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Abstract
Modern cloud-based data centers depend on systematic capacity management methods
to enable efficient utilization of computational resources. The continuing surge
in demand for computational power is driving the data-intensive software industry
toward building massive centralized data centers, which require sophisticated resource
allocation algorithms to allow coherent consolidation of those resources. Improving
the utilization of data center hardware allows the server fleet size to be decreased,
reducing the costs and the environmental footprint of the data center operations.

In this thesis, we investigate a private cloud environment, in which customer
applications are allocated to the self-managed server fleet of the organization. We
model the allocation system as a vector bin packing problem with two separate
resources: static RAM usage, and periodically varying CPU utilization. The objective
of our model is to minimize the number of utilized servers, while providing the
required resources for each application. Due to the computational complexity of the
optimization problem, we develop five heuristic algorithms for solving the problem.
The performance of these heuristics is rigorously evaluated in several scenarios
simulating real-life occurrences. Further, we apply the most suitable heuristic to the
data of a real data center of the organization, and investigate whether the current
allocation process could be improved utilizing the algorithm.

The evaluations show that the most suitable heuristic for the system based on the
combination of solution quality and computational efficiency is the first-fit-decreasing
algorithm. Applying this algorithm to real data, the results show that the data center
server fleet size can be reduced by almost a third compared to the current allocation,
given our simplifying assumptions regarding the CPU utilization of the applications.
Furthermore, we show that in case of disturbances disabling parts of the server fleet, we
can utilize the heuristic to reallocate on average over 90% of the hostless applications
back to the remaining fleet, if up to 40% of the fleet becomes unavailable. Generally,
the thesis suggests that the resource utilization of the private cloud system can be
improved with simple, systematic allocation procedures.

Keywords Resource allocation, capacity management, cloud computing,
optimization
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Tiivistelmä
Nykyaikaiset pilvilaskentaan nojaavat datakeskukset hyödyntävät järjestelmällistä
kapasiteetinhallintaa laskentaresurssien tehokkaan käytön mahdollistamiseksi. Las-
kentatehon kasvava kysyntä on johtanut keskitettyjen datakeskusten rakentamiseen
tietointensiivisellä ohjelmistoalalla. Näissä datakeskuksissa tarvitaan kehittyneitä algo-
ritmejä resurssien allokointiin, jotta resurssitarpeet voidaan yhteensovittaa tehokkaasti.
Datakeskusten laitteiston käyttöastetta parantamalla keskusten palvelinverkoston ko-
koa voidaan pienentää, mikä vastaavasti vähentää operaatioiden kustannuksia sekä
ekologista jalanjälkeä.

Tässä diplomityössä käsitellään yksityistä pilvilaskentaympäristöä, jossa asiakas-
sovellukset on allokoitu organisaation omalle palvelinverkostolle. Allokaatiosysteemi
mallinnetaan työssä vektoripakkausongelmana (vector bin packing problem), jossa on
kaksi resurssirajoitetta: staattinen hajasaantimuisti (RAM) sekä säännöllisesti vaihte-
leva suorittimen (CPU) käyttö. Mallin tavoitteena on tarvittavien palvelimien määrän
minimointi. Koska ongelma on laskennallisesti hyvin raskas, sen ratkaisemiseksi
esitellään viisi heuristiikkaa. Heuristiikkojen suorituskykyä arvioidaan tosielämää
mukailevissa tilanteissa, joiden perusteella valitaan systeemiin sopivin algoritmi. Va-
littua algoritmia sovelletaan organisaation datakeskukseen, ja tutkitaan, voiko nykyistä
allokaatioprosessia tehostaa heuristiikan avulla.

Arvioinnit osoittavat, että tulosten laadun sekä laskennallisen tehokkuuden kan-
nalta sopivin heuristiikka on first-fit-decreasing -algoritmi. Kun algoritmia sovelletaan
oikeaan datakeskukseen, palvelinverkoston kokoa voidaan pienentää lähes kolmannek-
sella, ottaen huomioon sovellusten suoritinkäytöstä tehdyt yksinkertaistavat oletukset.
Tämän lisäksi työssä arvioidaan sovellusten takaisinsijoittamista palvelimille, kun osa
verkostosta poistuu käytöstä häiriön vuoksi. Tulokset osoittavat, että heuristiikalla
keskimäärin yli 90% kodittomista sovelluksista voidaan sijoittaa takaisin palvelimille,
kun jopa 40% verkostosta poistuu käytöstä. Kokonaisuudessaan diplomityön pohjalta
voidaan todeta, että kyseisen pilvi-infrastruktuurin resurssien käyttöä voidaan parantaa
järjestelmällisten menetelmien avulla.

Avainsanat Resurssiallokaatio, kapasiteetinhallinta, pilvilaskenta, optimointi
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1 Introduction

Allocating scarce resources is a topic of growing interest across industries. Efficient
resource allocation is essential for performance optimization and waste minimization
in various systems, ranging from supply chains and logistics to computational infras-
tructures. In cloud computing, allocating resources such as memory and computational
power has become increasingly crucial in the past decades due to exponentially growing
amounts of data and computational requirements [1]. Meeting this demand calls
for more efficient resource management to ensure cost-efficiency while maintaining
required system performance. A systematic resource allocation process allows cloud
providers to reduce their hardware costs and environmental footprint while increas-
ing the predictability and automation possibilities of the system. Better capacity
management thus directly results in higher profitability for the cloud provider.

To tackle the challenge of capacity utilization, modern data centers have imple-
mented advanced algorithms and models to ensure efficient usage of computational
resources. The research on capacity management in cloud-based data centers is
extensive. In section 3, we provide a comprehensive review of the common approaches
for modeling resource allocation problems on a general level, and building on this,
we narrow our focus to capacity management in cloud computing and data centers.
However, most methods for capacity allocation rely on the free migration of applica-
tions from one server to another or simply allocating individual computational tasks
to on-demand servers with sophisticated scheduling algorithms [2, 3]. These methods
are not directly applicable to the problem of this thesis, as here, we investigate a data
center where the allocation of applications to servers is considered static. Transferring
applications from one server to another is possible and frequently executed, but it
produces outages for application end users and requires manual labor from data center
administrators. Thus, it cannot be practiced without consideration.

In this thesis, we model a resource allocation system in a private cloud environment
as a multi-dimensional vector bin packing problem (VBPP). VBPP is a generalized
version of the one-dimensional bin packing problem (BPP), a classic problem in
combinatorial optimization, in which a set of heterogeneous items must be packed
into a set of bins while minimizing the number of total bins utilized [4]. Here,
web applications are modeled as said items, and they are allocated to servers (bins),
considering the limited memory and computational resources of the servers. As such
optimization problems quickly become computationally very challenging as the number
of elements increases, we develop five heuristic algorithms for solving the problem,
in addition to an exact algorithm. The performance of the proposed algorithms is
evaluated through simulations and analyses using generated pseudo-realistic data.

In section 6, we apply the most suitable algorithm to a private cloud data center to
investigate whether the application placement within the server fleet can be improved.
As the computation hardware of the data center is self-managed and more importantly
self-funded, more efficient resource utilization yields evident and measurable value for
the organization. Additionally, we study the resilience of the data center by modeling
application placement in situations in which portions of the server fleet become
unusable.



