

INFORMS, Washington D.C., Oct. 12-15, 2008

Gradient Learning for a Buyer Seller Game

Harri Ehtamo

Kimmo Berg

Systems Analysis Laboratory

Helsinki University of Technology

www.sal.tkk.fi

New technology allows the sellers

to collect, process and
deliver sales and customer data

to plan intelligent pricing strategies

to change prices frequently at low cost

Pricing strategies

Posted price mechanisms:

“*take-it-or-leave-it*” prices

Price-discovery mechanisms:

prices determined by bidding processes,
e.g., *auctions*

Mechanism design: Optimization and game theory tools for pricing goods

Price discrimination; e.g., nonlinear pricing

Combinatorial auctions

Applications

Nonlinear pricing in the design of electricity tariffs (Wilson, Räsänen et. al, in the 1990's)

Dynamic pricing policies in *brick-and-mortar stores* (in the 2000's)

Combinatorial Auctions (FCC's Narrow Band Auction 1994, CAs in procurement of logistic services 1993)

Research questions

How to exploit the vast resources of online data
to improve the shopping process

Theoretical work to model descriptively,
predictively and normatively some aspects of
the process to enable *computational advantages*

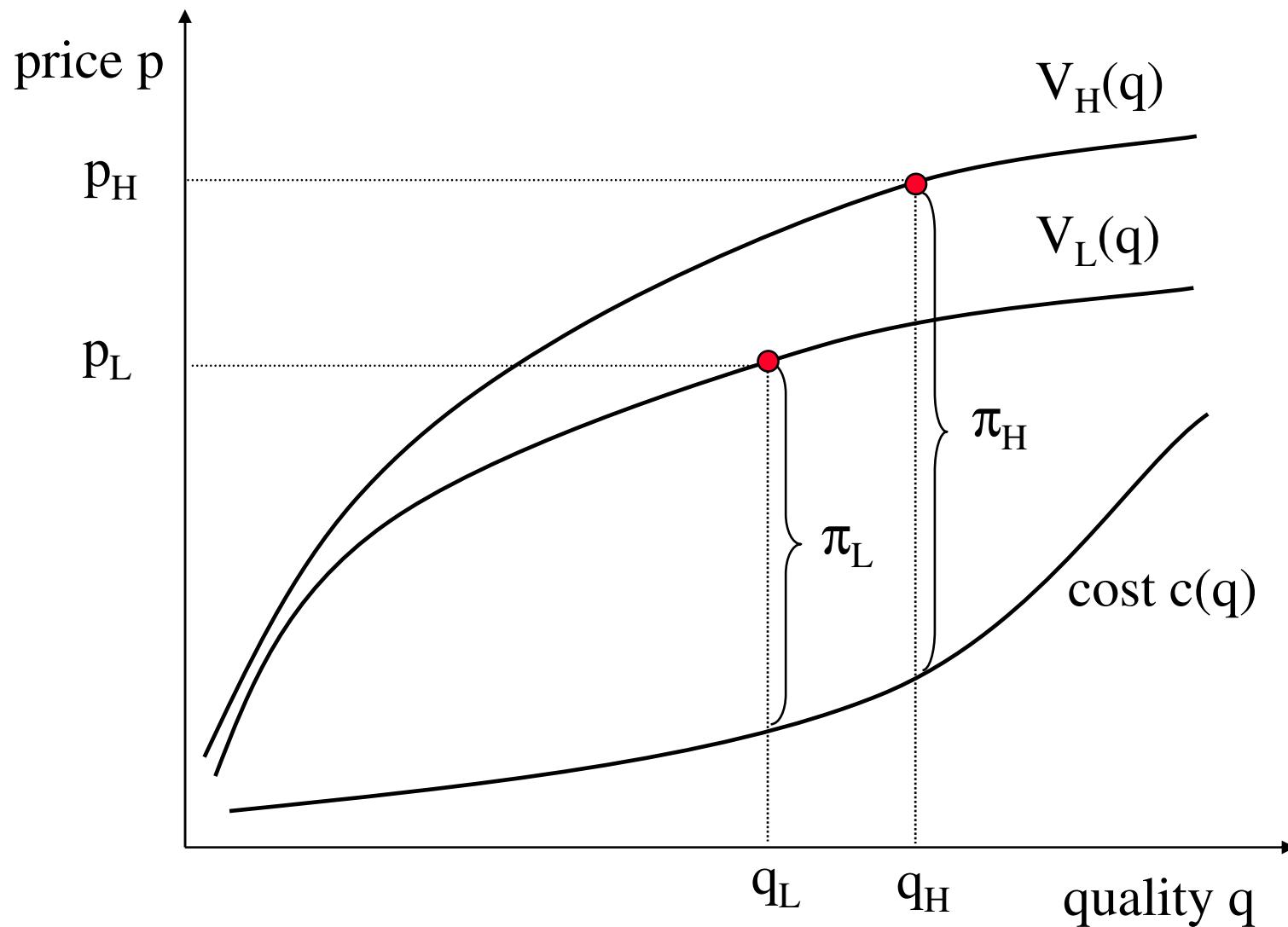
The nonlinear pricing model (Spence, 1980)

