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Research Questions

Setup: infinitely repeated game with discounting

perfect monitoring
pure strategies
stage game with finitely many actions

Research questions:

What are the subgame perfect equilibrium (SPE) paths?
What about the payoff set?
What happens when the discount factors change?
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Main Results: Analyze and Compute SPE Paths
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Analyze complexity of SPE paths
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Main Results: Analyze and Compute Payoff Set
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Payoff set is a particular fractal

Graph directed self-affine set

Estimate Hausdorff dimension
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Characterization of SPE strategies

All SPE paths are attained by simple strategies: Abreu (1988)

Equilibrium path that the players follow
History-independent punishment paths for each player
Punishment paths are played if the players deviate from the
current path
These are equilibrium paths that give the minimum payoffs
v−i = min{vi : v ∈ V ∗}.

a
b
b...

Equilibrium path

b∞ c∞

Punishment paths

Structure of simple strategies
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Characterization of SPE paths

SPE paths are characterized by one-shot deviation principle

A path p that strategy σ induces is a SPE path if and only if
it satisfies the incentive compatibility (IC) constraints:

(1 − δi)ui(a
k(σ)) + δiv

k
i ≥ max

ai∈Ai

[

(1 − δi)ui(ai, a
k
−i(σ)) + δiv

−
i

]

,

∀i ∈ N , k ≥ 0, and where the continuation payoff after ak(σ)
is vk

i = (1 − δi)
∑∞

j=0 δj
i ui(a

k+1+j(σ)).
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New Concept

Definition

A finite path p ∈ Ak(a) is a first action feasible (FAF) path if the
first action profile a is incentive compatible when any SPE path
follows the finite path:

(1 − δi)

|p|−1
∑

k=0

ui(i(pk)) + δ
|p|
i v−i ≥ max

ai∈Ai

(1 − δi)u(ai, a−i) + δiv
−
i ,

∀i ∈ N .
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Illustrative Example

We can check that a path is IC with the FAF paths

FAF paths are a, ba, and bbaa

Is a path p = (abba)∞ a SPE path?

a b b aa · · ·
bbaa is a FAF path
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Illustrative Example

We can check that a path is IC with the FAF paths

FAF paths are a, ba, and bbaa

Is a path p = (abba)∞ a SPE path?

a b b aa · · ·
ba is a FAF path
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Illustrative Example

We can check that a path is IC with the FAF paths

FAF paths are a, ba, and bbaa

Is a path p = (abba)∞ a SPE path?

a b b aa · · ·
a is a FAF path



Introduction Methodological Framework Analysis of equilibria Applications

Illustrative Example

We can check that a path is IC with the FAF paths

FAF paths are a, ba, and bbaa

Is a path p = (abba)∞ a SPE path?

a b b aa · · ·
Thus, p = (abba)∞ is a SPE path
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Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC
(1 − δi)ui(a) + δiconi(a) = max

ai∈Ai

[

(1 − δi)ui(ai, a−i) + δiv
−
i

]

,

∀i ∈ N.
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Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC
(1 − δi)ui(a) + δiconi(a) = max

ai∈Ai

[

(1 − δi)ui(ai, a−i) + δiv
−
i

]

,

∀i ∈ N.

Definition

For any p ∈ Ak(a), k ≥ 2, and p = pk−1a,
coni(p) = δ−1

i

[

coni(p
k−1) − (1 − δi)u(a)

]

.
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Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC
(1 − δi)ui(a) + δiconi(a) = max

ai∈Ai

[

(1 − δi)ui(ai, a−i) + δiv
−
i

]

,

∀i ∈ N.

Definition

For any p ∈ Ak(a), k ≥ 2, and p = pk−1a,
coni(p) = δ−1

i

[

coni(p
k−1) − (1 − δi)u(a)

]

.

