Mixed-Strategy Subgame-Perfect Equilibria in Repeated Games

Kimmo Berg
Department of Mathematics and Systems Analysis
Aalto University, Finland
(joint with Gijs Schoenmakers)

July 8, 2014
Outline of the presentation

- Illustrative example
 - Shows how players may randomize in repeated games
 - Convert into various normal-form games by using different continuation payoffs
- Abreu-Pierce-Stacchetti fixed-point characterization
 - Extension to behavior strategies
- Self-supporting sets to find equilibria in behavior strategies
- Comparison between pure, behavior and correlated strategies
The model

- Infinitely repeated game
- Stage game with finitely many actions
- Discounting (possibly unequal discount factors)
- Behavior strategies (randomization and history-dependent)
- Players observe realized pure actions (not randomizations)
The model (2)

- Finite set of players $N = \{1, \ldots, n\}$
- Finite set of pure actions $A_i, i \in N, A = \times_{i \in N} A_i$
- Mixed action $q_i(a_i) \geq 0$, profile $q = (q_1, \ldots, q_N)$
- Probability of pure action profile $a \in A$: $\pi_q(a) = \prod_{j \in N} q_j(a_j)$
- Stage game payoff $u_i(q) = \sum_{a \in A} u_i(a) \pi_q(a)$
- Histories $H^k = A^k$ for stage $k \geq 0$, $H^0 = \emptyset$
- Behavior strategy $\sigma_i : H \mapsto Q_i$
- Discounted payoff $U_i(\sigma) = \mathbb{E} \left[(1 - \delta_i) \sum_{k=0}^{\infty} \delta_i^k u_i^k(\sigma) \right]$
Payoffs from stage games

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,3</td>
<td>1,3</td>
<td>3,1</td>
<td>1,1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1,3</td>
<td>7/3,3,7/3</td>
<td>1/3,1,3</td>
<td>11/3,1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>2</td>
<td>3,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>0,0</td>
</tr>
<tr>
<td>3</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
<td>0,0</td>
</tr>
<tr>
<td>4</td>
<td>0,0</td>
<td>2,1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Prisoner’s Dilemma

<table>
<thead>
<tr>
<th></th>
<th>3,3 (a)</th>
<th>0,4 (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,0 (c)</td>
<td>1,1 (d)</td>
<td></td>
</tr>
</tbody>
</table>

- What are equilibria in pure, behavior and correlated strategies?
- Common discount factor $\delta = 1/3$
- The pure action profiles are called a, b, c and d
Prisoner’s Dilemma (2)

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,3</td>
<td>7/3,7/3</td>
</tr>
<tr>
<td>1/3,3</td>
<td>1/3,3</td>
</tr>
<tr>
<td>3,1/3</td>
<td>5/3,5/3</td>
</tr>
<tr>
<td>3,1/3</td>
<td>3,1/3</td>
</tr>
<tr>
<td>1,1</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- Left: No unilateral deviation, a and d followed by cooperation, b and c by punishment
- Right: d^∞ after all pure action profiles
Berg and Kitti (2010): elementary subpaths d, aa, ba, bc, ca, cb

Equilibrium paths are compositions of the elementary subpaths, e.g., $d^7(bc)^3a^\infty$
Prisoner’s Dilemma: Correlated strategies

- All reasonable (feasible and individually rational) payoffs
Prisoner’s Dilemma: Behavior strategies

- Union of rectangle $(1, 3) \times (1, 3)$ and two lines
- How do we get these payoffs?
Prisoner’s Dilemma: Behavior strategies (2)

<table>
<thead>
<tr>
<th></th>
<th>3,3</th>
<th>0,4</th>
<th>7/3,7/3</th>
<th>1/3,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,0</td>
<td>1,1</td>
<td>11/3,1</td>
<td>1,1</td>
<td></td>
</tr>
</tbody>
</table>