Buyers: low type (L) and high type (H)

$$U_i(q, p) = V_i(q) - p, i = L, H$$

Single-crossing condition: $V'_H(q) > V'_L(q)$

Seller: $\pi(q, p) = f_L[\underbrace{p_L - c(q_L)}_{\pi_L}] + f_H[\underbrace{p_H - c(q_H)}_{\pi_H}]$



Optimization problem

Maximize $\pi(q, p)$ under constraints:

Incentive Compatibility (IC)

$$V_i(q_i) - p_i \geq V_i(q_k) - p_k, \quad k \neq i$$

Individual Rationality (IR)

$$V_i(q_i) - p_i \geq 0, \quad i = L, H$$

Optimality conditions

In a typical case, it holds that $q^*_L > 0$ and

$$f_L[V'_L(q^*_L) - c'(q^*_L)] = f_H[V'_H(q^*_L) - V'_L(q^*_L)]$$

$$V'_H(q^*_H) = c'(q^*_H)$$

$$p^*_L = V_L(q^*_L)$$

$$p^*_H = p^*_L + V_H(q^*_H) - V_L(q^*_L)$$

Continuous learning dynamics

Learning path $x(t) = [q_L(t), q_H(t), p_L(t), p_H(t)]$,
 $t \geq 0$, $x(0) = x_0$, defines the problem solution
at time t . Update defined by differential
equations.

Interpretation: Continuously repeated game

Dynamics of gradient method

Direction of best profit increase locally

$$\dot{x} = \nabla \pi(x) = \left(\frac{\partial \pi}{\partial q_L}, \frac{\partial \pi}{\partial q_H}, \frac{\partial \pi}{\partial p_L}, \frac{\partial \pi}{\partial p_H} \right) (x)$$

depends on x , i.e., which constraints are active.

Four regions: (a) no constraints active, (b) IR_L active, (c) IR_L and IC_H active, (d) IC_H active

Update equations

When (a) no constraints are active, we have

$$\nabla \pi(x) = \begin{bmatrix} -f_L c'(q_L) \\ -f_H c'(q_H) \\ f_L \\ f_H \end{bmatrix}$$

