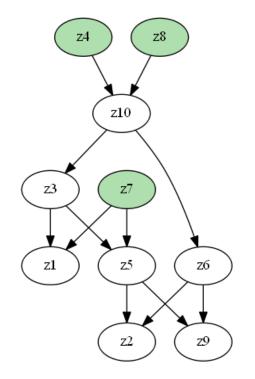
Non-dominated alternatives

Decision alternative z dominates z' if

- $V(z) \ge V(z')$ for every feasible weighting
- V(z) > V(z') for some feasible weighting
- Identified by determining the bounds of the difference in value of *z* and *z'*

Decision alternative *z* is non-dominated if no other alternative dominates it

• Identified by performing all necessary pairwise comparisons between alternatives



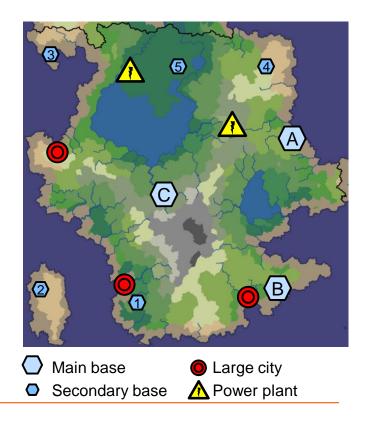
Illustrative example

Application related to air defense

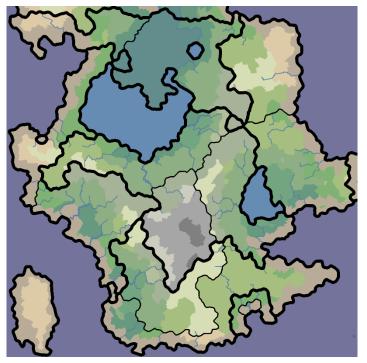
- Select positions for air bases (2 main, 3 secondary) from a list of candidates
- 30 possible combinations, or decision alternatives

Two attributes

- Capability to withstand prolonged attacks
- Capability to intercept the initial attack



- Upper level: Region split into 9 areas
- Lower level: Each area split into 1-3 subareas

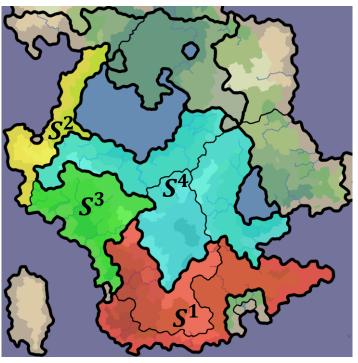


- Upper level: Region split into 9 areas
- Lower level: Each area split into 1-3 subareas



- Upper level: Region split into 9 areas
- Lower level: Each area split into 1-3 subareas

$$\frac{2}{3}\alpha_j(S^1) \leq \alpha_j(S^2) + \alpha_j(S^3) \leq \alpha_j(S^1)$$



- Upper level: Region split into 9 areas
- Lower level: Each area split into 1-3 subareas

$$\frac{2}{3}\alpha_j(S^1) \le \alpha_j(S^2) + \alpha_j(S^3) \le \alpha_j(S^1)$$
$$\alpha_j(S^4) \le \alpha_j(S^2) + \alpha_j(S^3) \le \frac{3}{2}\alpha_j(S^4)$$

- Upper level: Region split into 9 areas
- Lower level: Each area split into 1-3 subareas

$$\frac{2}{3}\alpha_j(S^1) \le \alpha_j(S^2) + \alpha_j(S^3) \le \alpha_j(S^1)$$
$$\alpha_j(S^4) \le \alpha_j(S^2) + \alpha_j(S^3) \le \frac{3}{2}\alpha_j(S^4)$$
$$\alpha_j(S^3) \le \alpha_j(S^2) \le \frac{3}{2}\alpha_j(S^3)$$

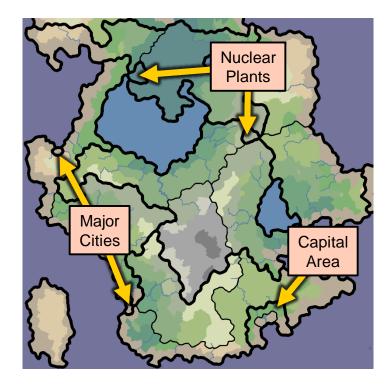
Capability to intercept the initial attack

The attack is assumed to originate from the west or south

• Bases close to these coasts offer the best protection

High value targets particularly important

- Capital area, major cities, nuclear power plants
- Likely to be focus of the initial attack



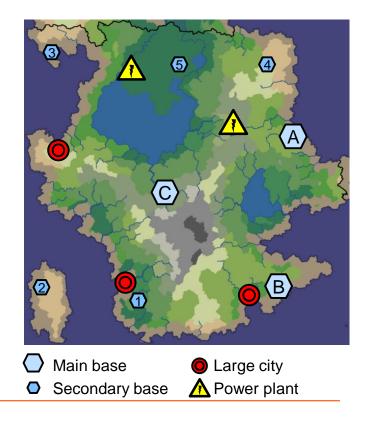
Results

5 non-dominated configurations

- BC123, BC134, BC135, BC234, BC235
- Main bases at positions B and C
- Secondary bases at 3, and 1 or 2
- Final secondary base at any candidate

Selecting one alternative

- Elicit additional preference information
- Examine the 5 non-dominated alternatives directly



Conclusion

Spatial multi-attribute additive value function

- Attribute-specific spatial weighting
- Incomplete preference information

Behavioral considerations

- Elicitation of spatial weightings
- Target for potential future research

References

- Simon, J., Kirkwood, C.W., and Keller, L.R., 2014. Decision analysis with geographically varying outcomes: Preference models and illustrative applications. Operations Research, 62(1)
- Harju, M., Liesiö, J., and Virtanen, K., 2019. Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information. European Journal of Operational Research, 275(1)