The fundamental research objective of this thesis is to investigate whether there
is room for improvement in the application placement process through optimization
methods. If we can show that server utilization can be improved with systematic
allocation of resources, the organization can implement the suggested methods, or
focus further investigations on improving the allocation process according to the
findings of this work. If this thesis allows the organization to reduce server fleet size
now or in the future even slightly, the cost reductions on hardware acquisitions and
power consumption will be considerable.
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2 Definitions

In this section, we provide background for the thesis and define the necessary concepts
for the modeling and discussion of resource allocation in the framework of cloud-based
computing environments.

2.1 Cloud computing

Cloud computing is a framework that enables the use of central computing resources,
such as memory, databases, processing power, etc. – remotely over the internet.
With cloud computing, users can share the same physical resources simultaneously,
allowing more constant and efficient utilization of those resources. This is a vast
improvement from the traditional computing model, in which each computer utilizes
its own local resources. Cloud computing architecture allows end users to utilize
on-demand resources as they require, while the cloud provider handles the management
and maintenance of the underlying cloud system and hardware. The users are generally
charged only for the resources that they use, which makes cloud computing much more
elastic and scalable compared to localized computing systems. The clear majority
of modern corporations prefer cloud computing due to the scalability and efficiency
compared to local computing, in addition to the outsourced resource management. [1]

Cloud computing systems can be roughly divided into two distinct groups: public
clouds and private clouds. In a public cloud, the computing resources are available for
the general public or a group of organizations, and the cloud system is owned by the
company managing and selling the cloud resources. The largest and most commonly
known cloud computing systems provided by software giants like Amazon (AWS),
Microsoft (Azure), and Google (GCP) are great examples of public clouds. In contrast,
private clouds are operated by a single organization, and the cloud system is managed
either by that organization or an external party. A private cloud solution provides
more security and control for the organization, but the disadvantages come from worse
scalability and often higher costs. When computational demand increases, the physical
resources of the private cloud system must be expanded, essentially by increasing the
server fleet size, whereas with public clouds, increased computational requirements
can often be handled simply by paying a larger subscription fee for the cloud provider.
[1]

In this thesis, we mainly focus on private cloud environments, as the system we
investigate in sections 4 through 6 is facilitated on a private cloud. However, we do
consider public clouds as well in the literature review in section 3.2.

2.2 Server

On a general level, a server can be considered as any system that provides resources
and services to its clients [5]. In this thesis, we consider computer server machines that
are utilized for hosting web applications allocated to them. Servers contain a limited
amount of resources, such as memory, storage, and computational power, which can
be capitalized by the corresponding applications.
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Traditionally, a server has been defined as a physical machine (PM) with local
hardware. However, through the process of virtualization, the resources of the physical
server can be divided into separate virtual machines (VM) that can themselves act
as servers. In essence, virtualization is a process that allows the abstraction of
computational resources of the physical machine into multiple virtual entities. Each
VM can run its own operating system and host its own applications, essentially
behaving as a stand-alone server, even though it is sharing physical resources with
other VMs. This technology helps better consolidate server resources as applications
with differing software needs can be hosted on the same PM. Thus, virtualization
enhances the flexibility, utility, and scalability of the hardware. Virtualization is widely
utilized in cloud computing systems due to these major upsides. [6]

2.3 Data center

Individual servers are the building blocks of computing infrastructure, but in the realm
of computation-intensive software industry, they are rarely sufficient for serving any
parts of the system on their own. Servers are often clustered together in vertical frames,
referred to as racks, designed to house and organize servers and other necessary IT
hardware. The function of racks is to provide centralized management and maintenance
of critical components for the servers, and simply to allow them to be organized in a
spatially efficient manner. A room, an entire building, or a large campus full of server
racks that are clustered together is referred to as a data center (DC).

The increased demand for computation in many industries has driven the construc-
tion of massive DCs across the globe. Additionally, as more and more organizations
are outsourcing their computing needs to cloud-based DCs, the trend of creating large
centralized computing facilities is further accelerated. Large-scale DCs are especially
popular indeed among public cloud providers, that serve a wide base of organizations
and individuals. The scale of the DCs improves the flexibility of the systems and the
consolidation of computing resources but bears the price of more difficult management
and optimization. [2]

The vast majority of modern DCs rely on virtualization to provide maximal
flexibility and centralized control, among other reasons. An overview of a cloud
infrastructure hosted in a DC could be illustrated as depicted in figure 1. End users
send computational requests, or tasks, to the VMs that are hosting their applications.
Those VMs are allocated to physical servers located in the DC. The allocation of
applications is often not static to specific VMs, but the tasks are elastically assigned to
suitable machines according to the details of the request and the current loads of the
servers. Due to this dynamic process, the resources can be efficiently utilized, as the
tasks are allocated and scheduled to continuously maximize the resource utilization
on servers. However, the complexity of the process makes it extremely difficult to
optimize.
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Figure 1: An exemplary cloud infrastructure with 𝑖 tasks, 𝑛 virtual machines, and 𝑚

physical servers.

2.4 Random access memory

Random access memory (RAM) refers to the hardware of the server or other computer
machine that is used for storing application programs and data once the machine is
operational. RAM is a volatile memory since all data stored on it is removed when
the server is powered off. Thus, data that needs to be permanently saved must be
stored elsewhere, commonly on the hard drive of the server. Effectively, RAM can be
considered the main memory component of the server, and its capacity plays a key
role in the powerfulness of the server. The size of RAM is usually measured in GB or
TB. [7]

In this thesis, RAM is one of the main components to be optimized. The applications
allocated to servers require certain amounts of RAM, and the RAM capacity of the
servers largely restricts how many applications each server can host. On a general
level, we can assume that the more RAM capacity a server has, the more efficiently
it is possible to allocate the set of applications. In addition to applications, other
programs on the server, such as the operating system, also require some RAM capacity.
Thus, we can never allocate the full RAM capacity to application programs, and there
often exists a somewhat strict limit on which portion of RAM we should allocate to
applications. In our case, the baseline limit is usually 80% of maximum capacity.
From now on, when discussing the memory of a server or the memory requirement of
an application, we refer to RAM.

2.5 Central processing unit

The central processing unit (CPU) is commonly described as the operational brain of
the computer. CPU executes operations, performs calculations, and processes data
based on the instructions of the memory unit. Once the CPU has executed its tasks,
the results are delivered back to the memory unit. CPUs are utilized in many devices,
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from smartphones to servers, to execute all required computational tasks. [7]
A key metric regarding the computational power of a CPU is the number of

physical cores it contains. A core is an independent processing unit within the CPU,
that can execute computational requests separately from other cores. Interestingly, a
physical core can also perform two tasks simultaneously using a technology called
hyper-threading (also called simultaneous multithreading). Hyper-threading makes the
physical core appear as if there were two independent virtual cores acting side-by-side,
even though they are sharing the physical components. This allows the CPU to
divide tasks between these virtual cores further extending the parallel computational
capabilities of the server. However, this does not inherently imply that hyper-threading
increases the computational capacity of the server. Rather, it allows the computation
to be logically parallelized, potentially providing significant performance increases for
applications that support parallelization. Additionally, one server can have multiple
nodes, which are essentially fully independent computational entities with their own
CPUs. This means that a server with two 64-core nodes, with hyper-threading in use,
has a total of 2 · 64 · 2 = 256 threads and can therefore perform 256 computational
tasks simultaneously, given that all tasks are suited for parallelization. [8]

The computational load of applications and tasks is often measured in CPU
time, most commonly CPU seconds. One CPU second means that a task utilizes
the computational efforts of one core for one second. If the task requires more
computational effort, it either needs to utilize more cores for the computation, or the
computation will last longer. A task that requires 512 CPU seconds in total, can thus
be performed in two seconds with a 256-thread server if there are no other overlapping
tasks on the server competing for the same resources, given that the application is
capable of dividing the computation to multiple cores. Later in this thesis, we use
CPU seconds to determine the workload required by applications at different time
slots during the day.

