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Abstract
Banks prepare for crises by estimating the amount of capital they would need in extreme
situations. That capital amount is called economic capital. Before the 2008 financial
crisis, when estimating economic capital, it was common for banks and regulators
to assume that the dependence of credit losses in a portfolio is linear according to
the multivariate normal distribution. In other words, the dependence was estimated
with the Gaussian copula. However, several studies have observed that the Gaussian
copula underestimates risk in extreme scenarios. Therefore, many banks seek to
replace it with another copula that can model nonlinear dependencies, but with many
alternatives, making the choice can be difficult.

This thesis helps to choose the copula for an economic capital model by comparing
the Student’s t copula and the Gumbel copula as alternatives to the Gaussian copula.
The copulas are compared with qualitative criteria based on factors that were found
important when developing economic capital calculation in a large bank. In partic-
ular, copulas are compared by their theoretical justifiability, the complexity of their
simulation algorithms, and their explainability to model users. Empirical performance
is assessed by citing the literature.

The results of the comparisons suggest that no copula can be declared to be the
best in terms of the criteria. The Gumbel copula is theoretically better in modeling
stock market data, and therefore credit losses, than the other copulas. On the other
hand, the Student’s t copula also has desired dependence modeling ability, and it is
easier to explain and has a simpler implementation than the Gumbel copula.

The results of this thesis imply that the Student’s t copula is unconditionally
better than the Gaussian copula for modeling economic capital. The Gumbel copula
may not always be better than the Gaussian or Student’s t copula, but it should be
considered in some cases, for example if theoretical justifiability is highly valued and
the implementation could be simplified.

Keywords Copula, economic capital, credit risk, nonlinear
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Tiivistelmä
Pankit varautuvat kriiseihin laskemalla arvion taloudelliseta pääomasta, eli pääomasta
joka vaaditaan kattamaan tappiot erittäin harvinaisessa tilanteessa. Ennen vuoden
2008 finanssikriisiä monet pankit ja valvovat viranomaiset olettivat taloudellista pää-
omaa arvioidessaan, että luottotappioiden todennäköisyydet lainasalkussa riippuvat
toisistaan lineaarisesti kuin moniulotteisessa normaalĳakaumassa, eli normaalikopu-
lan mukaisesti. Useissa tutkimuksissa on kuitenkin havaittu, että normaalikopulan
käyttäminen aliarvioi äärimmäisiä riskejä. Monet pankit haluavat siksi käyttää jotakin
toista, epälineaarisia ilmiöitä huomioivaa kopulaa riippuvuuksien mallintamiseen.
Vaihtoehtoja on kuitenkin lukuisia, eikä niiden vertailu ole helppoa.

Tässä opinnäyttetyössä helpotetaan kopulan valintaa luottosalkun riskimallinnuk-
seen vertailemalla Studentin t -kopulaa ja Gumbel-kopulaa vaihtoehtona normaaliko-
pulalle. Kopuloita vertaillaan kvalitatiivisista näkökulmista, jotka on havaittu tärkeiksi,
kun kehitetään suuren pankin taloudellisen pääoman laskentaa. Erityisesti työssä
vertaillaan kopuloita kolmesta näkökulmasta: kuinka hyvin kutakin kopulaa hyödyn-
tävä malli kykenee arviomaan tappioiden suuruutta, kuinka monimutkainen mallin
laskenta-algoritmista tulisi ja kuinka helposti mallin rakenne on selitettävissä mallin
käyttäjille. Empiiristä suorituskykyä ei mallinneta tässä työssä, vaan sitä arvioidaan
nojautumalla tutkimuskirjallisuuteen.

Vertailun tuloksista havaitaan, että yksiselitteisesti parasta kopulaa ei ole. Gumbel-
kopulan ominaisuudet kuvaavat luottotappioiden käyttäytymistä teoriassa parhaiten.
Toisaalta Studentin t -kopulalla kyetään huomioimaan riippuvuuksia halutusti, ja sen
selitettävyys todettiin paremmaksi ja toteutus yksinkertaisemmaksi kuin Gumbel-
kopulan.

Tämän työn tuloksista voidaan päätellä, että Studentin t -kopula on tilanteesta
riippumatta parempi vaihtoehto taloudellisen pääoman mallintamiseen kuin nor-
maalikopula. Gumbel-kopula ei välttämättä ole parempi kuin Studentin t -kopula
tai normaalikopula, mutta se voi olla hyvä vaihtoehto, jos esimerkiksi teoreettista
suorituskykyä pidetään tärkeänä ja toteutusta onnistutaan yksinkertaistamaan.

Avainsanat Kopula, taloudellinen pääoma, luottoriski, epälineaarinen
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Preface
When first introducing the topic to family members, there were curious and creative
guesses about the interpretation of the thesis title. One guesser must have been hungry,
judging by the connection of copula to the Finnish word kapula.

Different types of copulas are used to cook different types of soups. Bigger
copulas are needed for family soups, whereas smaller ones are suitable for one
person meals. This thesis will compare different copulas and their usage.

Another guesser realized that they are already familiar with nonlinear tails - a key to
understanding nonlinear tail dependence.

For decades, it has been a mystery why animals have different tails. Some of
them have linear tails, such as cows, but some of them have nonlinear tails, for
example pigs. The aim of this thesis is to solve this huge mystery.

If I were to rewrite this thesis, I might consider choosing one of these interpretations
instead of the one currently presented. However, I express my deepest gratitude to my
family, friends, advisor, supervisor, and coworkers for their support throughout the
process of writing this less cute but arguably more scientifically sound thesis.

Espoo, 17 April 2025

Elias A. Ylä-Jarkko
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Abbreviations

CCF credit conversion factor
EAD exposure at default
EC economic capital
EL expected loss
ICAAP internal capital adequacy assessment process
i.i.d independent and identically distributed
IRB internal ratings based
LGD loss given default
PCA principal component analysis
PD probability of default
PiT point-in-time
RWA risk-weighted assets
TTC through-the-cycle
VaR value at risk
WCDR worst-case default rate

8



1 Introduction
Banks want to have enough capital to cover credit losses, and thus avoid bankruptcy.
A tool for assessing this capital amount is called economic capital [1]. Economic
capital models aim to measure the effect of unexpected phenomena in the economy by
estimating the amount of capital that is needed to cover losses up to a selected confidence
level within the modeling horizon, for example, one year [2]. This corresponds to the
rarest event that the bank is willing to reserve capital for [3, Ch. 2]. After modeling
the loss distribution and calculating the size of the losses at the selected confidence
level, banks aim to hold at least that amount of capital and manage it as part of their
Internal Capital Adequacy Assessment Process (ICAAP). Preparing for every possible
scenario is not feasible, as banks could then only lend out as much as they hold in
equity. Moreover, accurate modeling of economic capital is important because capital
reserves have to be large enough, but excessive reserves decrease a bank’s profitability.

Modeling the loss distribution is difficult because observations of crises, especially
large ones, are extremely rare [4]. Therefore, some assumptions are needed to model
even the extreme losses. A common solution in corporate portfolio modeling is to build
a structural model that makes two important assumptions. The first is that defaults,
that is, failure to pay back loans, are triggered by a decrease in the firm’s asset value
and that value follows a geometric Brownian motion, also called the Merton model [5].
Although greatly simplifying, the Merton model is popular due to its influence in credit
risk modeling [3, Ch. 8]. The other major simplification is to assume that the value of
a firm’s assets is driven by one or more macroeconomic factors and an independent
factor [6]. Together, these make it possible to model the total loss in stages. Loss
distributions can first be estimated for each obligor independently. Then, the individual
distributions can be combined with a dependence structure that can be inferred from
stock market data, for instance. Furthermore, the total loss can be attributed partly to
the factors that were considered in modeling, for example industries, geographical
regions, or economic factors. This helps explain the model and the drivers of risk for
model users.

An alternative to structural models is a reduced form model. Instead of connecting
defaults to asset values, reduced form models assume a hazard rate process that
determines probability of default. They perform well when sufficient historical data
from credit default swaps or defaults is available, but this often is unrealistic for anything
but the largest corporations. On the other hand, defining a reduced form model can
be easier than determining the dependence structure of a structural model. Choosing
a structural model and a dependence structure may still be beneficial, especially for
smaller or newer banks due to lower data requirements and better explainability [7,
Ch. 7].

In this thesis, we explore alternatives for nonlinear dependence structures for
structural models. We focus on those that can be easily represented by copulas and
implemented in a factor model. Similar comparisons have been made previously [8],
but this thesis contributes to the literature by presenting and evaluating the theoretical
justification, practical implementation in a simulation model, and explainability for
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model users. Model accuracy has been comprehensively studied by, e.g. [8–10] and
remains a major area of research.

Historically, the financial industry has used linear correlation with a Gaussian
copula to estimate asset value dependence [11, 12]. However, several studies show
evidence that asset correlation is nonlinear in some situations [13, 14]. Longin and
Solnik showed that the correlation between asset prices increases in times of low
asset values. However, they did not find a similar phenomenon for high asset values.
This poses a challenge for modeling asset prices because the dependence is not only
nonlinear but also asymmetric. Methodological deficiencies in accounting for these
phenomena may not be dismissed, as underestimating risk has serious consequences.
If a linear dependence structure is calibrated to the correlation levels of normal
times, implying some level of diversification benefits, the model would apply similar
diversification benefits to a crisis scenario, underestimating the amount of loss that
could, in reality, occur at once. For example, the 2007-2009 subprime mortgage crisis
demonstrated the consequences of not adequately estimating asset value correlations,
since it was partly caused by underestimating the possibility for simultaneous losses
[12]. Here lies the motivation for meticulous credit risk modeling and the reason for
investigating nonlinear dependence structures in this thesis.

Different solutions for accurate modeling of asset dependence have been proposed
to supersede the previously popular linear dependence model and the Gaussian copula,
such as Student’s t copula [15], Archimedean copulas [9], vine copulas [16, 17],
Wishart sampling for the correlation matrix [18], Levý processes [19] and new
algorithms for setting and selecting copulas [20]. We examine the methods that are
most similar to the Gaussian copula, namely the Student’s t copula and the Hierarchical
Gumbel copula, because they would be the easiest replacements for a Gaussian copula
in a portfolio credit risk model while avoiding a total model overhaul.

Specifically, we define what a copula is and how it can be used to model the
dependence of asset prices in loss distributions. We then present two nonlinear options,
the Gumbel copula and the Student’s t copula, and the Gaussian copula for reference.
The contributions of this thesis then follow, as the theoretical justification is evaluated,
implementations of simulation algorithms are presented and examined, and finally,
the explainability of the models is assessed. Finally, we conclude the pros and cons of
each copula in economic capital modeling.
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2 Background
When granting a loan, there is possibility that the counterparty does not pay back
the loan. This is called credit risk. Even though lending is risky, banks have a large
incentive to engage in it, to profit from interest payments by the counterparty. However,
to keep the activity profitable, banks have to carefully assess the associated risk and
how much loss they expect over certain time horizons. Furthermore, they also have to
prepare for unexpected scenarios to remain operational and trustworthy in times of
crisis. As a solution, banks carry out credit risk modeling to estimate the probability
and magnitude of different credit loss scenarios.

This thesis studies the implementation of nonlinear dependence structures in
economic capital models. Therefore, we cover the basics of economic capital and
credit risk modeling, including common strategies, risk parameters, and regulation in
credit risk modeling. Moreover, we introduce the reader to copulas to have a common
ground for understanding the assessments in later sections.

2.1 Credit risk modeling
To model credit risk, one has to model the probability distribution of losses that could
occur, given a loan portfolio and a time horizon. This probability distribution is
called the loss distribution. Banks are interested in both the expected value of the loss
distribution and the tail of the distribution because the loss has to be examined from
the perspectives of day-to-day business, as well as risk estimation. The expected value
is accounted for in, e.g. pricing and customer selection processes, as it resembles the
amount of loss that can be expected in the long run, over a wide range of possible
scenarios. On the other hand, the upper tail of the loss distribution, in other words,
the extreme losses, are examined carefully because banks also have to prepare for the
most unlikely events to avoid bankruptcy. This thesis focuses on estimating the capital
needed to withstand these unexpected events, also called economic capital.

2.1.1 Economic capital

It is challenging to estimate how much capital a bank should hold because losses vary
over time and there are various methods for taking it into account in calculations.
Specifically, it is challenging to determine how much capital is needed in a crisis
because the frequency and size of crises are difficult to estimate. Banking regulation
aims to ensure that all banks are equally and adequately prepared for such crises by
imposing minimum levels of capital held by each bank. This is called regulatory
capital. However, as demonstrated in the following sections, the regulatory capital
requirements are not always aligned with the views that banks have on their risk
positions. Consequently, banks develop internal methodologies for estimating credit
losses and thus the capital amount to absorb them. The internal estimates are called
economic capital. There are alternative ways to measure economic capital [2], but we
focus on the arguably most common, value-at-risk measure. The choice of measure and
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other methodological choices in this thesis aim to tailor the comparison of nonlinear
dependence methods in the empirical section to risk analysts in large banks.

In a value-at-risk setting, banks set a certain confidence level, which corresponds
to the most unlikely event they want to prepare for. To give an example, the Basel
capital framework, which is presented later, requires banks to use a confidence level of
99,9% in regulatory capital calculation. This level implies that the bank would survive
99,9% of all possible scenarios, but would have a 100% − 99,9% = 0,1% probability
of going bankrupt. It is not feasible to prepare for everything at a confidence level
of 100% as the support of the loss distribution is infinite in most models, implying
that the bank could only loan capital that it could lose immediately without going
bankrupt. The confidence level that the bank chooses often coincides with the credit
rating the bank desires from external agencies for financing because external ratings
also imply a probability of default [21]. The terms default and probability of default
are elaborated in Section 2.1.2. For example, the weighted long-term average global
default rates have been 0,05% for Standard and Poor’s rating A and 0,14% for BBB,
the next best rating [22]. An institution using a confidence level of 99,9% would thus
likely have a rating of A or BBB.