- Find follow-up strategies and continuation payoffs so that payoffs correspond to the game on right
- Action profiles a, b and d are followed by d^∞ (SPEP) and c is followed by a^∞ (SPEP)
 - ad^∞: $(1 - \delta)(3, 3) + \delta(1, 1) = (7/3, 7/3)$
 - ca^∞: $(1 - \delta)(4, 0) + \delta(3, 3) = (11/3, 1)$
- Produces the red lines of payoffs
Prisoner’s Dilemma: Behavior strategies (3)

\[
\begin{array}{cc}
3,3 & 0,4 \\
4,0 & 1,1 \\
\end{array}
\Rightarrow
\begin{array}{cc}
3,3 & 1,3 \\
3,1 & 1,1 \\
\end{array}
\]

- Find continuation payoffs: \(a \) (3, 3), \(b \) (3, 1), \(c \) (1, 3), \(d \) (1, 1)
- \((1 - \delta)(0, 4) + \delta(3, 1) = (1, 3)\)
- \(a \) is followed by \(a^\infty \), \(d \) is followed by \(d^\infty \)
- \(b \) is followed by \((cb)^\infty\):
 \[(1 - \delta)(1 - \delta^2)^{-1} [(4, 0) + \delta(0, 4)] = (3, 1)\]
- No randomization needed (not as easy in general!)
- Produces the green rectangle of payoffs
Characterization of Equilibria à la APS

- Carrier of mixed action $Car(q_i) = \{a_i \in A_i | q_i(a_i) > 0\}$
- Most profitable deviation $d_i(q) = \max_{a'_i \in A_i \setminus Car(q_i)} u_i(a'_i, q_{-i})$.
- Smallest payoff from a set $p_i(W) = \min\{w_i, w \in W\}$
- A pair (q, w) is admissible with respect to $(w \in) W$ if
 \[(1 - \delta)u_i(q) + \delta w_i \geq (1 - \delta)d_i(q) + \delta p_i(W)\]
- Each $a \in Car(q)$ may follow by different continuation play
- Continuation payoff $w = \sum_{a \in Car(q)} x(a)\pi_q(a), x(a) \in W$
Characterization (2)

- Stage game payoffs $\tilde{u}_\delta(a) = (1 - \delta)u(a) + \delta x(a)$
- Set of all equilibrium payoffs $M(x)$ of stage game with \tilde{u}
- V is the set of subgame-perfect equilibrium payoffs

Theorem

V is the largest fixed point of B:

$$W = B(W) = \bigcup_{x \in W | A|} M(x),$$

where (q, w) admissible, w formed by x, and q equilibrium of stage game with payoffs x.
Comparison to Pure Strategies

- V^P is the set of pure-strategy subgame-perfect equilibrium payoffs

Theorem (Abreu-Pearce-Stacchetti 1986/1990)

V^P is the largest fixed point of B^P:

$$W = B^P(W) = \bigcup_{a \in A} \bigcup_{w \in C_a(W)} (1 - \delta)u(a) + \delta w,$$

where $C_a(W) = \{ w \in W \text{ s.t. } (a, w) \text{ admissible} \}$.
Comparison to Pure Strategies (2)

- Complexity of fixed-point is higher
- Structure of equilibria different
- In pure strategies, enough to have high enough continuation payoff
- Randomization requires exact continuation payoffs
Self-supporting sets

Definition

S is self-supporting set if $S \subseteq M(x)$ for $x \in \mathbb{R}^{|A|}$ and

- $x(a) \in S$ for $a \in Car(q(s))$,
- if player i plays an action \tilde{a}_i outside $Car(q(s)_i)$ (an observable deviation), while $a_{-i} \in Car(q(s)_{-i})$, then $x_i(\tilde{a}_i, a_{-i})$ is player i’s punishment payoff.
- if at least two players make an observable deviation, then the continuation payoff is a predetermined equilibrium payoff.