2.6 Application

In this thesis, we view applications as computer programs that are used to access and
manage customer software programs and data. Applications cannot function on their
own, they need to be hosted on a server at all times. Applications require certain
resources from the servers, mainly RAM and CPU capacity. The RAM requirement of
an application is static and predetermined based on recent peak memory usage. The
realized RAM use of an application varies periodically, as the memory load increases
over time until a scheduled database cleanup is performed. The CPU requirements of
applications are modeled in this thesis based on their historical CPU usage.
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3 Review of resource allocation

This section reviews the most common approaches for modeling resource allocation
problems used in the literature, and, in addition, discusses the most relevant resource
allocation schemes within the realm of computer servers and data centers.

3.1 Common models for resource allocation

Resource allocation generally refers to the problem of assigning available resources to
agents in a system. Shareable resources are often limited or their manufacturing and
utilization incur costs. Thus, it is desired to allocate those resources as efficiently as
possible, while fulfilling the needs and demands of the agents.

Decision-making problems on resource distribution have been extensively studied
in operations research. In this section, we describe four archetypal models for resource
allocation problems and discuss their respective variations, applications, and solution
procedures.

3.1.1 Knapsack problem

Many resource allocation problems can be cast under the umbrella of the knapsack
problem (KP). KP is one of the most studied problems in combinatorial optimization.
KP was first mentioned in literature in 1896 [9], although it has been investigated in
folklore throughout history. KP has applications in many fields, for example, cargo
loading in logistics [10], agricultural land-use problems [11], and multimedia storage
systems [12].

The classic version of the problem entails selecting items from a selection, each
with an assigned value, to be placed inside a knapsack while respecting the weight
limit of the knapsack. The goal is to select the set of items that maximizes the value of
the knapsack contents. The standard KP can be formulated as

max
∑︁
𝑖∈𝑁

𝑝𝑖𝑥𝑖

subject to
∑︁
𝑖∈𝑁

𝑤𝑖𝑥𝑖 ≤ 𝑐

𝑥𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑁,

where 𝑁 is the set of items each with a profit, 𝑝𝑖, and a weight, 𝑤𝑖, subjected to the
capacity limit of the knapsack, 𝑐. Binary decision variable 𝑥𝑖 indicates whether item 𝑖

is selected or not. [13]
In addition to the standard KP, several extensions of the KP have been introduced to

respond to more complex scenarios. In the fractional KP, items are divisible, meaning
that only a fraction of an item can be placed in the knapsack. In some variations,
each item can be selected multiple times. If there is a limit on how many times each
item can be selected, the problem is called bounded, otherwise, it is an unbounded
KP [14]. Further variations of the KP are multidimensional KP (MdKP) and multiple
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KP (MKP). Introducing additional constraints besides weight transforms the problem
into an MdKP. Having more than one knapsack, which rather often is the case, yields
MKP. [15]

Although the formulation and the idea of KP are very simple, the complexity
of the problem appears when developing solution algorithms for the problem. Al-
though fairly attractive exact solution algorithms utilizing methods such as dynamic
programming and branch-and-bound have been introduced [16], it is widely believed
that no exact algorithms that solve the KP in polynomial time exist. Consequently,
the calculation time of algorithms increases exponentially as the number of items,
knapsacks, dimensions, and other possible factors increases. This characteristic means
that the problem is at minimum NP-hard [17]. Nevertheless, extensive research around
KPs has led to the development of various approximate algorithms, many of which
yield close to optimal results in reasonable calculation time. [18, 19]

3.1.2 Bin packing problem

Changing the optimization objective from maximizing profit to minimizing the number
of knapsacks effectively transforms the problem into the bin packing problem (BPP).
In BPP, the goal is to pack a set of items into the minimum number of bins while
respecting the capacity limits of each bin. Unlike KP, BPP does not usually assign
specific profits to the items. [4]

The formulation of the standard BPP closely resembles that of the KP. Notable
differences are the objective function and an additional constraint requiring that each
item must be packed into exactly one bin

min
∑︁
𝑗∈𝑀

𝑦 𝑗

subject to
∑︁
𝑖∈𝑁

𝑤𝑖𝑥𝑖 𝑗 ≤ 𝑐𝑦 𝑗 , ∀ 𝑗 ∈ 𝑀∑︁
𝑗∈𝑀

𝑥𝑖 𝑗 = 1, ∀𝑖 ∈ 𝑁

𝑥𝑖 𝑗 , 𝑦 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝑀,

where, 𝑁 is the set of items with weight, 𝑤𝑖, and 𝑀 is the set of available bins with
capacity 𝑐. The binary decision variables are 𝑦𝐽 indicating whether bin 𝑗 is used, and
𝑥𝑖 𝑗 depicting if item 𝑖 is packed in bin 𝑗 .

Similarly to KP, BPP has several extensions to better model various real-life
scenarios. These include variable size bin packing, in which the bins are not of uniform
size, and multidimensional versions, in which items and bins are subject to additional
capacity requirements and constraints [20]. These multidimensional packing problems
are often divided into two categories based on how the separate constraints interact.
Consider the problem of packing two-dimensional objects into a rectangular bin. Since
the two constraints are length and width, one can naturally pack multiple thin stripes
into a single bin, even if the length of one item spans the entire length dimension of
the bin. Now, consider a bin in which the constraints are length and weight. If one
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Figure 2: The difference between geometric (left) and vector (right) bin packing.

packs a short and heavy item that occupies a fraction of the length capacity, but the
entire weight capacity, no additional items can be packed in the bin, even though the
length dimension is poorly utilized. The first scenario is an example of a geometric
BPP, and the second is often referred to as a vector BPP. The distinction between these
types is illustrated in figure 2. [21, 22]

BPP is widely used for modeling common resource allocation problems such as
vehicle cargo loading [23, 24], storage optimization [25], allocating computational
resources [26], and countless other real-life scenarios. While the applications of BPP
are often very similar compared to KP, their key difference lies in the optimization
objectives: BPP focuses on minimizing the space required for packing, while KP aims
to maximize profit with a fixed packing capacity.