To calculate economic capital using a value-at-risk measure, we introduce the
following notation. Let 𝐿 be a random variable that represents portfolio loss within the
next prediction horizon, usually one year, 𝐹𝐿 (𝑙) the cumulative distribution function
of 𝐿, and 𝛼 ∈ (0, 1) be the selected confidence level. Then, we define similarly as
McNeil, Frey and Embrechts [3]

VaR𝛼 = inf{𝑙 ∈ R : P(𝐿 > 𝑙) ≤ 1 − 𝛼} = inf{𝑙 ∈ R : 𝐹𝐿 (𝑙) ≥ 𝛼} . (1)

VaR𝛼 can be divided into two parts: expected and unexpected loss. Banks can write
the expected credit loss as an expense in accounting according to the IFRS-9 standard,
which is the reason why expected and unexpected losses are handled separately.
Decomposing the value-at-risk to expected loss (EL) and unexpected loss (UL), we
also define economic capital (EC) to mean the unexpected loss, and thus obtain

VaR𝛼 = E(𝐿) + UL = EL + UL
⇔ EC ≡ UL = VaR𝛼 − EL (2)

This definition is illustrated in Figure 1, with a loss distribution and its values
for VaR99,9% and EL. Note that the illustration does not consider the profits that are
expected from the loans, as they are often calculated separately from credit risk.

2.1.2 Parameters

In order to calculate the expected loss (EL) in the formula of the previous section,
it is often parametrized into components that are easier to model separately. After
the introduction of the Basel capital framework, it has been standard to parametrize
expected credit loss to three components, probability of default (PD), loss given default
(LGD) and exposure at default (EAD). Then, the maximum likelihood estimates of
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EL VaR99,9%
𝑙

𝑓𝐿 (𝑙)

Economic capital

Figure 1: Economic capital (EC) is defined to be the difference of VaR𝛼 and expected
loss (EL) of the loss distribution.

each parameter can be multiplied together to obtain a point estimate for the expected
loss (EL) of an obligor [23]

EL = PD · LGD · EAD (3)

When these parameters are modeled for all obligors, they can be combined to a
portfolio model that predicts the loss distribution of the portfolio.

Probability of default (PD) is the likelihood that an obligor (the borrower) does
not pay back their loan partly or at all. That event is called a default, and the definition
of a default is set in the EU by the European Banking Authority: a default occurs
when the obligor has missed payments for more than 90 days and the sum of missed
payments is large enough or the obligor is credit-impaired in some other way, such as
bankruptcy [21, 24]. When modeling PD, banks have to choose what the modeling
horizon is and if they want the model to factor in the economic cycle. If the model
estimates vary with the economic cycle, the model is said to be a point-in-time (PiT)
estimate. Otherwise, the model is calibrated to be a through-the-cycle (TTC) estimate.
A common modeling horizon is one year, which is a good compromise of ease of
modeling and usefulness to business. In practice, a PD model could be, e.g. a logistic
regression model where training data is the proportion of defaults to defaults for
certain customer groups, along with information related to the obligors ability to pay.

Loss given default (LGD) is defined as the ratio between the loss of the bank and
the total loan amount (EAD) at the time of default. Essentially, LGD is a percentage of
total loan amount, a "loss rate given default". In addition to the outstanding amount,
the loss includes direct and indirect expenses from handling the collection of the debt,
plus any cash flows that are collected from the obligor after default [23].

LGD also depends on the process of handling defaults. It is heavily affected by the
quality and amount of collaterals, costs of handling the default, and possible resolution
or recovery plans. For example, the LGD for collateralized exposures, such as housing
loans, depends significantly on housing prices and can thus be minimized with efficient
collection processes. Therefore, LGD modeling is often segmented by product type,
as well as customer type.

Exposure at default (EAD) is an estimate of the loan balance at the time of default.
In the Basel framework, it is defined as the drawn loan balance plus the undrawn
committed amount multiplied by a credit conversion factor (CCF). The CCF is included
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because it predicts the probability that the obligor draws more funds right before
default, which is possible with some instruments, such as credit cards. The CCFs can
be fixed values determined by the type of credit instrument or independently modeled
values, depending on the regulatory approach the bank has selected.

These credit risk parameters are important not only because they are needed to
calculate the expected loss but also because they are used in defining the capital
requirement in regulation.

2.1.3 Regulation

Banks are bound by the Basel capital framework that sets rules on how banks have to
manage their capital base, including credit risk. Relevant to this thesis and credit risk
modeling is that the framework defines formulas for calculating the capital requirement
that is supposed to shield the bank against unexpected losses. To comply with the
requirement, banks have to calculate risk-weighted assets (RWA) and then hold parts
of the RWA in different forms of capital. In Basel III, the requirement is, that Common
Equity Tier 1 must cover at least 4,5%, Tier 1 capital 6% and total capital 8% of the
RWA. The categories overlap but amount to a capital base of 10,5% including a 2,5%
buffer on top of the 8% total capital requirement. Some banks are also subject to
additional buffers, depending on their capital management process or their systematic
importance.

Within the Basel III framework, banks can choose to follow the standardized
approach or the internal ratings-based approach. In the standardized approach, the risk
weight of each asset is determined by external rating agencies or solely by its category
if external ratings are unavailable. For example, a corporate exposure could have a risk
weight ranging from 20% to 150% if rated, otherwise 100% [25]. Several challenges
have been identified in this approach by Y. Konno and Y. Itoh. For example, rating
agencies have different criteria and thus produce different ratings, external ratings
react slowly to changing economic circumstances, and few companies have been rated
by external agencies [26].

The internal ratings-based (IRB) approach tries to patch the shortcomings of the
standardized approach by allowing banks to rate the risk of each asset themselves. In
the IRB approach, risk is parametrized by three parameters: probability of default
(PD), loss given default (LGD) and exposure at default (EAD). These parameters are
modeled by the bank and then risk-weighted assets are calculated by formulas given in
the Basel framework. For example, risk-weighted assets for a corporate exposure are

14



calculated as follows:

𝑅 = 0.12 · 1 − 𝑒−50·PD

1 − 𝑒−50 + 0.24 ·
(︃
1 − 1 − 𝑒−50·PD

1 − 𝑒−50

)︃
(4)

𝑏 = [0.11852 − 0.05378 · ln(PD)]2 (5)

WCDR = Φ

(︄√︂
1

1 − 𝑅 · Φ−1(PD) +
√︂

𝑅

1 − 𝑅 · Φ−1(0.999)
)︄

(6)

𝐾 = [WCDR · LGD − PD · LGD] · 1 + (𝑀 − 2.5) · 𝑏
1 − 1.5 · 𝑏 (7)

RWA = 𝐾 · 12.5 · EAD , (8)

where 𝑅 is correlation, 𝑏 is maturity adjustment, WCDR is the so-called worst-case
default rate, 𝐾 is capital requirement, 𝑀 is loan maturity and RWA is the risk-weighted
assets [27]. The framework does not explicitly mention the worst-case default rate,
but it is a term sometimes used in industry. The intuition is that the worst-case default
rate at 99,9% confidence corresponds to the frequency of defaults that would cause
the 99,9% value at risk losses of the loss distribution.

The main deficiency of the IRB approach is that it is portfolio invariant, meaning
that the structure and contents of the rest of the portfolio do not affect the economic
capital of a single obligor. This can be thought of as perfect diversification: if the
portfolio is diverse with no concentrations, then the added risk of a new loan can be
quantified with only the characteristics of the new obligor [28]. However, assuming
perfect diversification is often not justified for any, but for the largest global banks for
several reasons. First, many smaller banks operate more exclusively in one region,
making them susceptible to shocks in the economy of the region or country. Second,
specialization drives profits for banks, as they are able to better screen and monitor
obligors in the application phase and during the lifetime of the loan [29].

The deficiencies in both approaches of the Basel framework lead to regulatory
capital estimates that do not cover the actual risk of the portfolio sufficiently. To combat
this, banks develop custom models for more accurate measurement of economic capital
by taking into account portfolio concentrations and idiosyncratic risk [10]. The
development of these economic capital models is guided by the instructions given by
the Basel committee [2]. However, the structure of the models is not strictly regulated
as they are not directly used in calculating the capital requirement. They may still
be used as part of the internal capital adequacy assessment process (ICAAP) [1].
Ultimately, banks hold at least the amount of capital that is the larger of two figures:
the amount mandated by regulation and the one estimated by their economic capital
model.

This thesis seeks to provide tools for decision making, especially to those banks
which are primarily bound by their economic capital model. In those cases, efforts
towards developing an economic capital model will not go to waste because an
accurate model is in the interest of both business and risk management. Note though,
that the amount of capital the bank actually holds may still be considerably larger
than determined using an economic capital model or regulation. Banks usually
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hold additional buffers to allow some fluctuation in the capital base because adverse
consequences follow from capital falling below the regulatory limit, and raising more
capital suddenly is hard or at least expensive.

2.1.4 Portfolio credit risk

Portfolio credit risk models can be divided into two groups by modeling philosophy:
structural models and reduced-form models [3, Ch. 8]. The assumptions of both
types of model are important as they are most prominent in the tail of the distribution
where observation and data are scarce. The assumptions also affect the possible
implementations of the dependence methods covered in this thesis.

In structural models, motivated by Merton [5], the idea is to model the underlying
cause of default, which is usually assumed to be the firm’s asset value falling below its
liabilities. Structural models are more popular due to their interpret-ability in terms of
economic variables and use of more commonly available data, compared to reduced
form models [7, Ch. 7]. They are often built by implementing one of the major, well
documented, portfolio credit risk frameworks, such as CreditMetrics by J.P Morgan,
CreditRisk+ by Credit Suisse or Moody’s KMV.

The structural portfolio models are further divided into two categories: default-
mode models, e.g., CreditRisk+ and KMV, that consider only failure and success, and
mark-to-market models such as CreditMetrics that model changes in a loan’s market
value [30]. They can also be characterized by data source, as others rely on asset value
and volatility data, but CreditRisk+ relies mostly on default risk level information.

Reduced form models, on the other hand, are built on the idea that defaults are
unpredictable but follow a given process that can be described with some latent
variables. The advantage of this approach is that the model has nicer mathematical
properties and makes fewer assumptions that are difficult to justify in practice [7,
Ch. 7]. On the other hand, the tail of the distribution is then heavily determined by the
chosen process. One practical implementation of reduced-form models is Kamakura’s
Public Firm Model by Kamakura’s Risk Information Services (KRIS) [31].

2.2 Copulas
Copulas are functions that combine one-dimensional distributions to form a joint
multivariate distribution. The word copula comes from Latin, meaning a link, a tie, or
a bond. It was first used in a mathematical context by mathematician Abe Sklar in
1956 when he published a theorem that would later become Sklar’s theorem [32]. The
theorem will be examined carefully in the following chapters, as it is a fundamental
definition of copulas.

The motivation behind studying copulas for credit risk modeling is that asset value
dependencies, and thus loss dependencies, are the most significant driver of total loss
in portfolio credit risk models [3, Ch.1]. Therefore, they are also major contributors to
economic capital in banks that use such portfolio credit risk models in determining
their economic capital. Low dependence between assets yields diversification benefits,
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while high dependence amplifies large losses in times of crisis, as large parts of a
portfolio might default simultaneously.

Since value-at-risk measures are calculated from the extreme end of a loss
distribution, small errors in dependence estimates can lead to large deviations in the
final economic capital figure. Accurate modeling and measurement of dependence
are therefore key in portfolio credit risk modeling. We introduce nonlinear copulas to
model the observed nonlinear phenomena [13, 14] more accurately and to separate
the discussion of dependence from the distributions of the individual losses and asset
value changes. However, to calibrate nonlinear dependence structures, measures for
detecting nonlinear dependence are needed.

2.2.1 Measuring dependence

Commonly, dependence between two random variables is called correlation. However,
the term usually refers to Pearson correlation, which is a measure of linear correlation,
basically meaning how well the observations fit onto a line. This type of dependence
measure is not always suitable for credit risk modeling because the assumption of
linear dependence may not be justified or desired.

Some authors have also found it unreasonable to assume that the correlation
of asset values, and therefore defaults, stays constant over time [13, 14]. Instead,
they saw increasing correlation in times of crisis, implying that asset values are not
linearly dependent. Furthermore, the studies show asymmetric levels of asset value
correlation since positive returns show lower levels of correlation than losses in the
negative extremes. Not only is linear correlation insufficient for estimating asset price
movements, symmetry of the distribution should not be assumed either. Therefore, it
is evident that a measure other than linear correlation is needed to identify dependence
between assets in a portfolio.

There are measures that do not assume linearity of dependence, most known of
which are Spearman’s rho (𝜌) and Kendall’s tau (𝜏). Both of them can measure
nonlinear, monotonic, dependence between variables. In practice, this means that both
measures indicate perfect positive dependence (correlation of 1) in cases where an
increase in one coordinate implies an increase in the other. None of the measures can
indicate dependence that is not linear, e.g., second-degree polynomial dependence.

The features of the three dependence measures are summarized in Figure 2. Figure
2a displays a perfect linear dependence, which is indicated by all measures being equal
to +1. Figure 2b shows a set of points that have monotonic and nonlinear dependence
𝑦 = 𝑥5. The points do not fit on a line 𝑦 = 𝑥, which is why 𝑟 < 1 but others recognize
the dependence. Finally, Figure 2c shows symmetric and nonmonotonic dependence
that has no correlation. This example highlights the fact that Spearman’s rho (𝜌) is
slightly more unstable than Kendall’s tau (𝜏) with small datasets. On the other hand,
Spearman’s rho (𝜌) is faster to compute on large datasets.

The correlation of defaults has a significant effect on portfolio credit risk, because
low correlation yields diversification benefits. If defaults in a portfolio are uncorrelated,
even unlikely events result in low amount of total loss percentage-wise. Moreover,
highly correlated defaults mean that many defaults occur simultaneously in some
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events, resulting in large losses.

2.2.2 Defining copulas

The main motivation for using copulas is that they make it possible to separate the
analysis of marginal distributions and from that of dependence. As established earlier,
determining the amount of dependence within a portfolio is already a challenging
task, and that is why it is beneficial to perform independently from any features or
restrictions of the marginal distributions.