Definition

A finite path p ∈ Ak(a), k ≥ 2, is a FAF path if and only if
con(p) ≤ con(a).
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first action profile a is not incentive compatible no matter what
SPE path follows:
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New Concept

Definition

A finite path p ∈ Ak(a) is a first action infeasible (FAI) path if the
first action profile a is not incentive compatible no matter what
SPE path follows:

coni(p) > v̄i, for some i ∈ N,

where v̄i = max {vi : v ∈ V ∗}, i ∈ N .
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Interpretation of FAF and FAI paths

We can classify all finite paths by using con(a)

Future payoffs weigh less due to discounting

FAF

N

FAI

con2

v1

con1v2
SPE continuation payoffs
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Construction of SPE paths

1. Compute FAF paths and represent as tree

2. Form graph: Nodes are from the tree

3. Form arcs:

inner nodes: arcs from the tree
leaf nodes connected to root: arcs to
root node’s children
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Construction of SPE paths

1. Compute FAF paths and represent as tree

2. Form graph: Nodes are from the tree

3. Form arcs:

inner nodes: arcs from the tree
leaf nodes connected to root: arcs to
root node’s children
other leaf nodes: find pk in the tree.

If pk found in tree, arc from p1 to pk.

If longest common path with p an

inner node in tree, p is infeasible.

Else set k = k + 1.
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Construction of SPE paths

1. Compute FAF paths and represent as tree

2. Form graph: Nodes are from the tree

3. Form arcs:

inner nodes: arcs from the tree
leaf nodes connected to root: arcs to
root node’s children
other leaf nodes: find pk in the tree.

If pk found in tree, arc from p1 to pk.

If longest common path with p an

inner node in tree, p is infeasible.

Else set k = k + 1.

Note that FAF paths may have infeasible
parts.

∅

a b

ba bb

bba

bbaa

∅

a b

bb

bba
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Multigraph Representation

When FAF paths with infeasible parts are removed, we get the
elementary subpaths of the game

Graph can be simplified by removing the states with only one
destination

∅

a b
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bba

∅

a b
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Examine complexity of SPE paths

cycles in multigraph related to dimension
number and length of elementary subpaths
entropy of action profiles

Examine complexity of payoff set

where are the SPE payoffs and how dense are they?
Hausdorff dimension of the payoff set
graph directed construction: Mauldin and Williams (1988)
arcs correspond to contractions
if p = abc is played on an arc, then contraction mapping on
the arc is rp = δ|p| = δ3
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Analysis with the Multigraph

Examine complexity of SPE paths

cycles in multigraph related to dimension
number and length of elementary subpaths
entropy of action profiles

Examine complexity of payoff set

where are the SPE payoffs and how dense are they?
Hausdorff dimension of the payoff set
graph directed construction: Mauldin and Williams (1988)
arcs correspond to contractions
if p = abc is played on an arc, then contraction mapping on
the arc is rp = δ|p| = δ3

exact dimension when open set condition is satisfied (δ < 0.5)
otherwise, lower and upper bound estimates: Edgar and Golds
(1999)
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Example of Prisoners’ Dilemma

Stage game:
L R

T 3, 3 0, 4
B 4, 0 1, 1

A = {a, b, c, d} from left to right, top to bottom

For δ1 = δ2 = 1/2 the finite elementary sets

a b c d

P 1 ∅ ∅ ∅ {d}
P 2 {aa} {ba, bc} {ca, cb} ∅
P 4 ∅ {bdca} {cdba} ∅
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Multigraph of Prisoners’ Dilemma

∅

a b

c d

dca

dba

Finite elementary subpaths

Note: arc labels contain the
information for creating
SPEPs

no label = same as the
node pointed at
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Multigraph of Prisoners’ Dilemma

∅

a b

c d

a∗

dca

dba

d

dcd

d

ad
dbd

Finite elementary subpaths

Note: arc labels contain the
information for creating
SPEPs

no label = same as the
node pointed at

Infinite elementary subpaths
P∞(a) = {ada∞},
P∞(b) = {bda∞, bdcda∞},
P∞(b) = {cda∞, cdbda∞}
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Payoffs in Prisoner’s Dilemma

