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New technology allows the sellers

to collect, process and
deliver sales and customer data

to plan intelligent pricing strategies

to change prices frequently at low cost
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Pricing strategies

Posted price mechanisms:

“take-it-or-leave-it”’ prices

Price-discovery mechanisms:

prices determined by bidding processes,
e.g., auctions
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Mechanism design: Optimization and

game theory tools for pricing goods

Price discrimination; e.g., nonlinear pricing

Combinatorial auctions
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Applications

Nonlinear pricing in the design of electricity
tariffs (Wilson, Risdnen et. al, in the 1990°s)

Dynamic pricing policies in brick-and-mortar
stores (1n the 2000’s)

Combinatorial Auctions (FCC’s Narrow Band
Auction 1994, CAs in procurement of
logistic services 1993)
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Research questions

How to exploit the vast resources of online data
to improve the shopping process

Theoretical work to model descriptively,
predictively and normatively some aspects of
the process to enable computational advantages
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The nonlinear pricing model (Spence, 1980)

Buyers: low type (L) and high type (H)

U(g,p)=Vi(q-p,1=L,H
Single-crossing condition: V' (q) > V' (q)

Seller: m(q, p) = f [p. — c(qp)] + fylpy — c(qp)]

Iy Ty
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Optimization problem

Maximize 7(q,p) under constraints:
Incentive Compatibility (IC)
Vi(@) - pi = Vi(@) — P k#1
Individual Rationality (IR)
V.(q)-p,=20,1=L,H
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Optimality conditions

In a typical case, it holds that q"; >0 and
V'@ - (@] = lV'x@ D) - Vgl
Vu@y) =¢c(qy
PL=Viq)

Pu=P1+Vu(@'w - V(@)
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Continuous learning dynamics

Learning path x(t) = [q; (t), gu(t), p; (D), pu(D],
t >0, x(0) = x,, defines the problem solution

at time t. Update defined by differential
equations.

Interpretation: Continuously repeated game
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Dynamics of gradient method

Direction of best profit increase locally

or OX On OX
j(X)

X =Vr(x) = ( : : :
aQL aQH apL apH

depends on X, 1.e., which constraints are active.

Four regions: (a) no constraints active, (b) IR,
active, (¢) IR, and IC;; active, (d) IC active
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Update equations

When (a) no constraints are active, we have
—ficq)
= fuc€'(gy)
Ji
T

V7(x)=

n(q, p) =t [pL — c(qp)] + tulpy — c(qy)]
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Update equations (2)

When (b) IR, 1s active, p;=V,(q; ), we have

q.L aﬂ- :p —
£ oyp, -
R A
V. (q,)4;
 fe
, on , ,
where QL:a—:fL(VL(QL)_C(QL))
qr
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Profits from bundles L. and H
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Computation under limited information

In offline solution: extensive data collection 1s
used to forecast the consumer types’ utility
functions 1n the beginning, (Wilson 1993,
Risidnen et al. 1997)

In online solution: In our method (Ehtamo et
al. 2008), only local demand data 1s used
incrementally
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Local information can be revealed by

Performing price tests (take-it-or-leave-it prices)
and/or marginal cost pricing in the vicinity of

current bundles
Using intelligent pricing strategies
Performing market inquiries with pairwise

comparisons, etc.
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Discussion

Local methods perform well

In general many qualities and consumer classes
without simplifying assumptions

In future, study of payoff landscapes,

complexity 1ssues, and computation
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