We first examine this topic in two dimensions. Theoretical basis is provided by
Sklar’s theorem, which is presented, for instance, in Nelsen [32].

Theorem 2.1 (Sklar’s theorem). Assume random variables 𝑋1 and 𝑋2. Let 𝐻 be a
joint distribution function with cumulative distribution functions 𝐹1 and 𝐹2 for the
margins such that 𝐹𝑋𝑖 (𝑥𝑖) = P(𝑋𝑖 ≤ 𝑥𝑖). Then there exists a copula 𝐶 such that for all
𝑥1, 𝑥2 ∈ R,

𝐻 (𝑥1, 𝑥2) = 𝐶 (𝐹𝑋1 (𝑥1), 𝐹𝑋2 (𝑥2)) (9)

If 𝐹𝑋1 and 𝐹𝑋2 are continuous, then 𝐶 is unique.

To express Equation (9) in terms of 𝐶, we replace 𝑋 with a new random variable
𝑈, the grade of 𝑋: 𝑈 ≡ 𝐹𝑋 (𝑋).

Corollary 2.1.1. Let 𝑈𝑖 ≡ 𝐹𝑋𝑖 (𝑋𝑖). Then, the grades 𝑈𝑖 ∼ 𝑈[0,1] are uniformly
distributed in the unit interval and 𝐶 with marginals 𝑈𝑖 ∼ 𝑈[0,1] is equivalent to 𝐻
with marginals 𝑋𝑖 distributed according to the law 𝐹𝑋𝑖 .

Proof. Let us first prove that𝑈𝑖 ∼ 𝑈[0,1] .

𝐹𝑈 (𝑢) = P(𝑈 ≤ 𝑢) = P(𝐹𝑋 (𝑋) ≤ 𝑢)
= P(𝑋 ≤ 𝐹−1

𝑋 (𝑢)) = 𝐹𝑋 (𝐹−1
𝑋 (𝑢)) = 𝑢 (10)

(a) Linear,
𝑦 = 𝑥

(b) Monotonic,
𝑦 = 𝑥5

(c) Non-monotonic,
𝑦 = 4𝑥2 − 4𝑥 + 1

Figure 2: Pearson correlation 𝑟 captures only linear dependence fully, while Spear-
man’s 𝜌 and Kendall’s 𝜏 also capture nonlinear but monotonic dependence. None of
the measures capture non-monotonic dependence.
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As 𝑢 ∈ [0, 1], 𝐹𝑈 (𝑢) = 𝑢 is the uniform distribution in the unit interval [33]. For
this and the following proofs, the existence of 𝐹−1 must be guaranteed. For strictly
increasing and continuous 𝐹 this is straightforward. For other continuous and non-
decreasing 𝐹, a quasi-inverse is constructed, also known as a right-continuous inverse
or generalized inverse. The method is described in [32, 34].The quasi-inverse is equal
to the ordinary inverse in strictly increasing cases.

Then, using Equation (9), we obtain

𝐶 : [0, 1]2 ↦→ [0, 1]
𝐻 : R2 ↦→ [0, 1]

𝐶 (𝑢1, 𝑢2) = 𝐶 (𝐹𝑋1 (𝑥1), 𝐹𝑋2 (𝑥2)) (11)
= 𝐻 (𝑥1, 𝑥2) = 𝐻 (𝐹−1

𝑋1
(𝑢1), 𝐹−1

𝑋2
(𝑢2)) (12)

□

Sklar’s theorem and Corollary 2.1.1 deserve careful inspection as they contain
the key to the usefulness of copulas. Firstly, Sklar’s theorem shows that it is possible
to isolate the dependence information of a joint distribution into one function: the
copula. Secondly, Corollary 2.1.1 shows that it is always possible to define a copula
from a joint distribution, assuming the joint distribution and the marginal distributions
are known. These results imply that it is possible to model a joint distribution by
choosing a suitable multivariate function 𝐻 and margins 𝐹𝑖.

Marginal distributions are often easy to select as their empirical distributions are
easy to observe from stock market data, for instance. However, the joint distribution
function 𝐻 is more difficult to choose as data of joint movements of corporate asset
values might be limitedly available, especially data of extreme scenarios. Portfolio
models for credit loss focus on examining the extreme tails of the loss distribution,
which is why the joint distribution must be calibrated as well as possible. In that process,
being able to swap the copula to a different one while preserving the well-defined
marginal distributions is beneficial.

Dividing the modeling process into copula and marginals helps understand both
the loss distribution and the overall model. Copula functions use uniformly [0,1]-
distributed random variables as inputs, making it easier to visualize and understand the
dependence structure of the model. For example, extreme movements in one marginal
distribution might mask the dependence structure if one only looks at the final joint
distribution given by the model.

It is often necessary to model distributions in more than two dimensions. Sklar’s
theorem can be extended to multiple dimensions with some effort, that is documented
in the original work by Sklar and Schweizer [35]. We present the result and give an
example of a multivariate copula.

Theorem 2.2 (Sklar’s theorem in multiple dimensions). Assume 𝑛 random variables
𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛. Let 𝐻 be a joint distribution function with margins 𝐹𝑋𝑖 such that
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𝐹𝑋𝑖 (𝑥𝑖) = P(𝑋𝑖 ≤ 𝑥𝑖). Then there exists a copula 𝐶 such that for all 𝑥𝑖 ∈ R𝑛,

𝐻 (𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝐶 (𝐹𝑋1 (𝑥1), 𝐹𝑋2 (𝑥2), ..., 𝐹𝑋𝑛 (𝑥𝑛)) (13)
𝐶 (𝑢1, 𝑢2, ..., 𝑢𝑛) = 𝐻 (𝐹−1

𝑋1
(𝑢1), 𝐹−1

𝑋2
(𝑢2), ..., 𝐹−1

𝑋𝑛
(𝑢𝑛)) (14)

If 𝐹𝑋𝑖 are continuous, then 𝐶 is unique.

A basic example of a copula is the Gaussian copula, which is defined as follows.
Let 𝑢𝑖 be standardized random variables that are correlated with a 𝑛 × 𝑛 correlation
matrix R. Then, the corresponding 𝑛-dimensional normal distribution with correlation
matrix R is written asΦ𝑛 (Φ−1(𝑢1), ...,Φ−1(𝑢𝑛); R), whereΦ is the univariate standard
normal distribution. The copula can now be expressed as

𝐶 (𝑢1, ..., 𝑢𝑛) = Φ𝑛 (Φ−1(𝑢1), ...,Φ−1(𝑢𝑛); R). (15)

Note that here 𝐻 and 𝐹 from Equation (14) are represented by the same symbol, but
Φ𝑛 is the multivariate density function that depends on the correlation structure.

2.2.3 Types of copulas

Copulas can be split into two categories based on fundamental mathematical properties
and method of construction: elliptical and Archimedean copulas. Elliptical copulas are
constructed from elliptical symmetric distributions [36]. The most famous example
is the Gaussian copula, presented in Equation (15). To understand the definition of
elliptical symmetry, we will have to define spherical symmetry because elliptical
distributions are affine transformations of spherical distributions.

Spherically distributed random vector X ∈ R𝑛 can be constructed from random
variables U that are uniformly distributed along the unit sphere inR𝑛 by setting X = 𝑟U,
where 𝑟 ≥ 0 is an independent random variable. In a way, spherically distributed
variables are, therefore, variables that are first uniformly distributed on a sphere surface
and spread to different radius values. To obtain an elliptically distributed vector Y, an
n-dimensional vector 𝜇 as the center of the ellipse and an 𝑛 × 𝑛 matrix Σ are needed to
complete the definition

Y = 𝜇 + 𝐴′X,

where X is spherically distributed and matrix 𝐴 is 𝑘 × 𝑛 and satisfies Σ = 𝐴′𝐴 such
that Σ is symmetric with rank(Σ) = 𝑘 . This step shifts and stretches the spherically
distributed variable X into an ellipse. The symmetry implication here is that the
probability density 𝑓𝑌 is equal in all locations that sit on the same "ring" of the ellipse.

In addition to symmetry, another important property is that weighted sums of
components of an elliptical distribution are also distributed elliptically [37]. For the
Gaussian copula, this property corresponds to linear and summation invariance: linear
transformations of normally distributed variables are also normal, as are sums of
independent normally distributed variables. This summation property enables the use
of factor models, which are presented in the following section.
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Archimedean copulas are usually defined with a generator function instead of a
certain distribution. Assuming a generator function 𝜙(𝑥), all Archimedean copulas
are constructed as

𝐶 (𝑢1, ..., 𝑢𝑛)) = 𝜙−1(𝜙(𝑢1) + ... + 𝜙(𝑢𝑛)). (16)

The inverse of the generator 𝜙−1 is required to belong to the family of Laplace
transforms, thus most importantly, demanding 𝜙−1 to be infinitely differentiable.
The following list contains some well-known Archimedean copulas along with their
generator functions [32, Ch.4].

Clayton: 𝜙𝜃 (𝑡) = (𝑡−𝜃 − 1) 𝐶 (𝑢1, ..., 𝑢𝑛) = (𝑢−𝜃1 + ... + 𝑢−𝜃𝑛 − 𝑛 + 1)−1/𝜃

Frank: 𝜙𝜃 (𝑡) = − ln
(︃
𝑒−𝜃𝑡 − 1
𝑒−𝜃 − 1

)︃
𝐶 (𝑢1, ..., 𝑢𝑛)

= −1
𝜃

ln
(︃
1 + (𝑒−𝜃𝑢1 − 1)...(𝑒−𝜃𝑢𝑛 − 1)

𝑒−𝜃 − 1

)︃
Gumbel: 𝜙𝜃 (𝑡) = (− ln 𝑡)𝛼 𝐶 (𝑢1, ..., 𝑢𝑛) = 𝑒−((− ln 𝑢1) 𝜃+...+(− ln 𝑢𝑛) 𝜃 )1/𝜃

2.3 Copulas in portfolio models
Copulas are used in portfolio models to define the dependence between the loss distri-
butions of individual obligors. Given individual losses and dependence information, it
is possible to construct the total loss distribution. Ideally, the total loss distribution
would be constructed by combining all 𝑛 loss distributions – one for each asset – of the
portfolio using a 𝑛-dimensional copula. However, this is not possible for any but the
smallest of portfolios, as the number of correlation parameters to be estimated grows
polynomially with𝑂 (𝑛2), where 𝑛 is the number of obligors. The rapid increase in the
number of parameters makes estimation slower and more uncertain in large portfolios.
Typical portfolios might consist of tens of thousands or more obligors, meaning that a
full covariance matrix would then have more than 50 million parameters. Therefore,
the drawbacks of this approach outweigh the benefits already in quite small banks.

An option to mitigate the number of parameters is to impose some structure on
the correlation matrix of the portfolio model. It has been proposed to divide the
correlation matrix into blocks of constant correlation by industry, where the diagonal
blocks represent correlations within an industry, off-diagonal blocks are intersector
correlations, and all correlations within a block are constant [38]. Another option is
to use a filtering procedure, which keeps only the eigenvectors that are stronger than
something obtained from random matrices [38]. Both options have their advantages:
dividing the matrix into blocks greatly reduces the number of parameters, and the
filtering procedure was shown to provide results that are more stable and reliable than
a sample correlation matrix.

Despite the benefits of matrix adjustment methods, they may not be usable
for a corporate portfolio of a large bank. Estimating pairwise correlations is nearly
impossible for portfolios that involve significant amounts of privately owned companies.
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This is because default events, credit spreads, or equity information is usually not
publicly available, which means that dependence information is inferred from the most
similar publicly traded companies. However, this level of inaccuracy may be too much
to estimate pairwise correlations. Then again, the block matrix method, which fixes
the first problem, suffers slightly from the inflexibility of having a constant correlation
for all companies within an industry.

To address the challenges of complete correlation matrices, we introduce factor
models that make it possible to model correlations between and within an industry
(inter- and intra-correlations) while still estimating only one correlation parameter
for each company. The correlation between industries also has to be estimated, but
the increase in computation time can be assumed constant because the number of
industries 𝐾 ≪ 𝑁 is significantly smaller than the number of companies 𝑁 .

Factor models are commonly used in credit risk modeling [3, 10], and are also
referred to as conditionally independent credit risk models. The benefit of factor
models is that they "are among the few models that can replicate a realistic correlated
default behaviour while still retaining a certain degree of analytical tractability." [39].
In other words, the factor model structure is easily understandable and does not require
the same level of knowledge about matrix theory as the simplifications presented
above.

2.3.1 Single-factor model

The simplest factor model is the single-factor model. It assumes that there is a
determining factor, also known as a latent variable, behind the price movements of
assets. This could be a valid assumption, as the single factor could represent the
overall economic state, also known as the business cycle, which is observed to change
periodically and affect companies widely. The business cycle is widely researched and
easily observable, which makes the single-factor model an attractive choice, especially
when not much data is available about the obligors or assets.

Methodologically, the single-factor model is built on the Merton model [5], which
assumes that asset price movements follow a Brownian motion process. This implies
that the change in asset prices between time 0 and some time 𝑇 follows a normal
distribution and can thus be modeled.