δ = 0.5, dimH = 0 (limit)
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δ = 0.58, dimH ≈ 1.4

1 1.5 2 2.5 3 3.5 4

1

1.5

2

2.5

3

3.5

4

v1

v
2



Introduction Methodological Framework Analysis of equilibria Applications

Results

Proposition

A path p ∈ A∞(a) is a SPEP if and only if for all j ∈ N either
pk

j ∈ P k(i(pk
j )) for some k or pj ∈ P∞(i(pj)).
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Results

Proposition

A path p ∈ A∞(a) is a SPEP if and only if for all j ∈ N either
pk

j ∈ P k(i(pk
j )) for some k or pj ∈ P∞(i(pj)).

Proposition

For any ε > 0 there is k such that p ∈ A∞(a), a ∈ A,
v(p1) ≥ con(a) + ε, imply that pl

j ∈ P l(i(pj)) for some l ≤ k.
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Results

Proposition

A path p ∈ A∞(a) is a SPEP if and only if for all j ∈ N either
pk

j ∈ P k(i(pk
j )) for some k or pj ∈ P∞(i(pj)).

Proposition

For any ε > 0 there is k such that p ∈ A∞(a), a ∈ A,
v(p1) ≥ con(a) + ε, imply that pl

j ∈ P l(i(pj)) for some l ≤ k.

Proposition

When syntax S(u, T ) contains finitely many paths, then all SPEPs
are represented by a multigraph.
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Infinite Elementary Subpaths

Payoffs are on the boundary, i.e., vi(p) = coni(a) for some i

We can either try to find the infinite subpaths or construct a
subset of SPE paths

We know roughly what paths are missing and what payoffs
they give
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Infinite Elementary Subpaths

Payoffs are on the boundary, i.e., vi(p) = coni(a) for some i

We can either try to find the infinite subpaths or construct a
subset of SPE paths

We know roughly what paths are missing and what payoffs
they give

For high discount δ, we have to restrict anyways the length of
FAF paths in computation
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Sierpinski Game

L M R
T 2 −

√
3, 1 −1,−1 −1,−1

C −1,−1 1, 2 −
√

3 −1,−1
B −1,−1 −1,−1 0, 0

A = {a, b, c} on the diagonal, dimH = ln 3/ ln 2 ≈ 1.585

For δ1 = δ2 = 1/2, the finite elementary subpaths: a, b, c

0 0.5 1
0

0.5

1

v1

v2

a b

c
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Twelve Symmetric Ordinal 2x2 Games

R

RP

P

T

S

Prisoner’s
Dilemma

Hawk−Dove
Chicken

2 Leader
3

of Sexes
Battle

4

Stag Hunt

Harmony

Harmony
anti−

6 7

Stag−Hunt

12
anti−PD

11
anti−

Coordination

9

Coordination
anti−

8
anti−HD

5

1

10

DC

TD

C SR

P

Robinson and Goforth (2005)
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Payoff sets with high complexity

2 3 4 5 6 7
2

3

4

5

6

7

3 4 5 6
3

4

5

6

Prisoner’s Dilemma, δ = 0.65 Chicken, δ = 0.5

2 3 4 5

2

3

4

5

3 4 5

3

4

5

Stag Hunt, δ = 0.5 No Conflict, δ = 0.5
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Payoff sets with low complexity

C D
C 5, 5 6, 7
D 7, 6 2, 2

(2,2)

(5,5)

(6,7)

(7,6)

b c

Payoff sets similar in Leader, Battle of the Sexes,
Coordination and anti-Coordination games

repetition of two equilibria

dimH = 1 when δ from 1/2 to 0.6 . . . 0.8

when δ < 1/2, isolated points between b and c
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Path Dimensions

game/δ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0 0 0.69 1.23∗ 3.37∗ 5.91∗ 12.88∗