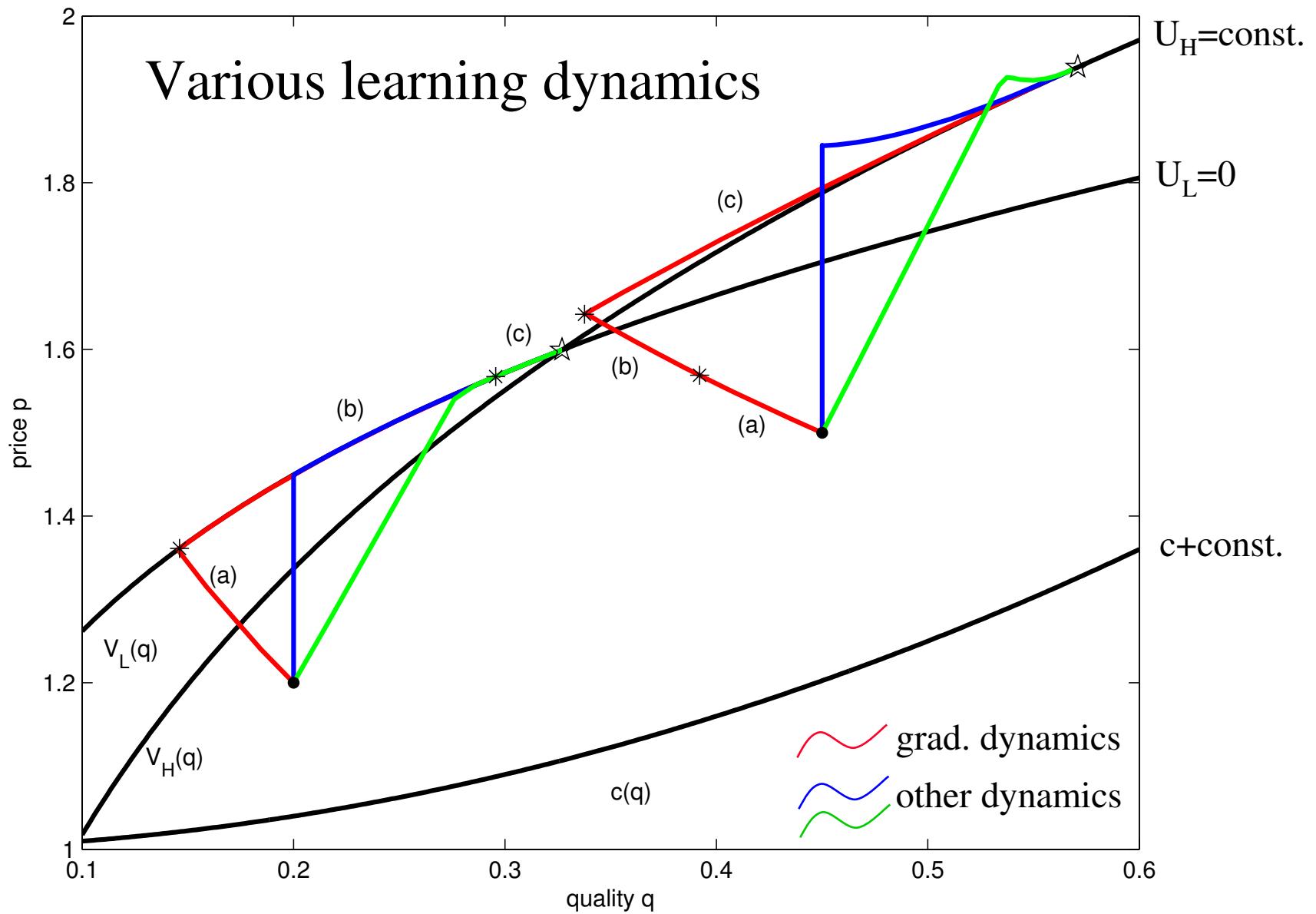
$$\pi(q, p) = f_L[p_L - c(q_L)] + f_H[p_H - c(q_H)]$$

Update equations (2)