In the general single-factor model, there is a portfolio of 𝑁 obligors such that
each obligor 𝑛 has probability 𝑝 of defaulting before the time horizon 𝑇 of the model.
Changes in asset values Δ𝑉𝑛 of obligors are assumed to be driven by a 𝐺-distributed
latent variable, the single factor 𝑌 , and differences in asset prices are assumed to
be solely explained by idiosyncratic factors 𝜖𝑛 that are independent and identically
𝐻-distributed. Then,

Δ𝑉𝑛 = 𝑅𝑛𝑌 +
√︃

1 − 𝑅2
𝑛𝜖𝑛 , (17)

where 𝑅𝑛 is the linear correlation coefficient between assets of corporation 𝑛 and the
latent variable 𝑌 [39]. Coefficients 𝑅𝑛 are sometimes called factor loadings.
Corollary 2.2.1. If 𝐺 and 𝐻 are standard normal distributions, then Δ𝑉𝑛 is standard
normal distributed with correlation 𝑅𝑛 to 𝑌 .
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Proof. Assuming 𝐺 = N(0, 1) and 𝐻 = N(0, 1), we can write

Δ𝑉𝑛 = 𝑅𝑛𝑌 +
√︃

1 − 𝑅2
𝑛𝜖𝑛 ∼ 𝑅𝑛N(0, 1) +

√︃
1 − 𝑅2

𝑛N(0, 1)
∼ N (0, 𝑅2

𝑛) + N (0, 1 − 𝑅2
𝑛)

∼ N (0, 1) , (18)

which implies that Δ𝑉𝑛 is standard normal distributed. The correlation between 𝑌 and
Δ𝑉𝑛 is

𝜌(Δ𝑉𝑛, 𝑌 ) =
Cov(Δ𝑉𝑛, 𝑌 )
𝜎Δ𝑉𝑛𝜎𝑌

= Cov(Δ𝑉𝑛, 𝑌 ) = E[(Δ𝑉𝑛 − E(Δ𝑉𝑛)) (𝑌 − E(𝑌 ))]

= E

[︃(︃
𝑅𝑛𝑌 +

√︃
1 − 𝑅2

𝑛𝜖𝑛 − 0
)︃
(𝑌 − 0)

]︃
= E

[︃
𝑅𝑛𝑌

2 +
√︃

1 − 𝑅2
𝑛𝜖𝑛𝑌

]︃
= 𝑅𝑛E[𝑌2] = 𝑅𝑛. (19)

Therefore, Δ𝑉𝑛 ∼ N(0, 1) with correlation 𝜌 = 𝑅𝑛 between Δ𝑉𝑛 and 𝑌 . □

Corollary 2.2.1 presents the single-factor model as a way to generate random
variables that are correlated to the single factor𝑌 with individual correlation parameters
𝑅𝑛. Another way to generate such random variables is to sample each variable from a
bivariate distribution that is also correlated with 𝑅𝑛. In that case, one dimension is the
latent variable 𝑌 and the other is Δ𝑉𝑛. The only restriction is that we need to sample
the bivariate distribution given the 𝑌 -value. In other words, we need a method for
sampling the conditional distribution P(Δ𝑉𝑛 |𝑌 = 𝑦) given the bivariate distribution
P(Δ𝑉𝑛, 𝑌 ) with parameter 𝑅𝑛.

Keeping in mind the requirements for the bivariate distribution, it is possible to
insert various copulas into the model since it is possible to describe any bivariate
distribution with a copula and some marginal distributions. The choice of copula
and its dependence parameter value determine the dependence of each corporation’s
asset values on the single factor, giving the modeler control of model output while
remaining computationally efficient.

Although the single-factor model does not explicitly model dependence between
obligors, the obligors are correlated via 𝑌 . If the dependence of obligors on 𝑌 can be
expressed as a linear combination, the correlation 𝜌(Δ𝑉𝑖,Δ𝑉 𝑗 ) can be calculated. As
an example, consider the case of Corollary 2.2.1 where 𝐺 and 𝐻 are standard normal
distributions. Then,

𝜌(Δ𝑉𝑖,Δ𝑉 𝑗 ) = Cov(Δ𝑉𝑖,Δ𝑉 𝑗 ) = E[(Δ𝑉𝑖 − E(Δ𝑉𝑖))
(︁
Δ𝑉 𝑗 − E(Δ𝑉 𝑗 )

)︁
]

= E

[︃
(𝑅𝑖𝑌 +

√︃
1 − 𝑅2

𝑖
𝜖𝑖 − 0) (𝑅 𝑗𝑌 +

√︃
1 − 𝑅2

𝑗
𝜖 𝑗 − 0)

]︃
= 𝑅𝑖𝑅 𝑗E[𝑌2] + 𝑅𝑖

√︃
1 − 𝑅2

𝑗
E[𝑌𝜖 𝑗 ] + 𝑅 𝑗

√︃
1 − 𝑅2

𝑖
E[𝑦𝜖𝑖]

+
√︃

1 − 𝑅2
𝑖

√︃
1 − 𝑅2

𝑗
E[𝜖𝑖𝜖 𝑗 ]

= 𝑅𝑖𝑅 𝑗E[𝑌2] = 𝑅𝑖𝑅 𝑗 (20)
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However, the correlation between obligors, or the closed form of the implied loss
distribution function, can rarely be expressed analytically because only a few choices
of𝐺 and 𝐻 give closed-form distributions for Δ𝑉𝑛 [40]. This is because it is a property
of stable distributions that a sum of i.i.d random variables shares the distribution of
the individual variables [41]. Common stable distributions are the Gaussian, Cauchy,
and Levý distributions. For other distributions, correlations and likelihood could be
calculated numerically. Either way, the induced correlation between corporations
suggests that the single-factor model actually defines a multivariate distribution, where
each dimension shares some variance with one of the dimensions.

2.3.2 Multi-factor model

The multi-factor model is able to explain asset values with several latent variables
instead of one. Regardless of how the factors are chosen, the structure of the multifactor
model remains the same. The structure resembles the single-factor model, but instead
of loading onto one factor, the assets of each counterparty can load onto several factors
in such weights that the total variance remains constant. Schönbucher presents the
definition as an extension of the single-factor model [39]. Asset value changes are
therefore defined as

Δ𝑉𝑛 =

𝐽∑︁
𝑗

𝛽𝑛, 𝑗𝑌 𝑗 + 𝜖𝑛 , (21)

where 𝐽 is the total number of latent variables, 𝑌 𝑗 is the 𝑗 th latent variable and 𝛽𝑛, 𝑗
are the factor loadings (coefficients of determination) of counterparty 𝑛 towards latent
variable 𝑗 . The weights 𝛽 and variance of the noise components 𝜖 are scaled to
conserve unit variance.

In the single-factor case, we suggested that a single-factor model can be defined
using a bivariate copula that can be sampled conditionally. In the multivariate case,
a necessary change is that the model requires a multivariate copula and we would
sample the conditional distribution P(Δ𝑉𝑛 |𝑌1 = 𝑦1, ..., 𝑌𝐽 = 𝑦𝐽).

An intuitive way to assign latent variables for a corporate credit portfolio would be
to assess whether some attributes cause simultaneous defaults or, on the other hand,
protect some companies from a crisis of other companies. It has been seen that crises
are often shared between companies in a given industry and geographical area [4].
Thus, assigning latent variables that represent industries or countries could be a valid
option. In such cases, most companies would still load onto only one latent variable,
as most companies operate in a single industry or geographical region. For the largest
corporations, loading onto multiple latent variables represents reality more closely, as
those corporations are no longer as exposed to risk in a particular region or industry.

Latent variables can also be assigned statistically. Principal component analysis
(PCA) on asset return data gives a set of principal components that can be used as latent
variables. These principal components are orthogonal and usually explain variance in
the data well, but the challenge in using them as latent variables is that they may not
be easy to interpret as any underlying cause or trait of reality. This is because a latent
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variable formed by a weighted sum of certain asset returns could seem quite arbitrary
or at least be difficult to interpret.

2.3.3 Linking to portfolio models

Factor models are used to model the defaults of corporate obligors. From the losses
incurred, the portfolio loss distribution is then calculated. Specifically, we determine
which companies default on their loans in the modeling horizon 𝑇 by adding the
change in asset value Δ𝑉𝑛 to the starting asset value 𝑉𝑛, and then adding the resulting
losses to form the loss distribution. Some portfolio modeling frameworks, for example,
CreditMetrics, also include the losses incurred from rating downgrades [42].

Intuitively, corporate credit defaults wouldbe determined in simulation by collecting
the amount of liabilities 𝐵𝑛 each company has and determining whether 𝑉𝑛 (𝑇) =

𝑉𝑛 (0) + Δ𝑉𝑛 ≤ 𝐵𝑛, indicating that the values of assets at time 𝑇 have decreased below
the default threshold in the modeling horizon. However, in portfolio modeling, it is
not necessary to go through the trouble of trying to obtain liability data for companies
just to determine defaults. Instead, portfolio models use the default threshold implied
by the PD of a company.

The implied default threshold of a factor model is calculated by setting the
probability of crossing the default threshold equal to the PD of the obligor. This gives
us

PD𝑛 = P(𝑉𝑛 (0) + Δ𝑉𝑛 ≤ 𝐵𝑛) = P(Δ𝑉𝑛 ≤ 𝐵𝑛 −𝑉𝑛 (0)) = 𝐹Δ𝑉𝑛 (𝐵𝑛 −𝑉𝑛 (0)) , (22)

where 𝐹Δ𝑉𝑛 is the cumulative distribution of Δ𝑉𝑛 induced by the factor model. Solving
for the threshold for the change in asset value, it is

𝐵𝑛ˆ = 𝐵𝑛 −𝑉𝑛 (0) = 𝐹−1
Δ𝑉𝑛

(𝐹Δ𝑉𝑛 (𝐵𝑛 −𝑉𝑛 (0))) = 𝐹−1
Δ𝑉𝑛

(PD𝑛) (23)

Therefore, a loss distribution can be simulated with a factor model by simulating
random values for the asset value changes Δ𝑉𝑛 and calculating the hypothetical losses
from defaults indicated by Δ𝑉𝑛 ≤ 𝐹−1

Δ𝑉𝑛
(PD𝑛). The benefit of this approach is that

there is no need to know how asset values are distributed. In fact, it leaves some room
for experimentation: changing the copula of the factor model, and thus the distribution
of Δ𝑉𝑛 has no effect in determining defaults because changing the distribution of Δ𝑉𝑛
also changes 𝐹−1

Δ𝑉𝑛
, eliminating the need for additional compensation or customization.

Using Equation (23), it is also possible to calculate thresholds for rating migrations
in addition to default. If probabilities for different rating migrations are given, they can
be inserted in place of PD in Equation (23) to obtain the threshold corresponding to
that migration. This method is used in the CreditMetrics framework when determining
losses from rating migrations [42]. In Figure 3, we present an illustration of the
method for calculating different migration thresholds, including migration to default.
The illustration represents a corporate loan where the initial asset value corresponds
to a CCC rating and the simulated asset value 𝑉𝑛 + Δ𝑉𝑛 corresponds to a BBB rating,
equaling an increase of three grades. Note that without loss of generality, it is possible
to set the expected asset value to zero.Then Δ𝑉𝑛 can be drawn from a standardized
distribution, which means a distribution with mean equal to zero.
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Figure 3: The asset value of an obligor increases, upgrading its credit rating from the
initial CCC to BBB. Had the asset value decreased and crossed the default threshold,
the company would have defaulted on their loan, meaning inability to pay back the
loan. The Merton model assumes the rating distribution at the horizon 𝑇 = 1 year is
normal, which makes it possible to simulate the default of the company by drawing
the change in asset value Δ𝑉𝑛 from a standard normal distribution.
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3 Research material and methods
In this section, we present the nonlinear dependence structures that are compared in
this thesis. Historically, the Gaussian copula has been a popular dependence structure
to use in portfolio credit risk modeling [11] and it is still present in the Basel III
framework, as seen in Equation (6), which is the reason for comparing the alternatives
against it and each other. Since the Gaussian copula does not include nonlinear
dependence, we do not, however, consider it one of the options. Instead, we compare
the Student’s t copula and the Gumbel copula against each other as a replacement
for the Gaussian copula. The purpose of the comparisons in this thesis is not only
to compare the copulas themselves, but also to compare the effects of choosing each
copula for a portfolio model. The copulas may require modifications to the modeling
frameworks, different assumptions, or other customizations, which contribute to the
final choice of copula for a portfolio credit risk model.

Comparisons of the above copulas have previously been made [8], but the compar-
isons have focused on the accuracy of the estimates and the fit of the model. Instead of
focusing on numerical accuracy, this thesis contributes to the literature by providing
qualitative tools for other aspects of decision making, with the aim of helping risk
analysts choose which dependence structure to implement in a portfolio credit risk
model for corporate exposures. Towards this end, we consider criteria related to
theoretical justification, the complexity of the implementations, and the explainability
of the dependence structures. We also build on previous work on comparisons of the
accuracy of the different alternatives.

The comparison criteria are based on factors that were found important when
selecting the modeling methodologies for OP Financial Group. Theoretical justification
is examined because while it is important to prepare for risks, it is harmful for
profitability to be unreasonably careful. Therefore, all methodological choices must
be justified by the risks they cover. Explainability is assessed because it increases a
model’s significance in a business environment: the users have limited time to spend
understanding the model, but they need to trust the model and its results in order for
the model to get used in processes such as capital adequacy assessment and evaluating
riskiness of different business units. Finally, complexity of the implementation is
analyzed because if an otherwise good model is difficult to build or maintain, it detracts
attention from efforts to develop and analyze other credit risk models, reducing overall
risk awareness of the bank. For instance, finding and fixing errors takes more effort
and calculation consumes more resources for a complex model rather than a simple
one.

We expand on Section 2 by presenting in detail the copulas to be compared and
how they can be implemented into an economic capital model of a large bank with
corporate credit portfolios. Finally, we compare the selected copulas using qualitative
criteria that are motivated by the needs of such banks, such as OP Financial Group.
Further contributions could apply similar qualitative criteria to different options to
make comparison of dependence structures easier.
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3.1 Scope
The comparisons in this thesis are limited by choices that tailor the results to a
specific target audience. In detail, the results are targeted to risk analysts working with
economic capital models for large corporate credit portfolios that use the value-at-risk
measure in their economic capital estimates. The characteristics of this audience make
some options out of question, and some more interesting than others. For example, the
large size of the corporate loan portfolio makes it necessary to use a dimensionality
reduction technique, which in this case is the factor model framework. The main
limitations and choices of the thesis are covered in detail below. Overall, limitations
in dependence structure options and comparison criteria are explained by the large
portfolio size, the former popularity of the Gaussian copula, and the challenges in
high-dimensional integration.