Similarly to the KP, BPP has been proven to be strongly NP-hard [17]. As a conse-
quence, extensive research has been dedicated towards developing exact, approximate,
and heuristic algorithms for solving BPP. The vast catalogue of literature underscores
the significance of the problem and the interest that the scientific community has in
this issue. [27, 28, 29, 30]

3.1.3 Cutting stock problem

The problem of cutting specific-length pieces from standard-sized stock material while
minimizing the waste generated in the cutting process is known as the cutting stock
problem (CSP) [31]. As one can guess, CSP originates from the timber industry,
which is still one of the main application domains of the problem. However, it has
also been used to model various other systems in which the goal is to reduce wasted
resources. An example of this is memory allocation in servers, with the objective of
minimizing unutilized memory capacity [32].

CSP is closely related to BPP and can be formulated in a fairly similar manner.
Both models aim to minimize the number of utilized base elements. The key distinction
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between the models is that while BPP focuses usually on packing unique items, in
CSP there is usually demand for cutting multiple identical pieces.

There are many ways to state the standard CSP, but maintaining similar formulations
as for the earlier models, we can express

min
∑︁
𝑗∈𝑀

𝑦 𝑗

subject to
∑︁
𝑖∈𝑁

𝑙𝑖𝑥𝑖 𝑗 ≤ 𝐿𝑦 𝑗 , ∀ 𝑗 ∈ 𝑀∑︁
𝑗∈𝑀

𝑥𝑖 𝑗 = 𝑑𝑖, ∀𝑖 ∈ 𝑁

𝑦 𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝑀,

𝑥𝑖 𝑗 ∈ {0, 1, 2, . . . }, ∀𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝑀.

For purposes of illustration, we have replaced the weight assigned to items with length,
𝑙𝑖, and the capacity is indicated by the total length of the stock material, 𝐿. The
restriction that items can only be included once is removed, and replaced with the
notation that pieces in each length must be cut according to the respective demand, 𝑑𝑖.

CSP has been commonly extended to higher-dimensional versions, which in two-
dimensional settings essentially means cutting pieces from rectangular stock material.
In many applications, the cutting process has limitations so that only orthogonal cuts
can be performed, and each cut has to span the entire width of the piece. These are
so-called guillotine cuts, which have also been extensively studied. The difference
between guillotine and non-guillotine cuts is illustrated in figure 3. The benefit of
guillotine cuts is that they are usually faster to compute, and more efficient to perform
in real-life systems. While not restricting oneself to guillotine cuts usually yields better
optimal solutions due to added flexibility in selecting cutting patterns, the optimal
cuts might prove infeasible or slow to perform with machinery limitations. Therefore,
guillotine cuts are often preferred in industry applications. [4]

Like KP and BPP, CSP also belongs to the set of NP-hard problems. A famous
exact algorithm leveraging constraint relaxations and delayed column generation was

Figure 3: Examples of guillotine (left) and non-guillotine (right) cuts.
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developed by Gilmore and Gomory in 1961, which has been widely utilized and further
refined since [33]. However, with large problem instances, exact algorithms become
computationally infeasible. This has led to the development of various heuristic
methods for approximating CSP solutions. [34]

3.1.4 Scheduling problem

Consider a set of tasks that must be performed by a processor with limited resources.
Each task is assigned with corresponding due dates, profits, relative importance, and
other factors. Dynamically allocating the resources of the processor to perform each
task can be formulated as a scheduling problem.

In its simplest form, a scheduling problem includes one processor and a set of tasks.
However, it can be extended in many ways, such as incorporating multiple processors
or introducing tasks that consist of multiple subtasks that need to be executed in a
specific order on designated processors. An example of such scheduling pattern is
illustrated in figure 4. The scheduling problem shares many similarities with the
resource allocation problems presented earlier, as we again strive for efficient resource
utilization. However, scheduling introduces a temporal dimension to the system,
requiring decisions on the timing of resource utilization. [35]

Many kinds of different systems can be modeled through the scheduling problem.
Some common applications include scheduling processes in traditional manufacturing
lines [36], minimizing inventory and transportation costs in logistics [37], and deciding
the timing and scope of potential projects or investments [38].

Even with simple formulations, the scheduling problem has been proven NP-
complete and approximating solutions is even more difficult than in the static resource

Figure 4: Illustration of two scheduling patterns of the same tasks. Each of the three
tasks is divided into three subtasks, which must be performed on specific machines in
a specific order.
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allocation problems discussed earlier. Fortunately, efficient heuristic algorithms for
solving the problem have been extensively studied, providing attractive alternative
solution methods for many different scheduling scenarios. [39]

3.2 Resource allocation in servers and data centers

The energy consumption of DCs has surged in recent years due to increasing compu-
tational demand, which has driven the creation of massive DC facilities worldwide. In
2023, DCs accounted for 4,4% of total energy consumption in the US, up from 1,9%
in 2018, and projections estimate that this share could rise to 6,7% - 12% by 2028,
largely due to the extensive calculation power requirements of AI applications. [40]

Among the many energy-consuming components in a DC, the largest consumer is
the server fleet, accounting for almost 50% of the total energy usage of the facility
[41]. The energy consumption of active servers is not static, as servers running on
higher capacity require more energy. The increase in consumption is not linear, as idle
servers (operating at minimal capacity) utilize more than 50% of energy compared
to the peak capacity energy consumption [42]. Thus, reducing the number of active
servers is key to limiting DC energy consumption. Additionally, downsizing the server
fleet lowers cooling demand, reduces the required floor space, and of course brings
down the cost of server acquisitions, which account for 45% of total financial costs of
running a DC [43].

Achieving the goal of reducing server fleet size calls for comprehensive capacity
management throughout the processes of the DC. This entails allocating appropriate
computational resources to applications, task scheduling policies, demand forecasting,
resource scaling, constant monitoring and tuning of the system, and much more
[3]. A variety of commercial solutions have been developed to tackle the whole
capacity management process or specific parts of it. Examples of these are Muse [44],
Océano [45], PACMan [46], and Kubernetes [47], which is considered the industry
standard today. This section does not focus on these solutions. Rather, we survey the
core principles of DC capacity management that directly relate to resource allocation
problems. These entail the task allocation on servers and the virtual machine placement
on physical machines, as described in section 2.3.

3.2.1 Task allocation

The main idea of task allocation is to distribute requested jobs from clients among
the available resources in a fast and cost-efficient manner. The tasks to be assigned
have specific resource requirements and deadlines, and once they have been executed,
the tasks cease to exist. Task allocation is thus typically modeled as a dynamic
process in which the goal is to allocate the requested resources for the tasks while
balancing between underutilizing available resources (wasted resources and money),
and overloading the servers (degraded performance). Dynamic task allocation is
illustrated in figure 5. [48]

The most common approach to modeling task allocation is the scheduling problem.
As the scheduling problem is known to be strongly NP-hard, tasks are usually allocated
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Figure 5: Illustration of dynamic task allocation on one four-core server. The loads
of the tasks range from two CPU seconds (𝑇1) to eight CPU seconds (𝑇5).

to servers using some heuristic algorithm or general policy. Task scheduling algorithms
in computing systems have been extensively studied for at least 50 years, and there
is still plenty of research ongoing [49, 50, 51, 52], reflecting the importance and
complexity of the task scheduling problem in computing.

