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Introduction

Research Questions

@ Setup: infinitely repeated game with discounting

o perfect monitoring
@ pure strategies
¢ stage game with finitely many actions

@ Research questions:

o What are the subgame perfect equilibrium (SPE) paths?
@ What about the payoff set?
@ What happens when the discount factors change?



Main Results: Analyze and Compute SPE Paths

@ Complex equilibrium behavior

collapses into elementary subpaths
’Q @ SPE paths can be represented with
directed multigraph

@ Analyze complexity of SPE paths




Introduction

Main Results: Analyze and Compute Payoff Set

@ Payoff set is a particular fractal
@ Graph directed self-affine set

@ Estimate Hausdorff dimension
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Methodological Framework

Characterization of SPE strategies

@ All SPE paths are attained by simple strategies: Abreu (1988)

o Equilibrium path that the players follow

o History-independent punishment paths for each player

@ Punishment paths are played if the players deviate from the
current path

@ These are equilibrium paths that give the minimum payoffs

v; = min{v; : v € V*}.
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Characterization of SPE paths

@ SPE paths are characterized by one-shot deviation principle

@ A path p that strategy o induces is a SPE path if and only if
it satisfies the incentive compatibility (IC) constraints:

(1= 6))us(a*(0)) + 60 > max [(1 — 8:)ui(as, a® (o)) + m;] :

aiEAi

Vi € N, k> 0, and where the continuation payoff after a* (o)

is vf = (1—6;) 3202 6wy (aF 1+ ().
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A finite path p € A*(a) is a first action feasible (FAF) path if the
first action profile a is incentive compatible when any SPE path
follows the finite path:




Methodological Framework
New Concept

Definition

A finite path p € A*(a) is a first action feasible (FAF) path if the
first action profile a is incentive compatible when any SPE path
follows the finite path:

|p|—1
(1—6) 3 wili(pr)) + 8oy > max (1 — 6;)u(as, a;) + o7,
k=0 aiEAi

Vi € N. |
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[llustrative Example

@ We can check that a path is IC with the FAF paths
@ FAF paths are a, ba, and bbaa
@ Is a path p = (abba)> a SPE path?
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@ ba is a FAF path



Methodological Framework
[llustrative Example

@ We can check that a path is IC with the FAF paths
@ FAF paths are a, ba, and bbaa
@ Is a path p = (abba)> a SPE path?

abbla - -

@ a is a FAF path



Methodological Framework
[llustrative Example

@ We can check that a path is IC with the FAF paths
@ FAF paths are a, ba, and bbaa
@ Is a path p = (abba)> a SPE path?

abbaa---

@ Thus, p = (abba)*> is a SPE path



Methodological Framework

Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a 1C

(1 = &;)u;(a) + d;con;(a) = max [(1 — ) ui(a,a_;) + 51-2;;} ,
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Vi € N.
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Definition

A vector con(a) gives the least payoffs that make action a 1C
(1 = &;)u;(a) + d;con;(a) = g?eajxi [(1 — ) ui(a,a_;) + 5iv;] ,
Vi€ N.

Definition
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Methodological Framework

Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC

(1 = &;)u;(a) + d;con;(a) = max (1 = 6;)ui(ai, a—;) + &v; |,
a; 7

Vi€ N.

Definition

| A\

For any p € A¥(a), k> 2, and p = pF~la,
con;(p) = &; [con; (p*~1) — (1 — &;)u(a)] .

Definition
A finite path p € A¥(a), k > 2, is a FAF path if and only if
con(p) < con(a).




Methodological Framework

New Concept

Definition

A finite path p € A¥(a) is a first action infeasible (FAI) path if the
first action profile a is not incentive compatible no matter what
SPE path follows:




Methodological Framework

New Concept

Definition
A finite path p € A¥(a) is a first action infeasible (FAI) path if the

first action profile a is not incentive compatible no matter what
SPE path follows:

con;(p) > v;, for somei € N,

where ¥; = max{v; : v € V*}, i € N.




Methodological Framework

Interpretation of FAF and FAI paths

@ We can classify all finite paths by using con(a)

@ Future payoffs weigh less due to discounting

(%) Icong
! FAF | SPE continuation payoffs
|
|
|
|
- N____ cons
l FAI
] U1
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1. Compute FAF paths and represent as tree (@) (b)
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Construction of SPE paths

1. Compute FAF paths and represent as tree

2. Form graph: Nodes are from the tree

3. Form arcs:

@ inner nodes: arcs from the tree
@ leaf nodes connected to root: arcs to
root node’s children

bbaa
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Methodological Framework

Construction of SPE paths

1. Compute FAF paths and represent as tree @ e

2. Form graph: Nodes are from the tree @
3. Form arcs:

@ inner nodes: arcs from the tree
@ leaf nodes connected to root: arcs to
root node’s children