3.1.1 Factor model

In this thesis, the dependence structures to be compared are limited to those that can
be implemented as copulas within a multifactor credit risk model. Firstly, they are
required to be presented as copulas because the Gaussian copula is often the point of
reference for other options due to previous popularity [11] and presence in the Basel
III framework [27], see Equation (6). Secondly, they are required to be implementable
within a multifactor credit risk model for performance reasons that are explained in
more detail in Section 2.3. Otherwise, running the model would be computationally
too expensive or it would not include the diversification that is present in reality.

The corporate credit portfolios of large banks contain thousands of obligors and
are often diversified between some segments, for example, geographical regions or
industries, which are heterogeneous in terms of default correlation [4]. Therefore, it is
justified to require these types of diversification benefits in the model. Hence, it is
required that the copulas can be implemented in a portfolio model with 𝐾 subgroups,
represented by the latent variables (𝑌1, ..., 𝑌𝐾) of the model. We choose to set the latent
variables to represent industries, and for simplicity, assume that each obligor belongs
only to one industry. Therefore, each obligor 𝑛 belongs to a group 𝑘 ∈ 1, ..., 𝐾 , which
implies that changes in its asset prices are explained by a latent variable 𝑌𝑘 (𝑛) and an
independent component 𝜖𝑛.

3.1.2 Implementation in a simulation model

The implementation complexity of the dependence structures is evaluated by im-
plementing the structures in a Monte Carlo simulation model and comparing the
complexity of the resulting simulation algorithms. It would be interesting to compare
the implied multivariate distributions of the copulas along with an analytical solu-
tion for the VaR level, but performing the calculation would be computationally too
demanding. Integrating the 𝑁-dimensional distribution, where 𝑁 is the number of
obligors in the corporate portfolio, is already a challenging task, not to mention that
it may not be possible to explicitly formulate the loss distribution in the first place.
Limiting the comparison of implementations to simulation models is not seen as a
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drawback, as there are benefits to solving the VaR-level using simulation. For example,
it is easy to add dynamic features that affect only certain rounds of the simulation.

3.2 Dependence structures
In this section, we present the mathematical definition of the copulas to be compared
and how they are applied to a portfolio credit risk model that complies with the
limitations presented in the previous section. To follow the limitations, we implement
the model in the following structure, which is also illustrated in Figure 4:

1. A 𝐾-dimensional copula defines the relationship of the 𝐾 latent variables, where
the variables represent some subgroups, for example industries. In other words,
we define the distribution of the latent variables (𝑌1, ..., 𝑌𝐾) in terms of a copula
𝐶 (𝑢1, ..., 𝑢𝐾).

2. 𝐾 single factor models are used to connect each obligor to its latent variable.
This structure can also be thought of as a multifactor model where each obligor
has only one non-zero loading coefficient 𝛽.

3.2.1 Gaussian copula - the baseline

The Gaussian copula has been the standard dependence structure in portfolio modeling
and is therefore presented as a baseline for comparison. Let 𝑢𝑖 be uniform [0,1]-
distributed random variables whose correlation is defined by a 𝑛 × 𝑛 correlation
matrix R. Individual correlations 𝑅𝑖, 𝑗 are Pearson correlation coefficients, but they
can also be expressed using Kendall’s tau coefficients as 𝑅𝑖, 𝑗 = sin(𝜋𝜏𝑖, 𝑗/2). Then,
Φ𝑛 (Φ−1(𝑢1), ...,Φ−1(𝑢𝑛); R) is the corresponding 𝑛-dimensional normal distribution
with correlation matrix R, and Φ is the univariate standard normal distribution. Then,
the Gaussian copula has the following form [43, Ch. 6]

𝐶 (𝑢1, ..., 𝑢𝑛) = Φ𝑛 (Φ−1(𝑢1), ...,Φ−1(𝑢𝑛); R). (24)

An illustration of the bivariate Gaussian copula is provided in Figure 5.
Using the definition, the desired portfolio model is built as follows:

1. Assume 𝐾 subgroups in the portfolio and let 𝑌𝑘 be the latent variables for each
group 𝑘 ∈ 1, ..., 𝐾 . Set the variables to be distributed according to the Gaussian
copula by letting 𝑌𝑘 ∼ 𝑈 (0, 1) and

P(𝑌1 ≤ 𝑢1, ..., 𝑌𝐾 ≤ 𝑢𝐾) = 𝐶Gauss(𝑢1, 𝑢2, ..., 𝑢𝐾)
= Φ𝐾 (Φ−1(𝑢1), ...,Φ−1(𝑢𝐾); R). (25)

Consider also an alternative definition, where we have 𝑌 ′

𝑘
∼ N(0, 1). Then,

P(𝑌 ′

1 ≤ 𝑛1, ..., 𝑌
′
𝐾 ≤ 𝑛𝐾) = P(Φ(𝑌 ′

1) ≤ Φ(𝑛1), ...,Φ(𝑌 ′
𝐾) ≤ Φ(𝑛𝐾))

= P(𝑌1 ≤ Φ(𝑛1), ..., 𝑌𝐾 ≤ Φ(𝑛𝐾))
= Φ𝐾 (𝑛1, ..., 𝑛𝐾); R) , (26)
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Figure 4: The dependence structures are implemented in two layers where the
dependence of the latent variables is defined by copula 𝐶, and then the asset value
changes of each obligor are calculated with a single factor model that connects each
obligor with its industry, represented by a latent variable.
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Figure 5: The bivariate Gaussian copula is illustrated by sampling 1000 samples from
two Gaussian copulas with different dependence parameters. The Kendall’s tau (𝜏)
values of 0.50 and 0.80 correspond to correlations of 0.70 and 0.95, respectively.
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implying that (𝑌 ′

1, ..., 𝑌
′
𝐾
) ∼ N𝐾 (0, 1; R) and making it possible to sample 𝑌𝑘

directly from the multivariate standard normal distribution that they follow. We
use the definition in Equation (26) because the assumption 𝑌𝑘 ∼ N(0, 1) helps
determine which obligors default on their loan.

2. Set the asset value changes of each obligor 𝑛 to depend on the corresponding
latent variable 𝑌𝑘 (𝑛) model with the Gaussian copula. This creates a bivariate
relationship, as described in Section 2.3.1. To create a bivariate dependence
between 𝑌𝑘 (𝑛) and Δ𝑉𝑛, Equation (26) can be applied in two dimensions.
Assume Δ𝑉𝑛 ∼ N(0, 1) and 𝑌𝑘 ∼ N(0, 1). Then, the dependence between the
variables is

P(𝑌𝑘 (𝑛) ≤ 𝑛1,Δ𝑉𝑛 ≤ 𝑛2) = Φ2(𝑛1, 𝑛2; 𝑅) (27)
⇒ (𝑌𝑘 (𝑛) ,Δ𝑉𝑛) ∼ N2(0, 1; 𝑅) (28)

As proven in Corollary 2.2.1, the relationship N2(0, 1; 𝑅) between 𝑌𝑘 (𝑛) and
Δ𝑉𝑛 is obtained with the single-factor definition

Δ𝑉𝑛 = 𝑅𝑛𝑌𝑘 (𝑛) +
√︃

1 − 𝑅2
𝑛𝜖𝑛 = 𝑅𝑛𝑌𝑘 (𝑛) +

√︃
1 − 𝑅2

𝑛𝜖𝑛 (29)

given 𝜖 ∼ N(0, 1).

3.2.2 Student’s t copula

Student’s t copula has been found more accurate in modeling stock returns than the
Gaussian copula due to heavier tails of the distribution [8, 15, 44]. The tail dependence
of the t-copula is controlled with a single parameter 𝜈, called degrees of freedom. This
simplicity makes the t-copula an attractive choice for adding nonlinear dependence to
a portfolio model.

Conventionally, Student’s t distribution has location 𝜇 = 0 and scale 𝜎 = 1, thus
generalizing the standard normal distribution. When 𝜇 and 𝜎 are given other values,
the distribution is called location-scale t distribution lst(𝜇, 𝜎, 𝜈). At the limit 𝜈 → ∞,
Student’s t distribution and location-scale t distribution approach the standard normal
and normal distributions, respectively. This is visible, for example, from the variance
of the location-scale t distribution, which has variance var = 𝜎2 𝜈

𝜈−2 .
To define the Student’s t copula, let 𝑇 be the cumulative distribution function of

the Student’s t distribution with correlation matrix R and degrees of freedom 𝜈. Then,
the Student’s t copula has the following form [44, Ch. 4].

𝐶𝑡 (𝑢1, ..., 𝑢𝑛) = 𝑇𝑛 (𝑇−1(𝑢1; 𝜈), ..., 𝑇−1(𝑢𝑛; 𝜈); R, 𝜈). (30)

An illustration of the bivariate Student’s t copula is provided in Figure 6.
We construct the portfolio model using this definition:
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Figure 6: The bivariate Student’s t copula is illustrated by plotting 1000 samples from
three Student’s t copulas with different dependence parameters. The Kendall’s tau (𝜏)
values of 0.50 and 0.80 correspond to correlations of 0.70 and 0.95, respectively. The
degrees of freedom parameter (𝜈) value of 2000 is very close to a normal distribution,
while the value of 3 is a very high level of tail dependence.

1. Assume 𝐾 subgroups in the portfolio and let 𝑌𝑘 be the latent variables for each
group 𝑘 ∈ 1, ..., 𝐾 . Set the variables to be dependent according to the t-copula
by letting 𝑌𝑘 ∼ 𝑈 (0, 1) and

P(𝑌1 ≤ 𝑢1, ..., 𝑌𝐾 ≤ 𝑢𝐾) = 𝐶t(𝑢1, 𝑢2, ..., 𝑢𝐾)
= 𝑇𝑛 (𝑇−1(𝑢1; 𝜈), ..., 𝑇−1(𝑢𝑛; 𝜈); R, 𝜈) (31)

As in the Gaussian copula, we can also set𝑌 ′

𝑘
∼ 𝑡 (𝜈) to obtain the latent variables

directly from a multivariate t distribution.

P(𝑌 ′

1 ≤ 𝑠1, ..., 𝑌
′
𝐾 ≤ 𝑠𝐾) = 𝑇𝑛 (𝑠1, ..., 𝑠𝑛; R, 𝜈) (32)

⇒ (𝑌 ′

1, ..., 𝑌
′
𝐾) ∼ 𝑡𝐾 (R, 𝜈) (33)

2. Set the asset value changes of each obligor 𝑛 to depend on the corresponding
latent variables 𝑌𝑘 (𝑛) using the t-copula. This defines a bivariate relationship
that is a two-dimensional version of Equation (33).
Let 𝑌𝑘 ∼ 𝑡 (𝜈) and Δ𝑉𝑛 ∼ 𝑡 (𝜈) for 𝑘 ∈ 1, ..., 𝐾 and 𝑛 ∈ 1, ..., 𝑁 , with 𝜈 being the
degree-of-freedom parameter and 𝑅𝑛,𝑘 quantifying the correlation of 𝑌𝑘 (𝑛) and
Δ𝑉𝑛. Then,

P(𝑌𝑘 (𝑛) ≤ 𝑠1,Δ𝑉𝑛 ≤ 𝑠2) = 𝑇2(𝑠1, 𝑠2; 𝑅𝑛,𝑘 , 𝜈) (34)
⇒(𝑌𝑘 (𝑛) ,Δ𝑉𝑛) ∼ 𝑡2(R, 𝜈) (35)

3.2.3 Hierarchical Archimedean (Gumbel copula)

Archimedean copulas have been advocated over the Gaussian copula due to their
ability to capture extremal dependence [9]. The benefit of Archimedean copulas is that
they share many mathematical properties because they are defined with a generator
function, as presented in Section 2.2.3. That is why Archimedean copulas are often
presented together, instead of individually respective to the generator functions.
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The drawback to the generator function property is that Archimedean copulas are
parametrized by a single dependence parameter of the generator function, which is
why there is a need to either use the same level of dependence for all dimensions
of the copula or to build a more complex construction using several copulas. In
this section, we present the Gumbel-Hougaard copula, which we will refer to as the
Gumbel copula, and a hierarchical implementation [45] of several Gumbel copulas.
Another alternative to increasing the flexibility of the dependence model is to build a
pair-copula construction, also called a vine copula [44, 46].

The multivariate Gumbel copula is defined using the generator 𝜙(𝑡; 𝜃) = (− ln(𝑡))𝜃 .
This gives the 𝑛-dimensional Gumbel copula for 𝜃 ≥ 1 and any 𝑛 ≥ 2 [32, Ch. 4].

𝐶Gu(𝑢1, ..., 𝑢𝑛; 𝜃) = 𝑒−((− ln 𝑢1) 𝜃+...+(− ln 𝑢𝑛) 𝜃 )1/𝜃 (36)

The dependence parameter 𝜃 in the Gumbel copula is defined using Kendall’s tau as
𝜃 = 1/(1− 𝜏), where 𝜏 is the Kendall’s tau coefficient estimated for a pair of variables
𝑢𝑖, 𝑢 𝑗 [47]. Evidently, the same value of 𝜏 has to quantify the dependencies between
all pairs of variables because the dependencies are expressed using only a single
parameter in the Gumbel copula. Figure 7 illustrates the bivariate Gumbel copula.
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Figure 7: The bivariate Gumbel copula is illustrated by sampling 1000 samples from
two Gumbel copulas with different dependence parameters. The Kendall’s tau (𝜏)
values of 0.50 and 0.80 correspond to 𝜃 parameter values of 2 and 5, respectively.