Beyond the inherent difficulty of the scheduling problem, many cloud resource-
specific aspects add to this difficulty. The increasing number and complexity of tasks
demand efficient and scalable solutions frameworks for scheduling, which lead to
larger and harder-to-manage DCs. Additionally, the computational requirements of
the tasks are oftentimes unknown in advance, which complicates the allocation. The
heterogeneous resource types of virtualized DCs and their interdependencies also
increase the degree of difficulty in predicting the required resources. [2]

Besides the scheduling problem, different methods for modeling task allocation
systems have been proposed. The system can be modeled through queueing theory
[53], in which tasks are clustered into queues, and their mean response times are
predicted and used for optimization. A control theoretic approach [54] using feedback
from the current allocation status has also been explored. Chen et. al. [55] combine
queueing and control theories in a task allocation system with promising results.

The majority of researchers approach task allocation with the objective of mini-
mizing the number of utilized servers or maximizing the total resource utilization on
servers, though these objectives are fundamentally similar. Besides this, alternative
objectives have also been investigated. The problem can be modeled with the objective
of minimizing energy consumption [56], which is related to resource usage but not
linearly, thus possibly yielding different results. Other objective approaches include
balancing the load on servers as equally as possible [57], and minimizing the execution
time of each task [58]. Eventually, the goal in essentially all approaches is utilizing
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resources as efficiently as possible.
Recently, researchers have investigated more detailed and descriptive ways of

modeling task allocation systems, including multi-objective optimization and additional
constraints. Introducing more complex problem formulations allows the system to be
more accurately modeled, with the price of added computational complexity. To tackle
this, more advanced algorithms, such as particle swarm optimization [59], ant-colony
optimization [60], and several evolutionary algorithms [61] have been fine-tuned and
applied to allocation systems.

Another approach for allocating resources for tasks or applications is using fairness
metrics to ensure each task is allocated at least some resources. One fairness-driven
approach is max-min fairness, which maximizes the smallest share allocated to
any application. A more sophisticated and general approach is dominant resource
fairness (DRF), in which each application first receives a share of the resource it
most desperately needs [62]. DRF is especially useful when the expectation is that
not all requests can be fully satisfied. The goal is often searching for Pareto efficient
allocations, meaning that no application can improve its allocation without hurting
some other application. DRF model has also further extensions, involving more
complex infrastructures and objectives [63, 64].

3.2.2 Virtual machine placement

The hardware resources of a physical server can be divided into separate computation
entities through virtualization (as explained in section 2.2). These so-called virtual
machines can execute tasks and host applications rather independently, provided they
are also hosted on a physical server that allows the VM to harvest their resources
such as memory, CPU, and storage. The resource management problem at this stage
is determining how to select suitable servers to host these VMs, to allow efficient
utilization of the resources of the physical servers. The problem is illustrated in
figure 6. In most systems, VMs can be migrated from one server to another, and their
capacities can be adjusted to an extent. However, the flexibility of VM scaling and
migration varies by system. In many cases, VM placement is modeled as a static
operation, though a dynamic aspect can be created by solving the model consecutively.
Research on both static and dynamic VM placement methods has been extensively
conducted for the past 20 years. [65]

Static VM placement on servers strongly relates to the BPP. Items with certain
sizes need to be packed into bins (servers) with capacity restrictions, with the goal
of minimizing the number of bins utilized. Usually, the VM models have multiple
resource requirements that are (at least on the macroscopic level) independent. This
allows the system to be more specifically modeled with vector bin packing, rather
than geometric bin packing. This modeling has been used in many papers on VM
placement, though naming conventions have not always been consistent across studies
[66, 67, 68, 69, 70, 71].

While modeling VM placement as a static process is computationally simpler, it
often fails to adapt to the variation of VM resource requirements, leading to lackluster
resource utilization. Speitkamp et. al. [72] consider a system in which the resource
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Figure 6: VM placement problem with three resource constraints.

requirements of VMs vary over time. They investigate allocating VMs to servers both
with and without considering the fluctuation in requirements, and the dynamic version
results in 31% of hardware savings. This efficiency was enabled by the seamless
migration of VMs from one server to another, allowing servers to be shut down during
quiet hours.

Similarly to the task allocation problem in DCs, the objectives in VM placement
models usually focus on minimizing the number of physical servers or maximizing
their utilization rates. However, the statically modeled placements often need to be
re-evaluated due to some occurrence, e.g. variation of VM resource requirements,
server maintenance, or shifts in total computational demand. Since in many systems, it
is preferred to avoid migrating VMs from one server to another, minimizing the number
of migrations can become a new key objective in VM placement problems [73, 74].
Essentially this means that the system needs to compromise between minimizing
server fleet size and mitigating the number of migrations, with a trade-off ratio suitable
for the specific needs of the system.

Solution approaches for the VM placement problem often revolve around heuristic
strategies, because globally optimal solutions or even their approximations cannot be
attained except for rather limited sizes of problem instances. Most commonly used
heuristics include variations of classic greedy algorithms, such as first-fit and best-fit,
and their extensions first-fit-decreasing (FFD) and best-fit-decreasing (BFD), which
have yielded promising results in many systems. More complex methods for VM
placement include several metaheuristic algorithms, such as genetic algorithm and
simulated annealing, which reduce the solution space and utilize high-level heuristics
to potentially locate optimal solutions. These methods have often produced very
efficient VM placements, but their performance cannot be guaranteed in all systems.
They are computationally more expensive compared to simpler heuristics. [70, 75, 76]
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The modeling of static VM placement problem also relates to allocating applications
to servers, as long as those allocations are also considered static. The physical procedure
of assigning a VM to a server differs from the assignment of applications, but from a
resource utilization standpoint, the processes can be considered similar. Therefore,
the same models and solution frameworks have been consistently used for statically
allocating applications to servers.
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4 Modeling a capacity allocation system

In this chapter, we present a private cloud-based computational environment, in which
a set of applications are to be hosted on a set of physical servers. The eventual goal is
to minimize the number of utilized servers without compromising the service provided
to customers. We develop the mathematical formulation of the system and discuss its
solutions and present five heuristic algorithms for generating approximate solutions
for the resource allocation problem.

4.1 Description of the system

We consider a private cloud environment, with one level of resource allocation. This
means that there is no separate task allocation and VM placement to be executed. The
system consists of a set of applications that needs to be hosted on a fleet of physical
servers. The allocation is modeled static, meaning that the allocation is carried out
only once. A dynamic aspect can be added by solving the model multiple times while
altering the set of servers and applications based on changing conditions in between
iterations.

The applications in our system have two separate resource requirements, namely
RAM and CPU usage. The amount of RAM required by each application is static and
it is manually predetermined based on historical maximum RAM usage.

CPU usage, however, varies significantly for all applications, mainly depending on
the time of day. As the model is static, the CPU demand at separate time frames needs
to be defined, instead of having a constant CPU capacity reservation. The variation is
modeled by dividing the day into multiple intervals and defining the computational
requirement separately for each time slot based on the maximum CPU usage within
that slot. An example CPU reservation based on the usage pattern is illustrated in
figure 7. We use the maximum CPU usage instead of averaging over the total CPU
seconds within the time slot (essentially meaning the integral of CPU usage) because
the average would in some cases significantly limit the CPU usage, lengthening runs
and possibly causing applications to miss important deadlines.