- Strongly self-supporting if $x(a) \in S$ for all $a \in A$
Self-supporting sets (2)

- Required continuation payoffs are within the set itself
- Easy way to produce (subsets of) equilibrium payoffs

Theorem (Monotonicity in δ)

If S is self-supporting set for δ,

- S is convex,
- $\tilde{u}_\delta(a) = (1 - \delta)u(a) + \delta x(a) \in S$ for all $a \in Car(q(s))$, and
- $p_i(V(\delta))$ is not increasing in δ for all $i \in N$.

Then there exists a self-supporting set $S' \supseteq S$ for $\delta' > \delta$.
Results: Prisoner’s Dilemma

<table>
<thead>
<tr>
<th>a, a</th>
<th>b, c</th>
</tr>
</thead>
<tbody>
<tr>
<td>c, b</td>
<td>d, d</td>
</tr>
</tbody>
</table>

with $c > a > d > b$

Theorem

The rectangle $[d, a] \times [d, a]$ is a subset of the subgame-perfect equilibrium payoffs for

$$\delta \geq \max \left[\frac{c - a}{c - d}, \frac{d - b}{a - b} \right].$$
Results: Nonmonotonicity

Theorem (Nonmonotonicity of payoffs)

The set of subgame-perfect equilibrium payoffs are not monotone in the discount factor in the following symmetric game:

<table>
<thead>
<tr>
<th></th>
<th>$-\frac{1}{10}, 4$</th>
<th>$-10, -10$</th>
<th>$1, -10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3, 3$</td>
<td>1, 1</td>
<td>$-10, -10$</td>
<td>$-10, -10$</td>
</tr>
<tr>
<td>$4, -\frac{1}{10}$</td>
<td>1, 1</td>
<td>$-10, -10$</td>
<td>$-10, -10$</td>
</tr>
<tr>
<td>$-10, 1$</td>
<td>$-10, -10$</td>
<td>$\frac{43}{10}, -\frac{1}{10}$</td>
<td>$-10, -10$</td>
</tr>
<tr>
<td>$-10, -10$</td>
<td>$-10, -10$</td>
<td>$-10, -10$</td>
<td>$-\frac{1}{10}, \frac{43}{10}$</td>
</tr>
</tbody>
</table>

- $[1, 3] \times [1, 3]$ is a subset of the subgame-perfect equilibrium payoffs when $\delta = 1/3$ but not for a higher discount factor
- Rectangle gets contracted and relies on outside payoff
Results: Comparison of pure, mixed and correlated

- Feasible payoffs $V^\dagger = \text{co} \left(\{ v \in \mathbb{R}^n : \exists q \in A \text{ s.t. } v = u(q) \} \right)$
- Reasonable payoffs $V^*(\delta) = \{ v \in V^\dagger, v_i \geq p_i(V(\delta)), i \in N \}$
- Critical discount factor

$$\delta^M = \inf \{ \delta : V(\delta') = V^*(\delta'), \forall \delta' \geq \delta \}$$

Theorem

*For all δ, $V^P(\delta) \subseteq V^M(\delta) \subseteq V^C(\delta)$.***

Theorem

*If $p^P(V^P(\delta')) = p(V(\delta')) = p^C(V^C(\delta'))$ for all $\delta' \geq \min \{ \delta^P, \delta^M, \delta^C \}$, then it holds that $\delta^P \geq \delta^M \geq \delta^C$.***
Results: Comparison in Prisoner’s Dilemma

Theorem

In symmetric Prisoner’s Dilemma, it holds that

\[\delta^P = \delta^M = \frac{c - b}{a + c - b - d} > \max \left[\frac{c - a}{c - d}, \frac{d - b}{a - b} \right] = \delta^C, \]

when \(b + c < 2a \), and otherwise

\[\delta^P = \frac{2(c - d)}{b + 3c - 4d} > \delta^M = \frac{c - b}{2(c - d)} > \frac{d - b}{c - d} = \delta^C, \]
Conclusion

- Characterization of equilibria in behavior strategies
- Self-supporting sets offer easy way to find behavior strategies
- It is possible to compare equilibria under different assumptions
- Open problem: punishment strategies in pure and behavior strategies
That’s all folks...

Thank you! Any questions?