Combining many (Gumbel) copulas into a hierarchical one gives possibilities for
assigning several 𝜃 parameters, in order to model more complex dependencies. In
practice, copulas are inserted as arguments into other copulas to create a structure that
can be modeled as a tree. A simple example of a hierarchical copula is the fully nested
copula using bivariate copulas, that is illustrated in Figure 8 and used by Kole, Koedĳk
and Verbeek [8]. By definition, a 𝑘-variate fully nested copula has 𝑘 − 1 levels of
hierarchy. It is formulated recursively as

𝐶𝐻𝐴 (𝑢1, ... , 𝑢𝑘 ;𝚯) =
{︄
𝐶Gu(𝑢1, 𝑢2; 𝜃1) 𝑘 = 2
𝐶Gu [𝐶𝐻𝐴 (𝑢1, ..., 𝑢𝑘−1;𝚯[1,𝑘−2]), 𝑢𝑘 ; 𝜃𝑘−1] 𝑘 ≥ 2

(37)
⇒

𝐶𝐻𝐴 (𝑢1, ... , 𝑢𝑘 ;𝚯) = 𝐶Gu( ... 𝐶Gu(𝐶Gu(𝑢1, 𝑢2; 𝜃1), 𝑢3; 𝜃2) ... ), 𝑢𝑘 ; 𝜃𝑘−1),
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where 𝚯 refers to the full vector of dependence parameters (𝜃1, ..., 𝜃𝑘 ) and 𝚯[1,𝑠] =
(𝜃1, ..., 𝜃𝑠) to elements in indices 1 to 𝑠, 𝑠 < 𝑘 of the full vector. The variables are
ordered such that 𝜃1 ≥ 𝜃2 ≥ ... ≥ 𝜃𝑘−1.

𝐶3

𝑢4 𝐶2

𝑢3 𝐶1

𝑢2 𝑢1

Figure 8: A fully nested (𝑘 = 4) copula has four variables 𝑢𝑖 and therefore (𝑘 − 1 = 3)
levels of hierarchy, represented by copulas 𝐶𝑖. Dependence parameters 𝜃𝑖 of copulas
𝐶𝑖 must be ordered such that 𝜃1 ≥ 𝜃2 ≥ 𝜃3, implying that the strongest dependence is
between variables 𝑢1 and 𝑢2.

More complex hierarchical copulas can involve copulas with more than two
dimensions, and therefore less than 𝑘 − 1 levels in their hierarchy, given that the final
copula has 𝑘 dimensions. An example by Joe is provided [44, Ch. 3.4]. Let

𝐶𝐻𝐴 (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5;𝚯) = 𝐶Gu(𝐶Gu(𝑢1, 𝑢2; 𝜃1), 𝐶Gu(𝑢3, 𝑢4, 𝑢5; 𝜃2); 𝜃3) , (38)

which is then the hierarchical copula in Figure 9 consisting of three-dimensional and
two-dimensional Gumbel copulas combined with a third, two-dimensional, Gumbel
copula. Hierarchical constructions like this could be attractive in cases where several
variables share similar dependence characteristics, while a fully nested model could
be more useful when the dependence strengths of all dimensions are different.

𝐶3

𝐶2 𝐶1

𝑢4𝑢5 𝑢3 𝑢2 𝑢1

Figure 9: The two-dimensional copula 𝐶1 and the three-dimensional copula 𝐶2 are
nested in a third copula 𝐶3. The dependence parameters 𝜃𝑖 for 𝐶𝑖 must be such that
𝜃1 ≥ 𝜃2 ≥ 𝜃3, meaning that strongest dependence is captured by the smallest inner
copula and weakest dependence is captured by the root copula.

A portfolio model using hierarchical Gumbel copulas would therefore be con-
structed as follows.
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1. Assume 𝐾 subgroups in the portfolio and let 𝑌𝑘 be the latent variables for each
group 𝑘 ∈ 1, ..., 𝐾. Define a hierarchical Gumbel copula 𝐶Gu(𝑢1, ..., 𝑢𝑘 ;𝚯)
with 𝚯 = (𝜃1, ...𝜃ℎ) being the required dependence parameters, such that

P(𝑌1 ≤ 𝑢1, ..., 𝑌𝑘 ≤ 𝑢𝑘 ) = 𝐶Gu(𝑢1, ..., 𝑢𝑘 ;𝚯). (39)

2. Set the asset value changes of each obligor 𝑛 to depend on the corresponding
latent variable 𝑌𝑘 (𝑛) using the bivariate Gumbel copula. Let 𝑌𝑘 ∼ 𝑈 (0, 1) and
Δ𝑉𝑛 ∼ 𝑈 (0, 1) for 𝑘 ∈ 1, ..., 𝐾 and 𝑛 ∈ 1, ..., 𝑁 . Quantify the dependence
between Δ𝑉𝑛 and its respective group 𝑌𝑘 with parameter 𝜃𝑛. Then,

P(Δ𝑉𝑛 ≤ 𝑢1, 𝑌𝑘 (𝑛) ≤ 𝑢2) = 𝐶Gu(𝑌𝑘 (𝑛) ,Δ𝑉𝑛; 𝜃𝑛). (40)

To calculate Δ𝑉𝑛 in practice and determine defaults in simulation, we use the
conditional probability form

P(Δ𝑉𝑛 ≤ 𝑢1 |𝑌𝑘 (𝑛) = 𝑦) = 𝐶Gu(Δ𝑉𝑛 | (𝑌𝑘 (𝑛) = 𝑦; 𝑅𝑛). (41)

since the realizations of𝑌𝑘 from step 1 would be available in simulation. Writing
the previous equation as a sum of random variables similarly to the Gaussian
case is not available for Archimedean copulas because the equation relies on the
summation property of stable distributions.

3.3 Comparison criteria
The copulas are compared using three qualitative criteria that aim to capture possible
challenges in the development of a portfolio credit risk model. The criteria do not
provide absolute scales or metrics, but instead are used to order the copula options
so that a credit risk modeler can get a summary of the properties of the copulas at a
glance. This goal is facilitated by summary tables that are presented in Section 4.
The criteria are limited similarly to the copulas themselves, namely by the constraints
listed in Section 3.1.

3.3.1 Theoretical justification

Copulas chosen in portfolio models must be theoretically justified to make them worth
investigating in the first place. We examine how well the properties of each copula suit
the modeling of observed asset value behavior. Specifically, we compare the features
of the copulas with the observations made by Longin and Solnik [13], and Bae et.
al.[14]:

1. Large losses occur more frequently together than smaller losses. This is also
known as default clustering.

2. The dependence of large positive returns is different from the dependence of
large negative returns.
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In order to justify a copula other than the Gaussian copula, there should be some
evidence or justification that the copula being evaluated would depict reality better than
the Gaussian copula or the independence copula. Otherwise, the added complexity
can be rejected by Occam’s razor principle.

The ability to depict reality is assessed using the coefficient of tail dependence that
is calculated for each copula. Specifically, we compare the upper and lower coefficients
of tail dependence, which quantify the level of dependence in the positive and negative
extremes of the copulas [3, Ch. 5]. For random variables 𝑋1 and 𝑋2 with continuous
cumulative distribution functions 𝐹1 and 𝐹2, respectively, and dependence defined by
copula 𝐶, the coefficient of lower tail dependence 𝜆𝑢 is defined as

𝜆𝑙 = lim
𝑞→0+

P(𝑋2 ≤ 𝐹−1(𝑞) |𝑋1 ≤ 𝐹−1
1 (𝑞))

= lim
𝑞→0+

P(𝑋2 ≤ 𝐹−1(𝑞), 𝑋1 ≤ 𝐹−1
1 (𝑞))

P(𝑋1 ≤ 𝐹−1
1 (𝑞))

= lim
𝑞→0+

𝐶 (𝑞, 𝑞)
𝑞

(42)

assuming the limit exists [3, pp. 209]. Intuitively, the coefficient indicates the
correlation of the values of 𝑋1 and 𝑋2 that are below the quantile 𝑞, while 𝑞 approaches
the lower tail. The coefficient of upper tail dependence 𝜆𝑢 given by

𝜆𝑢 = lim
𝑞→0+

�̂� (𝑞, 𝑞)
𝑞

is defined similarly [3, pp. 209], but using the survival copula �̂� (1 − 𝑢, 1 − 𝑣) =

1 − 𝑢 − 𝑣 + 𝐶 (𝑢, 𝑣), which corresponds to the copula 𝐶, where the x and y axes have
been flipped around.

The observations by Longin and Solnik [13] and Bae et. al.[14] may now be
written more precisely in terms of the coefficient of tail dependence.

1. The coefficient of upper tail dependence does not equal zero, i.e. the losses are
not asymptotically independent.

2. The coefficient of upper tail dependence is positive, while the coefficient of
lower dependence is zero, i.e. the losses show extremal dependence, but "profits"
are asymptotically independent.

3.3.2 Implementation in a portfolio model

We compare the implementations of the models by analyzing the length and complexity
of the simulation algorithm that is required to implement the desired copula following
the limitations established in earlier sections.

The models are assumed to be calibrated using equity price data from stock
markets, as other data types are difficult to obtain [39]. As we focus on the perspective
of large banks and their corporate portfolios, it is valid to assume the existence of
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such equity data, since the corporate portfolios would likely consist, in large parts, of
companies that are listed in the stock market.

When assessing the implementation in a portfolio model, we write a pseudo-code
that specializes the following steps to the copula in question. The bold parts of the
code are specific to each copula.

For a large number of repetitions:

1. Sample random values for each latent variable 𝑌𝑘 in the portfolio. We set
these latent variables to be industries of the obligors, but they could also be
something else, as described earlier.

2. Calculate the asset value change Δ𝑉𝑛 for each company in the portfolio
using independent random variables.

3. Determine which companies default on their loan by comparing their asset value
changes Δ𝑉𝑛 to the corresponding default threshold 𝐹−1

𝑉𝑛
of the same company.

If a company defaults, add it’s EAD*LGD to a variable that counts the total loss
of that simulation round.

4. Save the total loss and information of which companies defaulted in order to
distribute the economic capital among the obligors.

The simulation is run for many rounds, in the order of hundreds of thousands
to millions, to keep the Monte Carlo error low. The required number of simulation
rounds depends on the size of the portfolio.

3.3.3 Explainability

Finally, we compare how well the selected models and their implementations can
be explained to model users and other stakeholders. Since explainability may be
interpreted in different ways, we evaluate the explainability using three different
categories defined by P. Mishra [48], presented in Table 1.

Table 1: Methods for explaining machine learning models can be grouped into three
categories [48].

Category Method example

Textual Explainability
Natural Language Generation
Summary Generation

Visual Explainability
Tree Based Flow Chart
Rule Extraction

Example Based
Using Common Examples
Business Scenarios

Textual explainability is evaluated by creating textual descriptions of the mathe-
matics involved in each copula implementation. Visual explainability is determined
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by drawing diagrams of each copula implementation and seeing which copula has
the simplest one. Finally, example based explainability is evaluated by writing a
hypothetical scenario that is implied by each copula. The scenarios are then compared
by how easy they are to understand.
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4 Results
In this section, the selected copulas are compared using the criteria described in Section
3. For each criterion, the copulas are ordered from best to worst with justification.
Since the assessment is qualitative, the performance of two copulas may be declared
equal if their performance is similar. A summary of the comparison results is in
Section 4.4.

4.1 Theoretical justification
The justifiability of each copula is determined by tabulating their upper and lower
tail dependence coefficients and comparing them with the two desired characteristics
established in Section 3.3.1.

1. The coefficient of upper tail dependence does not equal zero, i.e. the losses are
not asymptotically independent.

2. The coefficient of upper tail dependence is positive, while the coefficient of
lower dependence is zero, i.e. the losses show extremal dependence, but "profits"
are asymptotically independent.

The upper and lower tail dependence coefficients of each copula are in Table 2. The
table shows that the Gaussian copula is asymptotically independent in both tails, while
the Gumbel copula displays extremal dependence in the upper tail and the Student’s t
copula in both tails symmetrically. Therefore, the Student’s t copula fulfills the first
criterion, the Gumbel copula fulfills both, and the Gaussian copula fulfills neither.
The more important characteristic is the first, which demands extremal dependence in
the upper tail. It is significant because a lack of dependence in the upper tail can cause
a serious underestimation of risk, as happened during the financial crisis of 2007-2008
[11, 12]. As long as the model can capture the upper tail dependence, it is a major
improvement to the previously common but insufficient methodology.

The second characteristic is more related to the calibration of the models. Crises
are scarce in stock market data, which means that the true extent of the upper tail

Table 2: Values for the coefficients of upper and lower tail dependence for each copula
under comparison. The values are calculated for bivariate copulas, where the Gaussian
copula has dependence parameter 𝜌, the Student’s t copula has dependence parameter
𝜌 and degrees-of-freedom parameter 𝜈, and the Gumbel copula has dependence
parameter 𝜃. Here 𝑡𝜈+1 is the univariate cdf of the Student’s t distribution with 𝜈 + 1
degrees of freedom, 𝜈 being the degrees-of-freedom of the copula.

Copula 𝜆𝑙 𝜆𝑢
Gaussian 0 0

Student’s t 2𝑡𝜈+1

(︃
−
√︃

(𝜈+1) (1−𝜌)
(1+𝜌)

)︃
2𝑡𝜈+1

(︃
−
√︃

(𝜈+1) (1−𝜌)
(1+𝜌)

)︃
Gumbel 0 2 − 21/𝜃
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of losses may not be present in the data. Therefore, symmetrical models, such as
the Student’s t copula, have their tail dependence parameters calibrated mostly to the
lower tail (low losses, bull market), which has a lower level of dependence than the
upper tail, leading to the underestimation of extreme risks that would be present in the
upper tail of the loss distribution.

From the formulas in Table 2, we can also note that the Student’s t copula has two
parameters controlling the tail dependence coefficient, while the Gumbel copula only
has one. Having two parameters is advantageous because the tail dependence strength
of the copula can be controlled while keeping the estimated correlation parameter
constant. A study that finds the Student’s t copula more accurate than the Gumbel
copula concludes that the additional parameter is a driver of the better performance
[8].

Given the properties listed in Table 2, the Gumbel copula is the best in modeling
observed phenomena. However, the additional parameter of the Student’s t copula
compared to the Gumbel compula makes it a valid contender. We conclude that the
Gumbel copula is theoretically more justified, but empirical accuracy needs to be
assessed when calibrating the selected model.

