Preference Programming for Spatial Multiattribute Decision Analysis

Mikko Harju*, Juuso Liesiö**, Kai Virtanen*

* Systems Analysis Laboratory, Department of Mathematics and Systems Analysis, Aalto University School of Science
** Department of Information and Service Economy, Aalto University School of Business
Spatial Decision Analysis

• Consequences of alternatives are distributed across a geographical region
• E.g., select the position of a rescue helicopter base, P^1 or P^2
 • Alternatives imply different response times, i.e., consequences, for each location
 • Locations not equally important? (cf. population density)
• Plenty of other applications
 • Urban, environmental and transportation planning
 • Waste management, hydrology, agriculture, and forestry
 • See, e.g., Malczewski & Rinner 2015, Ferretti & Montibeller 2016
Spatial Value Function

- Value of decision alternative z (Simon, Kirkwood and Keller 2014):
 \[V(z) = \int_{s \in S} a(s)v(z(s)) ds \]

 $a(s)$: spatial weight ("importance") of specific location s in region S

 $z(s)$: consequence for location s when alternative z is chosen

 $v(\cdot)$: consequence value function

- Challenges:
 - Specifying spatial weights $a(s)$ for an infinite number of locations s
 - Only a conjecture on the underlying preference assumptions exists
Spatial Value Function

• Value of decision alternative z (Simon, Kirkwood and Keller 2014):

$$V(z) = \int_{s \in S} a(s)v(z(s))ds$$

- $a(s)$: spatial weight (“importance”) of specific location s in region S
- $z(s)$: consequence for location s when alternative z is chosen
- $v(\cdot)$: consequence value function

• Our contribution:
 • Axiomatic basis for preferences that can be represented with the spatial value function
 • Spatial preference programming: Determination of dominances among alternatives based on incomplete specification of weights
Preference Assumptions

- Let \succeq be a binary relation on the set of decision alternatives $Z = \{z: S \to C\}$
 - S: set of locations
 - C: set of consequences
- Assumptions
 - A1 \succeq is transitive and complete
 - A2 There exist $z^1, z^2 \in Z$ such that $z^1 \not\succeq z^2$
 - A3 “Spatial preference independence”
 - A4 “Consequence consistency”
 - A5 “Spatial consistency”
 - A6 “Divisibility of subregions”
 - A7 “Monotonicity”

A3: Preference between two alternatives does not depend on locations with equal consequence
Additive Spatial Value Function $V(z)$

- **Theorem.** \succcurlyeq satisfies A1-A7 iff there exists a non-atomic measure α on S and a bounded function $v: C \to \mathbb{R}$ such that $z \succcurlyeq z' \iff V(z) \geq V(z')$ where
 \[
 V(z) = \int_S v(z(s))d\alpha(s)
 \]
- Proof based on Savage 1954
- The weighting function $\alpha: 2^S \to \mathbb{R}$
 - Assigns a weight to each subregion $S' \subseteq S$ (cf. relative importance)
 - Connection to Simon’s et al. weighting $a(s): \alpha(S') = \int_S a(s)ds$
- v is a cardinal value function for consequences $c = z(s)$
 - I.e., unique up to positive affine scaling
 - E.g., additive multiattribute $v(z) = \sum_{j=1}^{m} b_j v_j(z_j)$
Incomplete Preference Information

- Small set of feasible weighting functions can be sufficient for ranking alternatives
 - Avoiding the overwhelming task of specifying the exact weighting function α
- Stated preferences between pairs of alternatives \implies Constraints on the spatial weighting function α and the vector b of attribute weights
- Multiple preference statements comparing suitable alternatives \implies System of linear constraints on
 - $\alpha(S^1), \ldots, \alpha(S^n)$ where S^1, \ldots, S^n is a partition of S
 - b_1, \ldots, b_m

$z^1 \succeq z^2 \iff V(z^1) \geq V(z^2) \iff \alpha(S^1) \geq \alpha(S^2)$
"Subregion S^1 more important than S^2"

Consequences C

<table>
<thead>
<tr>
<th>Least preferred</th>
<th>Most preferred</th>
</tr>
</thead>
</table>

Aalto University
School of Science

Aalto University
School of Business
Dominance

- Constraints from preference statements result in
 - A set of feasible weighting functions $\mathcal{A} \subseteq \{\alpha: 2^S \to \mathbb{R}_+ | \alpha(S) = 1\}$
 - A set of feasible attribute weights $B \subseteq \{b \in \mathbb{R}_+^m | \sum b_j = 1\}$

- Alternative z^1 dominates alternative z^2 if
 - $V(z^1) \geq V(z^2)$ for all $\alpha \in \mathcal{A}$ and $b \in B$
 - $V(z^1) > V(z^2)$ for some $\alpha \in \mathcal{A}$ and $b \in B$