S @

S
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o other leaf nodes: find py in the tree. @
@ If pi found in tree, arc from p1 to py.
@ If longest common path with p an @e

inner node in tree, p is infeasible.
o Elseset k=Fk+ 1.
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Construction of SPE paths

1. Compute FAF paths and represent as tree @ e

2. Form graph: Nodes are from the tree @
3. Form arcs:

@ inner nodes: arcs from the tree
@ leaf nodes connected to root: arcs to
root node’s children

S @

S

g e
Q

o other leaf nodes: find py in the tree. @
@ If pi found in tree, arc from p1 to py.
@ If longest common path with p an @e

inner node in tree, p is infeasible.
o Elseset k=Fk+ 1. @
@ Note that FAF paths may have infeasible
parts. @



Analysis of equilibria

Multigraph Representation

@ When FAF paths with infeasible parts are removed, we get the
elementary subpaths of the game

@ Graph can be simplified by removing the states with only one
destination
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Hausdorff dimension of the payoff set

graph directed construction: Mauldin and Williams (1988)
arcs correspond to contractions

if p = abc is played on an arc, then contraction mapping on
the arc is r, = 0Pl = §°



Analysis of equilibria

Analysis with the Multigraph

@ Examine complexity of SPE paths

o
]
]

cycles in multigraph related to dimension
number and length of elementary subpaths
entropy of action profiles

@ Examine complexity of payoff set

]

]
]
]
o

where are the SPE payoffs and how dense are they?
Hausdorff dimension of the payoff set

graph directed construction: Mauldin and Williams (1988)
arcs correspond to contractions

if p = abc is played on an arc, then contraction mapping on
the arc is r, = 0Pl = §°

@ exact dimension when open set condition is satisfied (§ < 0.5)

otherwise, lower and upper bound estimates: Edgar and Golds
(1999)



Analysis of equilibria
Example of Prisoners’ Dilemma

L R
@ Stage game: T | 3,3 | 0,4
B[40 | 1,1

o A={a,b,c,d} from left to right, top to bottom
@ For 81 = 63 = 1/2 the finite elementary sets

‘ a b c d
PLD 0 0 {d}
P? | {aa} {ba,bc} {ca,cb} 0
P10 {bdca}  {cdba} 0




Analysis of equilibria

Multigraph of Prisoners’ Dilemma

@ Finite elementary subpaths

@ Note: arc labels contain the
information for creating
SPEPs

@ no label = same as the
node pointed at




Analysis of equilibria

Multigraph of Prisoners’ Dilemma

@ Finite elementary subpaths

@ Note: arc labels contain the
information for creating
SPEPs

@ no label = same as the
node pointed at

@ Infinite elementary subpaths
P>(a) = {ada*>},
P>(b) = {bda™>, bdcda>},
P>(b) = {cda™>, cdbda>}




Analysis of equilibria

Payoffs in Prisoner’'s Dilemma

§ = 0.5, dimgy = 0 (limit) § = 0.58, dimy ~ 1.4

3.5 -

1.5

X
“
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Analysis of equilibria
Results

Proposition

A path p € A®(a) is a SPEP if and only if for all j € N either
p? € Pk(z(p;f)) for some k or p; € P> (i(p;)).
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v(p1) > con(a) + €, imply that pé- € P!(i(pj)) for some | < k.




Analysis of equilibria

Results

Proposition

A path p € A®(a) is a SPEP if and only if for all j € N either
p? € Pk(z(pf)) for some k or p; € P> (i(p;)).

Proposition

For any € > 0 there is k such that p € A>®(a), a € A,
v(p1) > con(a) + €, imply that pé- € P!(i(pj)) for some | < k.

Proposition

When syntax S(u,T') contains finitely many paths, then all SPEPs
are represented by a multigraph.

4



Analysis of equilibria

Infinite Elementary Subpaths

@ Payoffs are on the boundary, i.e., v;(p) = con;(a) for some i

@ We can either try to find the infinite subpaths or construct a
subset of SPE paths

@ We know roughly what paths are missing and what payoffs
they give



Analysis of equilibria

Infinite Elementary Subpaths

@ Payoffs are on the boundary, i.e., v;(p) = con;(a) for some i

@ We can either try to find the infinite subpaths or construct a
subset of SPE paths

@ We know roughly what paths are missing and what payoffs
they give

@ For high discount §, we have to restrict anyways the length of
FAF paths in computation



Applications

Sierpinski Game

L M R
T [2—v3,1 | —1,—-1 —1,—1
cC | —-1,-1 [1,2—+3 —1,—1
B | -1,-1 —1,-1 0,0

o A ={a,b,c} on the diagonal, dimyg =1n3/In2 ~ 1.585
@ For 81 = 69 = 1/2, the finite elementary subpaths: a, b, c