4.2 Implementation
Pseudo-code implementations of each copula in an economic capital simulation model
are presented below. Each implementation follows the format presented in Section
3.3.2. The implementations require sampling random numbers, which is assumed
to be available in the simulation environment. Specifically, we assume the ability to
sample the Normal, Student’s t, inverse Gamma, Exponential, and Stable distributions.

4.2.1 Gaussian copula

1. Sample random values for each latent variable 𝑌𝑘 in the model.
As established in Section 3.2.1, it is possible to obtain standard normal dis-
tributed variables (𝑌1, ..., 𝑌𝐾) from a multivariate standard normal distribution
N𝐾 (0, 1; R). Sampling can be performed using Cholesky decomposition [44,
chapter 6].

(a) Find the 𝐾 × 𝐾 lower triangular Cholesky matrix 𝐴 such that 𝐴𝐴⊺ = R.
(b) Sample a vector Z⊥ of 𝐾 i.i.d. N(0, 1) variables.
(c) (𝑌1, ..., 𝑌𝐾) = 𝐴Z⊥.

2. For each obligor 𝑛, calculate Δ𝑉𝑛 given the sample (𝑌1, ..., 𝑌𝐾) = (𝑦1, ..., 𝑦𝐾).
Given the bivariate relationship (𝑌𝑘 (𝑛) ,Δ𝑉𝑛) ∼ N2(0, 1; 𝑅) in Section 3.2.1,
it is possible to sample Δ𝑉𝑛 similarly to in the first step, using the Cholesky
decomposition.
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(a) Calculate the Cholesky lower triangular matrix

𝐴 =

[︄
1 0
𝑅𝑛,𝑘

√︃
1 − 𝑅2

𝑛,𝑘

]︄
,

where 𝑅𝑛,𝑘 is the correlation between Δ𝑉𝑛 and the corresponding latent
variable 𝑌𝑘 .

(b) For each obligor 𝑛, sample i.i.d. 𝜖𝑛 ∼ N(0, 1). Then, we have two
independent N(0, 1) variables for each obligor, 𝜖𝑛 and 𝑦𝑘 (𝑛) , and we set
Z⊥ = [𝑦𝑘𝑛 , 𝜖𝑛]⊺

(c) For each obligor, calculate the realization

(𝑦𝑘 (𝑛) ,Δ𝑉𝑛) = 𝐴Z⊥ =

(︂
𝑦𝑘 (𝑛) , 𝑅𝑛,𝑘 · 𝑦𝑘 (𝑛) + 𝜖𝑛

√︃
1 − 𝑅2

𝑛,𝑘

)︂
⇒Δ𝑉𝑛 = 𝑅𝑛,𝑘 · 𝑦𝑘 (𝑛) + 𝜖𝑛

√︃
1 − 𝑅2

𝑛,𝑘
,

where 𝑅𝑛,𝑘 is the correlation between the obligor 𝑛 and its industry 𝑌𝑘 (𝑛) .
This is equivalent to the single-factor formula proven in 2.2.1.

3. Determine which obligors defaulted on their loan by checking when Δ𝑉𝑛 ≤
Φ−1(PD𝑛). The tails of the distribution are symmetrical, which is why the upper
tail comparison −Δ𝑉𝑛 ≥ Φ−1(1−PD𝑛) is equivalent. Use the indicator function
to denote the comparison

1𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 (𝑛) = [𝑛 ∈ {𝑛 | Δ𝑉𝑛 ≤ Φ−1(PD𝑛)}] .

4. Calculate the total loss with

𝐿 =

𝑁∑︁
𝑛=1

1𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 (𝑛) · EAD𝑛 · LGD𝑛

4.2.2 Student’s t copula

The implementation of the Student’s t copula is similar to the Gaussian copula, and it
can even be seen to be built on top of it. Samples from the Gaussian copula can be
converted to samples from the Student’s t copula by multiplying the samples with an
independent inverse-gamma distributed variable.

1. Sample random values for each latent variable 𝑌𝑘 in the model.
It is possible to obtain Student’s t distributed variables (𝑌1, ..., 𝑌𝐾) from a
multivariate t distribution 𝑡 (R, 𝜈). Sampling can be performed using Cholesky
decomposition similar to the Gaussian copula [44, chapter 6]. The only difference
is the added variable𝑊 .

(a) Find the 𝐾 × 𝐾 lower triangular Cholesky matrix 𝐴 such that 𝐴𝐴⊺ = R.
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(b) Sample a vector Z⊥ of 𝐾 i.i.d. N(0, 1) variables.
(c) Calculate a sample from the normal distribution as in the case of the

Gaussian copula Z = 𝐴Z⊥ ∼ N𝐾 (0, 1,R).
If we wanted to observe the sample of the latent variables at this stage,
we would sample𝑊 ∼ Inv-Gamma(𝜈/2, 𝜈/2) and multiply the previous
multivariate normal sample with it to obtain the multivariate t distributed
sample of (𝑌1, ..., 𝑌𝐾) = Z

√
𝑊 ∼ 𝑡𝐾 (R, 𝜈). However, multiplication is

performed only in the next stage because values of the normally distributed
Z are needed to generate the conditional sample in the next stage. It is
possible to observe the latent variables after the changes in asset values
Δ𝑉𝑛 are computed.

2. For each obligor 𝑛, calculate Δ𝑉𝑛 given a sample of the latent variables
(𝑌1, ..., 𝑌𝐾) = (𝑦1, ..., 𝑦𝐾).
Note that in this case, the sample Z = (𝑧1, ..., 𝑧𝐾) is technically used in place of
a sample of Y to avoid unnecessary computation, but the result is equivalent
and the sample of Y is retrieved in the end.
Changes in asset values are coupled to the respective latent variables with the
bivariate t copula (𝑌𝑘 (𝑛) ,Δ𝑉𝑛) ∼ 𝑡2(R, 𝜈). Similarly to the Gaussian copula, the
two-dimensional Cholesky matrix is created and used to form the samples.

(a) For each obligor 𝑛, calculate the lower triangular Cholesky matrix, which
is

𝐴 =

[︃
1 0
𝑅

√
1 − 𝑅2

]︃
,

where 𝑅𝑛,𝑘 is the correlation between Δ𝑉𝑛 and the corresponding latent
variable 𝑌𝑘 .

(b) For each obligor 𝑛, sample i.i.d. 𝜖𝑛 ∼ N(0, 1). Then we have two
independent N(0, 1) variables for each obligor, 𝜖𝑛 and 𝑦𝑘 (𝑛) , and we set
Z⊥ = [𝑧𝑘𝑛 , 𝜖𝑛]⊺, where 𝑧𝑘 are the normally distributed samples of the
latent variables.

(c) Sample 𝑊 ∼ Inv-Gamma(𝜈/2, 𝜈/2). The same value is used for all
obligors in one simulation round.

(d) For each obligor 𝑛, calculate the realization

(𝑦𝑘 (𝑛) ,Δ𝑉𝑛) = 𝐴Z⊥√𝑊 =

(︂
𝑧𝑘 (𝑛)

√
𝑊, 𝑅𝑛,𝑘 · 𝑧𝑘 (𝑛)

√
𝑊 + 𝜖𝑛

√︃
1 − 𝑅2

𝑛,𝑘

√
𝑊

)︂
=

(︂
𝑦𝑘 (𝑛) , 𝑅𝑛,𝑘 · 𝑦𝑘 (𝑛) + 𝜖�̃�

√︃
1 − 𝑅2

𝑛,𝑘

)︂
⇒Δ𝑉𝑛 = 𝑅𝑛,𝑘 · 𝑦𝑘 (𝑛) + 𝜖�̃�

√︃
1 − 𝑅2

𝑛,𝑘
,

where 𝑅𝑛,𝑘 is the correlation between the obligor 𝑛 and its industry 𝑌𝑘 (𝑛)
and 𝜖�̃� ∼ 𝑡 (𝜈) is the t distributed equivalent of 𝜖𝑛. This is equivalent to the
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single-factor formula proven in Section 2.2.1 but converted to the Student’s
t distribution. At this stage, the sample of the t distributed latent variables
𝑌𝑘 = 𝑦𝑘 can be observed.

3. Determine which obligors defaulted by seeing when Δ𝑉𝑛 ≤ 𝑇−1(PD𝑛), where
𝑇−1 is the inverse cdf of Student’s t distribution. The tails of the distribution are
symmetrical, which is why the upper tail comparison −Δ𝑉𝑛 ≥ Φ−1(1 − PD𝑛) is
equivalent. Use the indicator function to denote the comparison

1default(𝑛) = [𝑛 ∈ {𝑛 | Δ𝑉𝑛 ≤ 𝑇−1(PD𝑛)}] .

4. Calculate the total loss with

𝐿 =

𝑁∑︁
𝑛=1

1default(𝑛) · EAD𝑛 · LGD𝑛

In comparison to the Gaussian copula, the Student’s t copula causes two additions to
the simulation implementation. In the first stage, where latent variables are calculated,
and in the second stage, where asset values are simulated, one more random variable is
added. The additional random variable𝑊 is needed to convert the sampled distribution
from normal to Student’s t. However, the addition is quite minor, since sampling
Gamma-distributed random variables, and therefore also inverse Gamma-distributed
variables, is implemented to many popular programs, such as R, Python and Matlab.

4.2.3 Hierarchical Gumbel copula

1. Sample random values for each latent variable 𝑌𝑘 in the model.
Regardless of the structure of the hierarchy tree, latent variables are sampled
recursively, following the algorithm of Hofert and Mächler [49]. The algorithm
is based on algorithm 5 of McNeil [50] and is implemented in the R package
nacopula. Let 𝐶 be the hierarchical Gumbel copula, where the root copula is
𝐶0 with generator 𝜓0.

(a) Sample 𝑉0 ∼ 𝐹0 = LS−1 [𝜓−1
0 ]

(b) For all child copulas 𝑢 of 𝐶0:
i. Set 𝐶1 to be the child copula 𝑢 with generator 𝜓1.
ii. Sample 𝑉01 ∼ 𝐹01 = LS−1 [𝜓−1

01 (·;𝑉0)]
iii. Set 𝐶0 := 𝐶1, 𝜓0 := 𝜓1 and 𝑉0 := 𝑉01 and continue from (1b).

(c) For all other components 𝑢 of 𝐶0, which are leaves of 𝐶 corresponding to
some latent variable 𝑌𝑘 :

i. Sample 𝑅 ∼ Exp(1)
ii. Set 𝑦𝑘 := 𝜓0(𝑅/𝑉0)

(d) Return the sample (𝑦1, ..., 𝑦𝑘 )
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The sampling distributions are defined as

𝐹0 = LS−1 [𝜓−1
0 ] = 𝑆

(︃
1
𝜃
, 1, cos𝜃0

(︃
𝜋

2𝜃0

)︃
,1{𝜃0=1}; 1

)︃
for the root copula, and

𝐹01 = LS−1 [𝜓−1
01 (·;𝑉0)] = 𝑆

(︄
𝜃0
𝜃1
, 1, cos

(︃
𝜋𝜃0
2𝜃1

)︃𝜃1/𝜃0

, 𝑉01{𝜃1/𝜃0=1}; 1

)︄
for the child of the root copula, where 𝜓−1

0 (𝑡; 𝜃0) = exp(−𝑡1/𝜃0) is the inverse
generator of the root copula in the hierarchy tree and

𝜓−1
01 (𝑡; 𝑥) = exp(−𝑥𝜓0(𝜓−1

1 (𝑡)))
= exp(−𝑥(− ln(exp(−𝑡1/𝜃1)))𝜃0)
= exp(−𝑥𝑡𝜃0/𝜃1), 𝑡 ∈ [0,∞], 𝑥 ∈ (0,∞)

is the generator of the child copula, the nested one. The sampling distributions
𝑆 are stable distributions, derived using the inverse Laplace-Stieltjes transform
of the inverse generator function, notated with LS−1 [𝜓−1]. The sampling
algorithm for stable distributions has been implemented, for example, in R,
Python, and Matlab.

2. For each obligor 𝑛, calculate Δ𝑉𝑛 given the sample (𝑌1, ..., 𝑌𝐾) = (𝑦1, ..., 𝑦𝐾)
and determine if the obligor defaulted.
It is not possible to calculate Δ𝑉𝑛 by directly sampling the Gumbel copula as in
the case of the Gaussian and Student’s t copula because the underlying random
variables of the Gumbel sampling process do not correspond to the dimensions
of the resulting copula. Instead, it is necessary to use the conditional distribution
function of the copula.
Sampling any random variable 𝑋 can be done by sampling a uniform random
variable 𝑈 = 𝑢 and feeding it into the inverse of the cumulative distribution
function of 𝑋 to obtain the sample 𝐹−1

𝑋
(𝑢) = 𝑥.

Following the idea, calculate the conditional distribution function𝐶Gu(Δ𝑉𝑛 |𝑌𝑘 (𝑛) =
𝑦; 𝜃𝑛), which is the cumulative distribution function ofΔ𝑉𝑛, given the realization
𝑌𝑘 (𝑛) = 𝑦𝑘 (𝑛) , by differentiating the copula by the conditioning variable [46].

𝐶Gu(Δ𝑉 |𝑌 = 𝑦; 𝜃) = 𝜕𝐶Gu(Δ𝑉,𝑌 = 𝑦; 𝜃)
𝜕𝑌

= 𝐶Gu(Δ𝑉, 𝑦; 𝜃) ·
(− ln 𝑦)𝜃−1

𝑦
· ((− lnΔ𝑉)𝜃 + (− ln 𝑦𝜃)1/𝜃−1

However, the inverse of the conditional distribution function
𝐶−1

Gu(Δ𝑉 |𝑌 = 𝑦; 𝜃) can be calculated only numerically, for example, with the
Newton-Raphson method [46].
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(a) Sample𝑈 = 𝑢 from the uniform distribution𝑈 ∼ [0, 1].
(b) Solve 𝑔(𝑥) = 𝐶Gu(Δ𝑉 = 𝑥 |𝑌 = 𝑦; 𝜃) − 𝑢 = 0 using Newton-Raphson. Set

𝑥0 := 0.5 and 𝑖 = 0. While 𝑔(𝑥𝑖) > 0.01:
i. 𝑥𝑖+1 := 𝑥𝑖 − 𝑔(𝑥𝑖)/𝑔′(𝑥𝑖)
ii. 𝑖 := 𝑖 + 1

(c) Conclude Δ𝑉𝑛 = 𝑥𝑖, when the iteration has converged within the tolerance
𝑔(𝑥𝑖) ≤ 0.01.