The length of the CPU usage time slots is initially set to one hour. Thus, each slot
is equal. There is however no reason that the time slots must be equally spaced. If
deemed advantageous, we can shorten the time slots during busy hours, and lengthen
them when there is less competition for the CPU resources. Additionally, if the
one-hour time slots prove excessively lengthy, we can condense the slots to 30 minutes,
15 minutes, or even one-minute length. This may be necessary if the applications
have short but high spikes in their CPU usage patterns, resulting in excessive capacity
reservations around those spikes. Nevertheless, this means that initially, our model
has 25 separate resource dimensions: one for RAM, and 24 for CPU utilization.

In this model, each application requires the same amount of CPU regardless of the
day. Therefore, we can perform the allocations based on a 24-hour time frame, and the
allocations will not violate constraints either in the future. This is a simplification,
as there can be variation between days, and the total CPU and memory requirements
can change over time. This can be taken into account by re-estimating the application
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Figure 7: The reserved CPU capacity for each time period is determined based on the
peak CPU utilization of the application within that period.

requirements regularly and performing reallocations when necessary. Additionally, a
longer time frame could be used for defining the CPU usage patterns to better detect
the actual requirement and the variations between days.

The full server fleet of the organization consists of five DCs, which are geographi-
cally and infrastructurally independent. The separation of DCs is not taken into account
in the allocation process in our model, as we model the migration of an application
similarly within a DC and between DCs, even though there are real-life blockers in
migrating an application between DCs. The separation of DCs can, however, play a
role when considering a disturbance (e.g. fire, power outage) that would disable an
entire DC. We can then expect that such occurrence would disable one fifth of the
total fleet, instead of the entire fleet.

All servers have strict RAM and CPU capacities that cannot be exceeded. The
CPU capacity for servers is defined based on the number of physical cores the server
contains. The capacity is static at all times, but in the model, we split it into different
time slots, similarly as with the applications. This is to track the CPU usage on servers
during these slots. Initially, we model each server similarly, meaning that all capacity
restrictions are homogeneous. However, we keep the option of including heterogeneous
server capacities in the model later. This adds another layer of complexity to the model
but could prove mandatory when applying the model to real-life data. The number of
servers that can be utilized is not restricted in the model.

The private cloud system that is utilized specifically by one organization provides
some unique features that differentiate the system from other cloud infrastructures.
Compared to massive public cloud systems of e.g. Google and Amazon that many
companies utilize for their computations, a small private cloud system is far less scalable.
Whereas with public cloud providers, computational resources can be extended by
simply updating the subscriptions, in a private system, increasing computational
resources essentially always means purchasing new servers. This also underscores
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the importance of efficient resource utilization within the organization, as it allows
maintaining a smaller fleet. A clear benefit of an independent infrastructure is that it
makes workload forecasting possible. A public cloud provider can essentially never
know in advance which type of jobs it will need to host, while a private system with
static allocations can to a large extent predict the requirements based on historical data.
The static allocation and predictable computational requirements are the pieces that
enable the efficient utilization of server resources and allow us to model the system as
described in this section.

4.2 Mathematical formulation

We model the resource allocation system as a multidimensional vector bin packing
problem. This is a common method in the literature for modeling VM and application
placement problems, as described in section 3.2.2. VBPP is discussed in detail in
section 3.1.2.

The objective of our model is to minimize the number of utilized servers while
allocating a set of applications to the server fleet and respecting the capacity constraints
of each server. To avoid infeasibly large applications, we restrict the resource
requirements, 𝑟, to 𝑟𝑎𝑑 ≤ 𝑐𝑑 , for all applications 𝑎 in all dimensions 𝑑, meaning that
an empty server needs to have enough capacity to host any application in the system.
In reality, there are applications with even greater resource requests, but these are
not considered in this model. In the actual infrastructure, the largest applications are
hosted on dedicated servers with sufficient resources. The number of utilized servers
is not limited, but we set an upper bound for formulation purposes. This upper bound,
𝑚, is large enough so that it does not restrict the number of utilized servers.

We state the problem as the following integer linear program

Min.
𝑚∑︁
𝑠=1

𝑦𝑠 (1)

st.
𝑚∑︁
𝑠=1

𝑥𝑎𝑠 = 1, ∀𝑎 ∈ {1, . . . , 𝑛} (2)

𝑛∑︁
𝑎=1

𝑟𝑎𝑑𝑥𝑎𝑠 ≤ 𝑐𝑑𝑦𝑠, ∀𝑠 ∈ {1, . . . , 𝑚},∀𝑑 ∈ {1, . . . , 𝐷} (3)

𝑥𝑎𝑠 ∈ {0, 1}, ∀𝑎 ∈ {1, . . . , 𝑛},∀𝑠 ∈ {1, . . . , 𝑚} (4)
𝑦𝑠 ∈ {0, 1}, ∀𝑠 ∈ {1, . . . , 𝑚}. (5)

The decision variables and parameters used in the formulation are explained in table 1.
The decision variable 𝑥 contains each application-server combination, meaning that
𝑥 has 𝑛 · 𝑚 elements. The size of 𝑥 thus increases fast as problem instances become
larger. This highlights the importance of selecting a suitable 𝑚, that is as small as
possible while not disturbing the feasibility of the problem. A suitable 𝑚 can be found
e.g. by calculating an approximate solution beforehand using some heuristic method
and utilizing that solution as 𝑚.
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Table 1: Variable and parameter notations.

Symbol Description
𝑥𝑎𝑠 is application 𝑎 allocated to server 𝑠
𝑦𝑠 is server 𝑠 utilized in solution
𝑟𝑎𝑑 resource requirement of application 𝑎 in dimension 𝑑

𝑐𝑑 server capacity limit in dimension 𝑑

𝑛 number of applications to allocate
𝑚 upper bound for server to utilize
𝐷 number of resource dimensions

The objective function of the model (1) minimizes the number of utilized servers.
Constraint (2) states that each application needs to be assigned to exactly one server,
constraint (3) ensures that no capacity limits are violated, and constraints (4) – (5)
indicate that all decision variables are binary.

When necessary, we can extend the model to additionally limit migrating applica-
tions from one server to another, given an initial allocation is already in place. In that
case, we introduce an initial allocation variable, 𝑥 𝐼𝑎𝑠, denoting the assignment of each
application before solving the model. The objective (1) can then be expressed as

Min. 𝛼
𝑚∑︁
𝑠=1

𝑦𝑠 +
𝛽

2

𝑛∑︁
𝑎=1

𝑚∑︁
𝑠=1
|𝑥 𝐼𝑎𝑠 − 𝑥𝑎𝑠 | (6)

𝛼 + 𝛽 = 1, 𝛼, 𝛽 ∈ [0, 1], (7)

where the additional constraint (7) restricts the weights of the new objective. These
weight parameters can be scaled accordingly depending on how heavily the migrations
should be avoided compared to server minimization. As one migration yields two
changes in 𝑥, we divide 𝛽 by two.

