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New technology allows the sellers

to collect, process and 

deliver sales and customer data

to plan intelligent pricing strategies

to change prices frequently at low cost
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Pricing strategies

Posted price mechanisms:

“take-it-or-leave-it” prices

Price-discovery mechanisms:

prices determined by bidding processes,

e.g., auctions
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Mechanism design: Optimization and 

game theory tools for pricing goods

Price discrimination; e.g., nonlinear pricing

Combinatorial auctions
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Applications

Nonlinear pricing in the design of electricity 

tariffs (Wilson, Räsänen et. al, in the 1990’s)

Dynamic pricing policies in brick-and-mortar 

stores (in the 2000’s)

Combinatorial Auctions (FCC’s Narrow Band 

Auction 1994, CAs in procurement of 

logistic services 1993)
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Research questions

How to exploit the vast resources of online data 

to improve the shopping process

Theoretical work to model descriptively, 

predictively and normatively some aspects of 

the process to enable computational advantages
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The nonlinear pricing model (Spence, 1980)

Buyers: low type (L) and high type (H)

Ui(q, p) = Vi(q) – p , i = L, H

Single-crossing condition: V’H(q) > V’L(q)

Seller: π(q, p) = fL[pL – c(qL)] + fH[pH – c(qH)]

πL
πH
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cost c(q)

qH quality q

price p

pH

pL

qL

VH(q)

VL(q)

πH

πL
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Optimization problem

Maximize π(q,p) under constraints:

Incentive Compatibility (IC)

Vi(qi) – pi ≥ Vi(qk) – pk, k ≠ i

Individual Rationality (IR)

Vi(qi) – pi ≥ 0, i = L, H
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Optimality conditions

In a typical case, it holds that q*
L>0 and

fL[V’L(q*
L) – c’(q*

L)] = fH[V’H(q*
L) – V’L(q*

L)]

V’H(q*
H) = c’(q*

H)

p*
L = VL(q*

L)

p*
H = p*

L+VH(q*
H) – VL(q*

L)
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Continuous learning dynamics

Learning path  x(t) = [qL(t), qH(t), pL(t), pH(t)], 

t ≥ 0, x(0) = x0, defines the problem solution 

at time t. Update defined by differential 

equations.

Interpretation: Continuously repeated game
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Dynamics of gradient method

Direction of best profit increase locally

x = ∇π(x) = (x) 

depends on x, i.e., which constraints are active.

Four regions: (a) no constraints active, (b) IRL

active, (c) IRL and ICH active, (d) ICH active
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Update equations

When (a) no constraints are active, we have

π(q, p) = fL[pL – c(qL)] + fH[pH – c(qH)]



















′−

′−

=∇

H

L

HH

LL

f

f

qcf

qcf

x
)(

)(

)(π



Systems
Analysis Laboratory
Helsinki University of Technology

14

Update equations (2)

When (b) IRL is active, pL=VL(qL), we have

where
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Profits from bundles L and H
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Computation under limited information

In offline solution: extensive data collection is 

used to forecast the consumer types’ utility 

functions in the beginning, (Wilson 1993, 

Räsänen et al. 1997)

In online solution: In our method (Ehtamo et 

al. 2008), only local demand data is used 

incrementally
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Local information can be revealed by

Performing price tests (take-it-or-leave-it prices) 

and/or marginal cost pricing in the vicinity of 

current bundles

Using intelligent pricing strategies

Performing market inquiries with pairwise 

comparisons, etc.
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Discussion

Local methods perform well

In general many qualities and consumer classes 

without simplifying assumptions

In future, study of payoff landscapes, 

complexity issues, and computation
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