3. Determine which obligors defaulted. The upper tail of the distribution needs
to represent high losses, so the change in asset values is actually 1 − Δ𝑉 and
the necessary comparison is therefore 1 − Δ𝑉𝑛 ≤ PD𝑛, since Δ𝑉𝑛 is uniformly
distributed in [0, 1]. Equivalently, the comparison can be Δ𝑉𝑛 ≥ 1 − PD𝑛 Use
the indicator function to denote the comparison

1default(𝑛) = [{𝑛 | 1 − Δ𝑉𝑛 ≤ PD𝑛}] .

4. Calculate the total loss with

𝐿 =

𝑁∑︁
𝑛=1

1default(𝑛) · EAD𝑛 · LGD𝑛

In comparison to the Gaussian copula and the Student’s t copula, the Gumbel
copula has two major disadvantages. Firstly, the algorithm to calculate the latent
variables in stage 1 is significantly more complex than the corresponding stage in
the Gaussian or Student’s t copula. It is easy to make mistakes when implementing
the recursion. Secondly, the computation of Δ𝑉𝑛 is more complex and potentially
slower because for each obligor, several iterations of Newton’s method are needed.
The derivative of the optimization function 𝑔′(𝑥) is also rather long.

If using R, the disadvantages of the hierarchical Gumbel approach are not that
significant, as sampling the hierarchical copula is implemented in the R package
nacopula. Overall, complexity of the implementation and potential challenges in
computation speed make the hierarchical Gumbel copula less attractive than the
Gaussian and Student’s t copulas.

4.3 Explainability
The explainability of the copulas is presented by creating visual, verbal, and example-
based explanations of economic capital models that utilize a given copula. Visual
explanations aim to communicate the structure of each model with charts and symbols,
verbal explanations describe the structure and capabilities of each model in general
terms, and example-based explanations show how the structure of each model can be
interpreted with business intuition.

45



4.3.1 Visual explainability

Visual illustrations of economic capital models involving each copula are presented in
Figures 10, 11 and 12. The illustrations of the Gaussian copula in Figure 10 and the
Student’s t copula in Figure 11 are very similar because both of them can be presented
as a 𝑁-variate version of a familiar distribution. The hierarchical Gumbel copula in
Figure 12 has a considerably more complex illustration because the model cannot
be expressed as a single distribution. The tree structure of the hierarchical copula
becomes complex with increasing latent variables or hierarchy levels.

4.3.2 Textual explainability

The following verbal explanations describe the structure and capabilities of the models
that incorporate each copula. The descriptions repeat some parts on purpose to clearly
indicate which sections of the models work similarly.

Description of the model with Gaussian copula:

The model assumes that the relationship between the latent variables is a
multivariate normal distribution with correlation matrix R. Each latent variable,
referring to a dimension of the distribution, represents the performance of a
single sector of the stock market. This multivariate distribution is sampled to
generate values for latent variables, which can be thought of as scenarios of the
economy. The change in the asset value of each company is conditionally sampled
from a company-specific bivariate normal distribution, given the performance
of the company’s sector in a given scenario and the correlation between the
company and its sector. If the asset value of a company falls too low, the company
defaults on their loan and contributes to the total credit losses of the portfolio,
which is used to calculate economic capital. In the high quantiles of the total
loss distribution, which determine the economic capital estimate, correlation of
losses tends to zero the closer the quantile is to 1. This implies that the extreme
scenarios simulated by the model are primarily the result of many unlikely and
independent events, instead of a single event that affects one or many sectors
comprehensively.

Description of the model with Student’s t copula:

The model assumes that the relationship between the latent variables is a
multivariate Student’s t distribution with correlation matrix R and degrees-of-
freedom parameter 𝜈. Each latent variable, referring to a dimension of the
distribution, represents the performance of a single sector of the stock market.
This multivariate distribution is sampled to generate values for latent variables,
which can be thought of as scenarios of the economy. The change in the
asset value of each company is conditionally sampled from a company-specific
bivariate Student’s t distribution, given the performance of the company’s sector
in a given scenario, the correlation between the company and its sector, and a
calibrated value for 𝜈. If the asset value of a company falls too low, the company
defaults on their loan and contributes to the total credit losses of the portfolio,
which is used to calculate economic capital. In the high quantiles of the loss
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Figure 10: The model with the Gaussian copula can be expressed as a large multivariate
normal distribution, as presented on the left. However, it is more informative to present
the model with the full correlation structure present, like shown on the right. This
is because pairwise correlations between companies are not actually estimated, even
though they can be calculated and presented as one large distribution.

Figure 11: The model with the Student’s t copula has a structure very similar to the
one of the Gaussian copula. The only difference is that the Student’s t copula enables
controlling tail dependence with the degrees-of-freedom parameter 𝜈, like shown on
the right side.
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Figure 12: The model with the Gumbel copula has a more complex structure than
the ones of the Gaussian and Student’s t copulas. The main drivers of complexity are
the tree structure of the hierarchy and the factor model of the obligors that does not
simplify to a single distribution with the Gumbel copulas.

distribution, which determine the economic capital estimate, the correlation is
lower than overall, but is controlled by the degrees-of-freedom parameter. This
implies that the degrees-of-freedom parameter controls how probable it is to face
an extreme situation that affects an entire sector or the economy.

Description of the model with hierarchical Gumbel copula:

The model describes the mutual dependence of latent variables with a tree
structure, where each variable depends directly on only a few variables or groups
of variables. However, these dependencies, defined with Gumbel copulas that
are characterized by dependence parameters 𝜃𝑖, connect all latent variables
together via the tree, and thus define a 𝐾-dimensional distribution, where 𝐾 is
the number of latent variables. Each latent variable, referring to a dimension of
the distribution, represents the performance of a single sector of the stock market.
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This distribution is sampled to generate values for latent variables, which can be
thought of as scenarios of the economy. The change in the asset value of each
company is conditionally sampled from a company-specific bivariate Gumbel
copula, given the performance of the company’s sector in a scenario, and the
dependence parameter 𝜃𝑛,𝑘 between company 𝑛 and its sector 𝑘 . If the asset value
of a company falls too low, the company defaults on their loan and contributes
to the total credit losses of the portfolio, which is used to calculate economic
capital. The 𝜃-parameter describes dependence strength asymmetrically, which
means that the model assumes events that affect the economy widely in crises,
but does not assume similar economy-wide effects that drive profits.

Overall, all descriptions feel quite similar because the copulas only change how
parts of the model are interpreted, and not the entire model structure. The abstract
tree structure of the Gumbel copula makes it the most difficult to understand, while
the Gaussian and Student’s t copulas rank equal.

4.3.3 Example based explainability

To explain the model to its users, examples with business terminology are needed
instead of high-level descriptions of mathematics. Therefore, this section presents and
compares examples of how the model structure can be explained to business experts.
Since the process of calculating the asset value changes from the latent variables is
similar for all copulas, the following business examples will focus on the interpretation
of the copula for the latent variables. Examples can be crafted once the dependence
parameters of the copula are calibrated, which is why arbitrary dependence parameters
are assumed for the examples in this case. The dependencies are fictional, but they
resulting examples look similar to what could be created with dependence parameters
calibrated with actual stock market data.

To create the examples, assume that the models contain five latent variables
𝑌1, ..., 𝑌5 corresponding to five sectors in the Global Industry Classification Standard
(GICS): Construction, Real Estate, Materials, Industrials, and Consumer Discretionary,
respectively [51]. The Gaussian and Student’s t copulas will then have a 5×5 correlation
matrix R that describes the dependencies of the sectors. An arbitrary example of such
matrix is presented in Table 3. The Student’s t copula will also have a degrees-of-
freedom parameter 𝜈. The hierarchical Gumbel copula will have a structure similar to
Figure 9 with arbitrary parameter values, for example, 𝜃1 = 2.5 being the dependence of
Construction and Real Estate, 𝜃2 = 2.1 being the dependence of Materials, Industrials
and Consumer Discretionary, and 𝜃3 = 1.7 being the dependence of the previously
mentioned groups. For the structure to be valid, we must have 𝜃1 ≥ 𝜃2 ≥ 𝜃3.

In models with the Gaussian or Student’s t copula, pairwise correlation for each
industry can be determined, and therefore used in explanations. In fact, the depen-
dence structure is interpreted similarly for both copulas. The only difference is that
correlations do not diminish in the tails of the Student’s t copula.
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Hypothetical business scenario with the Gaussian copula or the Student’s t
copula:

In the example model, Real Estate is correlated with Construction because
they both depend on the housing market. However, Real Estate is not very
correlated with other sectors because it does not suffer from high material
prices or issues in other countries like the other sectors. Construction, on the
other hand, is rather dependent on the cost of construction materials, which
is indicated by its correlation to Materials sector. Materials, Industrials and
Consumer Discretionary are correlated with each other because they all depend
on consumption and international supply chains.

Pairwise dependencies cannot be directly described in the hierarchical Gumbel
copula because they are not explicitly defined for most pairs. Instead, scenario
explanations must focus on finding common characteristics for sectors that are in the
same copula. In our example, Construction and Real Estate are highly dependent on
each other with parameter 𝜃1 in the copula 𝐶1. Materials, Industrials and Consumer
Discretionary also depend on each other in the copula 𝐶2.

Hypothetical business scenario with the hierarchical Gumbel copula:

The example model estimates that large losses from Construction and Real
Estate would occur simultaneously because they are both connected to the
housing market. Materials, Industrials and Consumer Discretionary are also
estimated to depend on each other, possibly because they all depend on the
availability of certain materials, and interruptions in supply chains would affect
all three industries. Dependencies between other pairs of industries, for example,
Construction and Materials cannot be explicitly expressed because they are
only implicitly set by the dependence of the two groups that represent the
housing market and manufacturing sectors. Their dependence is explained by
the remaining economic effects, such as consumer confidence or global stability.

The Gumbel copula example shows that in some cases its group-wise structure can
even yield simpler explanations than the other copulas as there are fewer dependencies
to examine. However, depending on the sectors in each group, it may be challenging
to find common denominators within the group, which will lead to explanations that

Table 3: Arbitrary correlation matrix of latent variables for the example based
explanations. The latent variables are assigned by the stock market sector of each
obligor.

Consumer
Construction Real Estate Materials Industrials Discr.

Construction 1 0.9 0.7 0.4 0.4
Real Estate 0.9 1 0.3 0.3 0.5
Materials 0.7 0.3 1 0.7 0.7
Industrials 0.4 0.3 0.7 1 0.7

Cons. Discr. 0.4 0.5 0.7 0.7 1
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are harder to understand. Furthermore, model users may find it insufficient that some
dependencies, which may have significance in business sense, are not visible in the
model.

4.4 Overall assessment
Conclusions of the previous subsections are gathered in Table 4. Each copula is given
a grade: Best, Good, or Weak, in the three categories of comparisons that were made.
The grades are relative, meaning that a copula that is rated good may still be objectively
bad, when compared to something outside the scope of this thesis. Therefore, the
table should be seen as a summary of the analyses performed in this thesis and should
always be read, when accompanied by the details.

Table 4: The results of the comparisons are summarized with a grading to categories
Best, Good, and Weak.

Category Gaussian Student’s t Hierarchical Gumbel
Theoretical justification Weak Good Best

Implementation Best Best Weak
Explainability Best Best Weak

Theoretical justification of the Gumbel copula is declared best, because it was able
to capture both theoretical properties found in the stock market, while the Student’s t
copula was able to capture one and the Gaussian copula neither. The implementation
of the Gaussian and Student’s t copulas was almost equal, while the Gumbel copula
had severe drawbacks caused by its recursive sampling algorithm and the need to solve
inverse distribution values numerically. The explainability of the Gaussian and the
Student’s t copulas is also very similar. The hierarchy structure of the Gumbel copula
is hard to imagine and explain, which is why it was assessed to be the weakest in
explainability.

Table 4 shows that the Gaussian copula is dominated by the Student’s t copula.
The t copula has equal or better grade than the Gaussian copula in each category,
meaning that regardless of preferences between the comparison categories, a rational
decision maker would choose the Student’s t copula over the Gaussian. The table also
shows that the Hierarchical Gumbel copula would only get selected if the decision
maker would heavily prefer theoretical justifiability over the other criteria.

Based on the results, the Student’s t copula should be chosen most often out
of the covered options. The Gaussian copula could be chosen in situations where
asset correlation is weaker and more linear, and the Gumbel copula would likely be
chosen only if computational efficiency is not a concern and theoretical justification is
weighted.
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5 Discussion
There are numerous ways to find better dependence structures than the ones covered
by this thesis. One option would be to compare new ones and another one is to further
develop the options that were covered. For example, the Student’s t copula could
be combined with another copula in the lower tail of the loss distribution to make it
asymmetrical and therefore improve its theoretical justifiability. The Gumbel copula
could also be replaced with another Archimedean copula that supports conditional
sampling, such as the Clayton copula. However, the fact that these possibilities are
identified based on the comparisons in this thesis, is evidence of the usefulness of
the comparison methods presented by this thesis. Ultimately, the results presented
in this work highlight that there is no copula that would be perfect for all modeling
needs. Instead, the choice of copula is a balance between different characteristics and
constraints. This work provides an example of characteristics that could be considered
and how they can be evaluated.

Since there is a large number of copulas to test, future work could focus on
identifying groups of copulas that dominate others in terms of preference. The copulas
within the dominating group could then be compared, or samples from each group
could be compared to help risk analysts determine which group to search further.
Alternatively, some characteristics could also be identified that would predict better
ranking in comparisons. For example, the number of dependence parameters or the
value of the tail dependence coefficients could quickly filter out some copulas that do
not suit the model.
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