4.2.1 Optimal solution

It has been shown that there is no polynomial time approximation scheme for the
VBPP when there are two or more dimensions. Therefore, the presented model is not
only NP-hard as stated in section 3.1.2, it may very well be APX-hard (unless 𝑃 = 𝑁𝑃

[77]). In any case, locating optimal or even approximate solutions for the model can
be extremely time-consuming even with moderate instance sizes. [78, 79]

Keeping this in mind, we implement a method to reach an exact solution for the
problem. With small enough instances, we can locate optimal solutions in reasonable
time. For this purpose, we use a popular open-source solver, HiGHS version 1.7.0 [80],
which is suitable for integer linear programs. The solver utilizes refined branch-and-cut
techniques for reducing the set of potential solutions. HiGHS solver has shown good
performance compared to other open source software in industry benchmark tests [81].

For approximating the optimal solution, we implement a particle swarm optimiza-
tion (PSO) algorithm [82]. PSO is a metaheuristic that iteratively improves candidate
solutions until no improvements can be made or other stopping criteria are met. PSO
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consists of a swarm of particles that generate interim solutions while searching for
the global optimum in the given search space. The method has been inspired by the
scattering movement of animals in nature, namely flocks of birds and schools of fish.
This method has been utilized in literature for solving resource allocation problems
with good results [83]. We implement PSO with ready-made function pso.m in the
MATLAB Global Optimization Toolbox.

The aforementioned solution procedures are evaluated in section 5.4.1, where their
feasibility and computation time are analyzed, and their solutions are compared to
those obtained using the heuristics presented in the following section 4.3.

4.3 Heuristics

We explore alternative approaches for calculating the allocations due to the complexity
of the problem. This is especially important as the number of applications, or problem
dimensions, increases. For this purpose, we introduce five heuristic algorithms
for generating the allocations. The heuristics are significantly less computationally
demanding compared to methods for determining the global optimum. The algorithms
are explained in this section, and their performance is rigorously tested in section 5.

4.3.1 First-fit-decreasing

First-fit is a simple algorithm commonly used for bin packing, which requires no size
information regarding the applications beforehand. Its basic function is very simple:
pick an application to allocate, and assign it to the first server that has enough capacity
remaining to satisfy its resource requirements. If no active servers have the required
capacity, a new server is initialized to host the application. This process is performed
separately for each application. In case an application cannot be hosted on any server,
e.g. due to infeasibly large resource requirements, it is ignored by the algorithm.

First-fit-decreasing (FFD) is a variation of first-fit, in which the applications
are sorted in a decreasing order based on size before allocation. This allows the
largest, and thus most demanding applications to be allocated first. The pseudocode
of the method is in algorithm 1. FFD is an offline algorithm, as it requires the
resource requirement information regarding the applications before allocation. If this
information is unavailable, the standard first-fit heuristic is applied.

Because the model is multi-dimensional, the sorting of applications based on size
is not directly obvious. A decision needs to be made on which resource requirements
are used to determine the size of the application and how. The most obvious selection
would be to use the stand-alone memory requirement as the metric for sorting, which is
arguably the most crucial resource for the usability of applications. However, if memory
is not the most competed resource, sorting based on it can yield unsatisfactory results.
Another approach for ranking the applications is to identify the most sought-after
resources and use those to determine application size. For a more comprehensive view,
one can sum together all resource demands to identify which applications require the
most resources in total. The best approach depends on the specific characteristics of
the servers and applications.
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Algorithm 1 First-fit-decreasing
1: Input: Set of applications {𝑎1, 𝑎2, ..., 𝑎𝑛}, with 𝑑 resource requirements; Set of

servers {𝑠1, 𝑠2, ..., 𝑠𝑚}, with capacity 𝑐𝑑
2: Output: Number of servers used and the assignment of each application
3: Sort applications in decreasing order based on resource requirements
4: for each application 𝑎 in the sorted list do
5: for each server 𝑠 do
6: if 𝑎 fits in 𝑠 then
7: Allocate 𝑎 to 𝑠

8: Break for
9: end if

10: end for
11: if 𝑎 has not been allocated then
12: Initialize a new server and allocate 𝑎 to it
13: end if
14: end for
15: Return Number of severs used and the assignment of each application

For the one-dimensional case, the tight lower bound for solutions received with
FFD has been proven to be 𝐹𝐹𝐷 (𝐼) ≤ 11/9 · 𝑂𝑃𝑇 (𝐼) + 6/9, where 𝐹𝐹𝐷 (𝐼) and
𝑂𝑃𝑇 (𝐼) represent the solution received with FFD and the optimal solution, respectively
[84]. This means that in the one-dimensional case, FFD provides solutions that never
utilize more than 22% more bins than the optimal solution, excluding small problem
instances. This lower bound is not directly applicable to the multidimensional case
but provides an insight on the effectiveness of the algorithm.

4.3.2 Best-fit-decreasing

The classic best-fit algorithm has many similarities to the first-fit algorithm. Instead
of assigning the application to the first feasible server, an attempt is made to place
it on each server, and the one that has the most suitable fit with regard to remaining
capacity after the allocation is selected. In best-fit-decreasing (BFD), the applications
are first sorted based on size, so that more demanding applications are placed first. The
pseudocode of BFD is in algorithm 2. As BFD calculates the fit of each application in
all servers, the algorithm can be computationally more expensive compared to some
other heuristics such as FFD. This drawback should however not cause major problems
unless the number of required servers becomes extremely large.

Similarly to FFD, the sorting of applications needs to be performed in a manner
that best suits the system one is investigating. Additional ambiguity comes from the
notation of a "best" fit, which is not trivial. In a one-dimensional case, the best fit
generally means the tightest fit, i.e. the allocation that leaves the minimum amount of
space in the bin after the allocation. In our multi-dimensional case, there is a need
to incorporate all resources in the decision of determining the best fit. Therefore,
the best fit is the one in which the sum of unutilized resources is the smallest after
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Algorithm 2 Best-fit-decreasing
1: Input: Set of applications {𝑎1, 𝑎2, ..., 𝑎𝑛}, with 𝑑 resource requirements; Set of

servers {𝑠1, 𝑠2, ..., 𝑠𝑚}, with capacity 𝑐𝑑
2: Output: Number of servers used and the assignment of each application
3: Sort applications in decreasing order based on resource requirements
4: for each application 𝑎 in the sorted list do
5: BestFitServer← None
6: BestFit←∞
7: for each server 𝑠 do
8: if 𝑎 fits in 𝑠 then
9: RemainingSpace← Unused capacity of 𝑠 after placing 𝑎

10: if RemainingSpace < BestFit then
11: BestFitServer← 𝑠

12: BestFit← RemainingSpace
13: end if
14: end if
15: end for
16: if BestFitServer is not None then
17: Allocate 𝑎 to BestFitServer
18: else
19: Initialize a new server and allocate 𝑎 to it
20: end if
21: end for
22: Return Number of servers used and the assignment of each application

potential allocation. To ensure each dimension has equal weight in determining the
empty space, the requirements are normalized before calculating the goodness of the
fit. The definition of "best" fit may need to be reconsidered in case the number of
dimensions increases, as that directly shifts more weight to CPU capacity.