- Dominance check: bi-level LP problem
 \[
 \inf_{\alpha \in \mathcal{A}, b \in B} V(z^1) - V(z^2) = \min_{b \in B} \min_{\alpha \in \mathcal{A}} \sum_{i=1}^{n} \alpha(S^i) \inf_{s \in S^i} \sum_{j=1}^{m} b_j v_j(z^1_j(s)) - v(z^2_j(s))
 \]
 where $S^1, ..., S^n$ is a partition of S

- Solution: Enumerate extreme points of B and solve LP problem in each one
Air Defense Planning: Positioning of Air Bases

- Select positions for 2 main and 3 secondary air bases to maximize air defense capability
 - Main bases: 3 position candidates
 - Secondary bases: 5 position candidates

- Spatial consequences provided by a simulation tool – input parameters:
 - Number of defensive flying units; fuel consumption; weapons consumption; flight speed
 - Positions of air bases; turnaround times; refueling and rearming times; alert, taxi and scramble delays
Attributes of Air Defense Capability

Positions of air bases affect...

• "Engagement frontier" where hostile aircraft can first be intercepted by defensive flying units
 • Attribute #1: Location’s distance to south frontier
 • Attribute #2: Location’s distance to west frontier

• "Force fulfillment”
 • Attribute #3: Average number of defensive flying units available at the location
 • Attribute #4: As attribute #3 with one secondary base destroyed (cf. combat sustainability)

Consequences C_j
Preference Statements

• Spatial preference statements (α)
 • Major cities > SW coastal area
 • Power plants > SW coastal area
 • SW coastal area > NE coastal area
 • NE coastal area > Other areas

• Attribute preference statements (β)
 • Engagement frontier attributes > Force fulfillment attributes
Preference Statements

• Spatial preference statements (α)
 • Major cities > SW coastal area
 • Power plants > SW coastal area
 • SW coastal area > NE coastal area
 • NE coastal area > Other areas

• Attribute preference statements (b)
 • Engagement frontier attributes > Force fulfillment attributes
Preference Statements

• Spatial preference statements (α)
 • Major cities > SW coastal area
 • Power plants > SW coastal area
 • SW coastal area > NE coastal area
 • NE coastal area > Other areas

• Attribute preference statements (b)
 • Engagement frontier attributes > Force fulfillment attributes
Preference Statements

• Spatial preference statements (α)
 • Major cities > SW coastal area
 • Power plants > SW coastal area
 • SW coastal area > NE coastal area
 • NE coastal area > Other areas

• Attribute preference statements (b)
 • Engagement frontier attributes > Force fulfillment attributes
Preference Statements

• Spatial preference statements (α)
 • Major cities $>$ SW coastal area
 • Power plants $>$ SW coastal area
 • SW coastal area $>$ NE coastal area
 • NE coastal area $>$ Other areas

• Attribute preference statements (b)
 • Engagement frontier attributes $>$ Force fulfillment attributes
Preference Statements

- Spatial preference statements (α)
 - Major cities > SW coastal area
 - Power plants > SW coastal area
 - SW coastal area > NE coastal area
 - NE coastal area > Other areas

- Attribute preference statements (b)
 - Engagement frontier attributes > Force fulfillment attributes
Preference Statements

- Spatial preference statements (α)
 - Major cities > SW coastal area
 - Power plants > SW coastal area
 - SW coastal area > NE coastal area
 - NE coastal area > Other areas

- Attribute preference statements (b)
 - Engagement frontier attributes > Force fulfillment attributes

13 non-dominated alternatives
Additional Preference Statements

• Spatial preference statements (α)
 • Power plants > Major cities
 • Power plant #1 > Power plant #2
 • City #1 > City #2 > City #3
 • ...

• Attribute preference statements (b)
 • West engagement frontier > South engagement frontier
 • Force sustainability > Initial force fulfillment

4 non-dominated alternatives
Conclusion: Spatial Decision Analysis
Benefits from Preference Programming

• The additive spatial value function
 • Axiomatic basis
 • Weighting subregions rather than locations

• Preference programming for spatial decision analysis
 • Incomplete preference information & non-dominated decision alternatives
 • Burden of DM eased considerably by not requiring unique spatial weighting
 • Global sensitivity analysis: Effect of spatial weighting on ranking of alternatives

• Future development
 • Practices and behavioral issues of eliciting the weighting function
 • Spatial decision support systems: Graphical user interface, utilization of GIS data
References

• Ferretti, V. and Montibeller, G., 2016. Key challenges and meta-choices in designing and applying multi-criteria spatial decision support systems. *Decision Support Systems*, 84