1

0.5
v




Applications

Twelve Symmetric Ordinal 2x2 Games

T ‘ ‘
1 2 iLeader 4
Prisoner’s Hayvk—Dove§ 3 Battle
Dilemma : Chicken ! of Sexes
e oo c o
rHarmony
5 1 1
e 7. 8 cl R s
Stag Hunt anti-! anti-HD
!/ Harmony!
Coordinatiop” | ! b ' i
o (1o Mo 12
ai | _anti— 1 anti-PD
Coordination Stag—Hunt; S
P R

Robinson and Goforth (2005)



Applications

Payoff sets with high complexity

5|

2 3 4 5 3 4 5

Stag Hunt, 6 = 0.5 No Conflict, 6 = 0.5



Applications
Payoff sets with low complexity

6.7) C D
RO ¢ [55 [6.7
5.5 D [7.6 | 22
(2.2) 5 @

@ Payoff sets similar in Leader, Battle of the Sexes,
Coordination and anti-Coordination games

@ repetition of two equilibria
@ dimy = 1 when ¢ from 1/2 t0 0.6...0.8
@ when ¢ < 1/2, isolated points between b and ¢



Applications
Path Dimensions

game/6 | 0.3 04 05 06 0.7 0.8 0.9
110 0 0.69 1.23* 3.37° 591" 12.88*
21058 081 124 203" 333" 580* 12.75*
51073 110 149 226* 3.46* 585" 12.76*
6|0 0 1.39 212 3.33* 571" 12.44*
Sierpinski | 0.91 120 159 2.15 3.08 4.92 10.43
Upper bound | 1.15 151 2 2.71 3.89 6.21 13.16

31058 076 1 1.36 1.94 3.11 5.52*

41058 076 1 1.36 2.12**  3.83** 6.40*

91058 076 1 1.46* 251" 4.47* 10.57*
101 058 076 1 1.36 2.25*  4.09* 10.07*

FAF path length restricted to 8 (*) and 12 (**)



Applications
Changing Discount Factor

3L

¢ X
ot

*

n
£ +
2

@ PD with § =0.35 (+), 6 = 0.4 (x), § =0.5 (+)
@ maximum payoff around 2.5 decreases, path ca
@ Mailath, Obara and Sekiguchi (2002)

[e.e]



Applications

Unequal Discount Factors

@ PD with §; = 0.57 and d5 = 0.53

@ payoff set tilted to one side, more sparse on southern side

@ some actions to player 2 are not possible as he is less patient
@ Lehrer and Pauzner (1999)



Applications

Summary

@ SPEPs are characterized by elementary subpaths

o all SPEPs are obtained by combining elementary subpaths
o finite elementary subpaths can be rather easily computed
@ one implication: equilibrium behavior is “easily predicted”
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Summary

@ SPEPs are characterized by elementary subpaths

o all SPEPs are obtained by combining elementary subpaths

o finite elementary subpaths can be rather easily computed

@ one implication: equilibrium behavior is “easily predicted”

@ The set of SPE payoffs is a self-affine set

o finite number of elementary subpaths = graph-directed
self-affine set

@ dimension estimates for the payoff set

¢ insight into folk theorem: payoff set becomes richer due to
having more SPEPs and due to less contractive mappings



Applications

Methodological Framework

@ The set of SPE payoffs is characterized by a fixed-point
equation
@ imperfect monitoring: Abreu, Pearce, and Stacchetti
(1986,1988), hereafter APS
@ perfect monitoring: Cronshaw and Luenberger (1994)
s computation: Cronshaw (1997), Judd, Yeltekin, and Conklin

(2003)
@ application to prisoners’ dilemma game: Mailath, Obara, and

Sekiguchi (2002)



Applications

Methodological Framework

@ The set of SPE payoffs is characterized by a fixed-point
equation
@ imperfect monitoring: Abreu, Pearce, and Stacchetti
(1986,1988), hereafter APS
@ perfect monitoring: Cronshaw and Luenberger (1994)
s computation: Cronshaw (1997), Judd, Yeltekin, and Conklin

(2003)
@ application to prisoners’ dilemma game: Mailath, Obara, and

Sekiguchi (2002)
@ Analogy with dynamic programming
Dynamic Programming | Repeated Games

Bellman Equation APS
Euler Equation This work!




The APS Theorem

Proposition

The set of SPE payoffs V* is the (unique) largest (in set inclusion)
compact set that satisfies

= J G = | BauCa(v?).

acF(V*) a€F(V*)




Applications

The APS Theorem

Proposition

The set of SPE payoffs V* is the (unique) largest (in set inclusion)
compact set that satisfies

= J G = | BauCa(v?).

acF(V*) a€F(V*)

@ By(v) = (I —T)u(a)+ Twv, i.e., discounted average of u(a)
and v, here T is the matrix with é1,...,d, on diagonal
@ V* is a fixed-point of a particular iterated function system

o V* is a subset of a self-affine set W for which
W = Uuepv+)Ba(W)
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