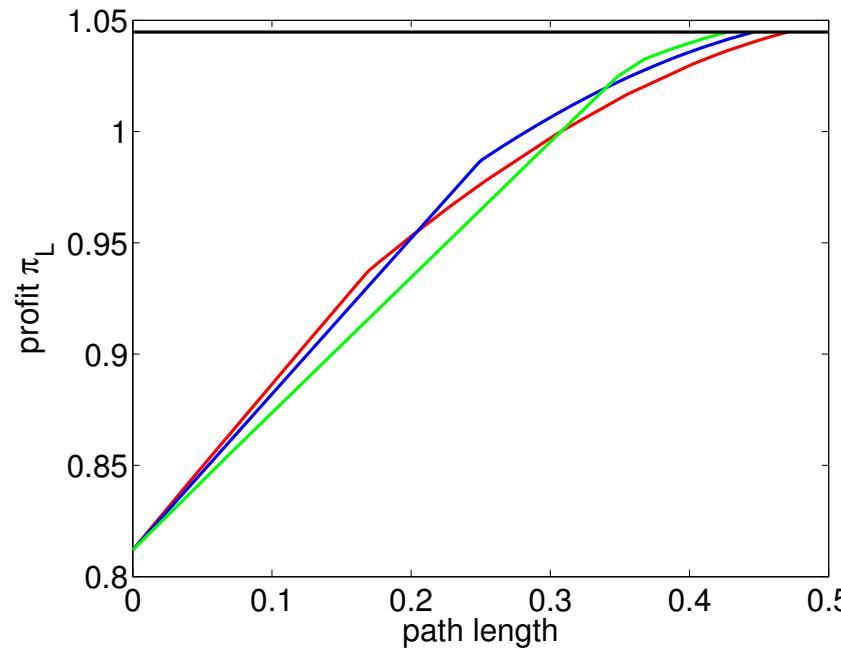
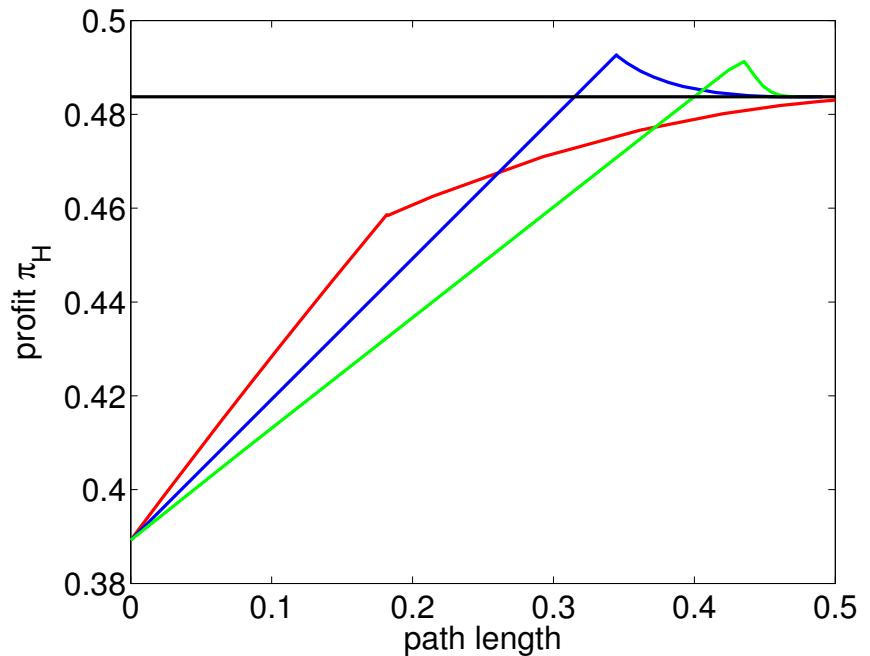
When (b) IR_L is active, $p_L = V_L(q_L)$, we have

$$\nabla_R \pi(x) = \begin{bmatrix} \dot{q}_L \\ -f_H c'(q_H) \\ V'_L(q_L) \dot{q}_L \\ f_H \end{bmatrix} \quad \frac{\partial \pi}{\partial p_L} = \dot{p}_L =$$

where $\dot{q}_L = \frac{\partial \pi}{\partial q_L} = f_L(V'_L(q_L) - c'(q_L))$



Profits from bundles L and H



Computation under limited information

In offline solution: extensive data collection is used to forecast the consumer types' utility functions in the beginning, (Wilson 1993, Räsänen et al. 1997)

In online solution: In our method (Ehtamo et al. 2008), only local demand data is used incrementally

Local information can be revealed by

Performing price tests (take-it-or-leave-it prices)
and/or marginal cost pricing in the vicinity of
current bundles

Using intelligent pricing strategies

Performing market inquiries with pairwise
comparisons, etc.

Discussion

Local methods perform well

In general many qualities and consumer classes
without simplifying assumptions

In future, study of payoff landscapes,
complexity issues, and computation

Literature

H. Ehtamo, K. Berg, M. Kitti: “An Adjustment Scheme for Nonlinear Pricing Problem with Two Buyers”, EJOR, 2008, to appear.
www.sal.hut.fi/Publications/pdf-files/meht06.pdf

C.H. Brooks, R.S. Gazzale, R.D. Das, J.O. Kephart, J.K. Mackie-Mason, E.H. Durfee: ”Model Selection in an Information Economy: Choosing What to Learn”, Computational Intelligence 18(4), 566-582, 2002

R.B. Wilson: “Nonlinear Pricing”, Oxford University Press, 1993

M. Räsänen, J. Ruusunen, R.P. Hämäläinen: “Optimal tariff design under consumer self-selection”, Energy Economics 19, pp. 151-167, 1997