2 0.58 0.81 1.24 2.03∗ 3.33∗ 5.80∗ 12.75∗

5 0.73 1.10 1.49 2.26∗ 3.46∗ 5.85∗ 12.76∗

6 0 0 1.39 2.12∗ 3.33∗ 5.71∗ 12.44∗

Sierpinski 0.91 1.20 1.59 2.15 3.08 4.92 10.43
Upper bound 1.15 1.51 2 2.71 3.89 6.21 13.16

3 0.58 0.76 1 1.36 1.94 3.11 5.52∗

4 0.58 0.76 1 1.36 2.12∗∗ 3.83∗∗ 6.40∗

9 0.58 0.76 1 1.46∗∗ 2.51∗∗ 4.47∗ 10.57∗

10 0.58 0.76 1 1.36 2.25∗∗ 4.09∗ 10.07∗

FAF path length restricted to 8 (*) and 12 (**)
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Changing Discount Factor

0 1 2 3

0

1

2

3

PD with δ = 0.35 (+), δ = 0.4 (x), δ = 0.5 (·)
maximum payoff around 2.5 decreases, path ca∞

Mailath, Obara and Sekiguchi (2002)
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Unequal Discount Factors

2 3 4 5 6 7
2

3

4

5

6

7

PD with δ1 = 0.57 and δ2 = 0.53

payoff set tilted to one side, more sparse on southern side

some actions to player 2 are not possible as he is less patient

Lehrer and Pauzner (1999)
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SPEPs are characterized by elementary subpaths

all SPEPs are obtained by combining elementary subpaths
finite elementary subpaths can be rather easily computed
one implication: equilibrium behavior is “easily predicted”
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Summary

SPEPs are characterized by elementary subpaths

all SPEPs are obtained by combining elementary subpaths
finite elementary subpaths can be rather easily computed
one implication: equilibrium behavior is “easily predicted”

The set of SPE payoffs is a self-affine set

finite number of elementary subpaths ⇒ graph-directed
self-affine set
dimension estimates for the payoff set
insight into folk theorem: payoff set becomes richer due to
having more SPEPs and due to less contractive mappings
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Methodological Framework

The set of SPE payoffs is characterized by a fixed-point
equation

imperfect monitoring: Abreu, Pearce, and Stacchetti
(1986,1988), hereafter APS
perfect monitoring: Cronshaw and Luenberger (1994)
computation: Cronshaw (1997), Judd, Yeltekin, and Conklin
(2003)
application to prisoners’ dilemma game: Mailath, Obara, and
Sekiguchi (2002)
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Methodological Framework

The set of SPE payoffs is characterized by a fixed-point
equation

imperfect monitoring: Abreu, Pearce, and Stacchetti
(1986,1988), hereafter APS
perfect monitoring: Cronshaw and Luenberger (1994)
computation: Cronshaw (1997), Judd, Yeltekin, and Conklin
(2003)
application to prisoners’ dilemma game: Mailath, Obara, and
Sekiguchi (2002)

Analogy with dynamic programming

Dynamic Programming Repeated Games
Bellman Equation APS
Euler Equation This work!



Introduction Methodological Framework Analysis of equilibria Applications

The APS Theorem

Proposition

The set of SPE payoffs V ∗ is the (unique) largest (in set inclusion)
compact set that satisfies

V ∗ =
⋃

a∈F (V ∗)

Ca(V
∗) =

⋃

a∈F (V ∗)

Ba(Ca(V
∗)).
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The APS Theorem

Proposition

The set of SPE payoffs V ∗ is the (unique) largest (in set inclusion)
compact set that satisfies

V ∗ =
⋃

a∈F (V ∗)

Ca(V
∗) =

⋃

a∈F (V ∗)

Ba(Ca(V
∗)).

Ba(v) = (I − T )u(a) + Tv, i.e., discounted average of u(a)
and v, here T is the matrix with δ1, . . . , δn on diagonal

V ∗ is a fixed-point of a particular iterated function system

V ∗ is a subset of a self-affine set W for which
W = ∪a∈F (V ∗)Ba(W )
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