4.3.3 Worst-fit-decreasing

Another approach to the best-fit algorithm is to allocate applications with the goal
of maximizing the remaining space on servers after the allocation. This method is
generally referred to as the worst-fit algorithm. Whereas best-fit aims to completely
fill up the servers as soon as possible, worst-fit has the goal of allowing more options
for future allocations due to the maximized remaining space. As with the previously
presented algorithms, the applications are sorted in decreasing order based on size
before allocation, which yields the worst-fit-decreasing (WFD) algorithm. The
pseudocode of the heuristic is in algorithm 3.

Similarly to the BFD algorithm, the goodness of the fit is determined by summing
together all unused resources on the server after potential allocation. This time, the
most desired destination for the application is the server which has the maximum
remaining capacity after placement. WFD is an especially relevant method in situations
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Algorithm 3 Worst-fit-decreasing
1: Input: Set of applications {𝑎1, 𝑎2, ..., 𝑎𝑛}, with 𝑑 resource requirements; Set of

servers {𝑠1, 𝑠2, ..., 𝑠𝑚}, with capacity 𝑐𝑑
2: Output: Number of servers used and the assignment of each application
3: Sort applications in decreasing order based on resource requirements
4: for each application 𝑎 in the sorted list do
5: WorstFitServer← None
6: WorstFit← −1
7: for each server, 𝑠, that hosts at least one application do
8: if 𝑎 fits in 𝑠 then
9: RemainingSpace← Unused capacity of 𝑠 after placing 𝑎

10: if RemainingSpace > WorstFit then
11: WorstFitServer← 𝑠

12: WorstFit← RemainingSpace
13: end if
14: end if
15: end for
16: if WorstFitServer is not None then
17: Allocate 𝑎 to WorstFitServer
18: else
19: Initialize a new server and allocate 𝑎 to it
20: end if
21: end for
22: Return Number of servers used and the assignment of each application

in which the distribution of the load on servers is taken into account. If the pool
of servers is large and there is no strict need to minimize the number of utilized
servers, the resource requirements may be distributed somewhat evenly to mitigate the
possibility of resource overload that could occur e.g. if some applications utilize more
resources that have been allocated to them. That being said, WFD is a commonly used
method also for bin minimization purposes.

4.3.4 Next-fit

Next-fit (NF) algorithm is the simplest allocation heuristic considered. Contrary to the
previously presented algorithms, the applications are not sorted before proceeding
to the actual algorithm. With NF, the standard next-fit procedure is carried out to
allocate an application onto the current server if there is enough capacity remaining.
Otherwise, a new server is initialized to host the application, and the previous server
is sealed and no more applications are placed on it. The same process is performed for
all applications. In NF, we focus on one server at a time, and after progressing to the
next one, we never return to earlier servers. This is the key difference between FFD
and NF, as FFD considers all active servers in the fleet as potential destinations for the
application. The pseudocode of NF is in algorithm 4.
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Algorithm 4 Next-fit
1: Input: Set of applications {𝑎1, 𝑎2, ..., 𝑎𝑛}, with 𝑑 resource requirements; Set of

servers {𝑠1, 𝑠2, ..., 𝑠𝑚}, with capacity 𝑐𝑑
2: Output: Number of servers used and the assignment of each application
3: Initialize a new server and set it as CurrentServer
4: for each application 𝑎 do
5: if 𝑎 fits in CurrentServer then
6: Allocate 𝑎 to CurrentServer
7: else
8: Initialize a new server and allocate 𝑎 to it
9: Update CurrentServer to the new server

10: end if
11: end for
12: Return Number of servers used and the assignment of each application

Next-fit-decreasing (NFD) is a commonly used variation of the algorithm. It has
been shown that the lower bound for NFD is significantly higher than for standard NF
[85]. However, the pool of applications in our system contains a relatively high ratio of
heavy resource consumers, which would mean that a significant number of applications
are allocated to their own servers if the applications are sorted in decreasing order.
This effect is smaller if the applications are in random order. Therefore, we do not
incorporate sorting in the NF allocation algorithm.

NF can produce lackluster allocations, because there may remain large unused
capacities on servers as applications cannot be allocated to earlier servers. However,
the benefit of NF comes from its computational efficiency. NF provides results fast
even with large problem instances, as the computation time with NF increases linearly
with respect to the number of applications, as opposed to exponentially growing
calculation times with all of the previously presented algorithms. This is because
the algorithm only attempts to fit the applications to the current server instead of
optimizing the fit among a larger pool of options.

4.3.5 Random allocation

Finally, we introduce an algorithm that allocates applications to servers randomly. The
purpose of this algorithm is to investigate and illustrate the performance efficiency
of the other algorithms, compared to a completely arbitrary allocation heuristic.
The random allocation algorithm allocates applications to servers one at a time, by
gathering all feasible servers that host at least one application and additionally one
empty server. Out of the set of feasible servers, one is selected randomly for the
allocation. As the set of active servers becomes larger, the likelihood of allocating
an application to an empty server decreases since only one empty server is always
included in the set of possible assignments. Due to this, one can expect that as the
set of applications becomes larger, the performance of the heuristic improves. The
pseudocode of this heuristic is in algorithm 5.
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Algorithm 5 Random allocation
1: Input: Set of applications {𝑎1, 𝑎2, ..., 𝑎𝑛}, with 𝑑 resource requirements; Set of

servers {𝑠1, 𝑠2, ..., 𝑠𝑚}, with capacity 𝑐𝑑
2: Output: Number of servers used and the assignment of each application
3: for each application 𝑎 do
4: ActiveServers← list of all servers that host at least one application
5: FeasibleServers← empty list
6: for each server 𝑖 in ActiveServers do
7: if 𝑎 fits in 𝑖 then
8: Add 𝑖 to FeasibleServers
9: end if

10: end for
11: Add a new empty server to FeasibleServers
12: RandomServer← randomly selected server from FeasibleServers
13: Allocate 𝑎 to RandomServer
14: end for
15: Return Number of servers used and the assignment of each application

Despite its simplicity, the random heuristic is computationally more expensive
than at least FFD and NF. This yields from the fact that the feasibility of each active
server needs to be determined for each application before we can randomly select
an assignment for the application. One could also randomly select an iteratively
increasing amount of servers without investigating the feasibility until the set of servers
contains at least one feasible location. This would, however, complicate the purposely
simple heuristic unnecessarily, so we rather tolerate the longer calculation time.
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5 Performance evaluation of algorithms

In this chapter, we simulate the resource allocation system using theoretical models
of servers and applications that resemble real-life instances. The goal of the tests is
to compare the performances of the algorithms in chapter 4.3 and determine which
ones are most suitable for the system based on solution quality and computational
efficiency. The data used for the tests, testing methods, different scenarios, and their
results are presented in this section.

5.1 Data

We define the application models for these tests by extracting historical CPU usage
data of actual applications from our target organization. Because each weekday is
fairly similar with regard to computational demand, we randomly select one recent
regular weekday and utilize the CPU usage data from that date. The CPU data is
not continuous. It contains the total CPU seconds that the application has utilized
during each minute. To achieve as accurate results as possible, we use single minutes
as the time slots for CPU allocation. The applications are therefore modeled as
24 · 60 + 1 = 1441 dimensional vectors, one dimension for CPU use during each
minute of the day, and one for the memory reservation. The amount of memory that is
reserved for each application is static and known, and we use it for the application
base data as is.

An example of an application CPU usage data is illustrated in figure 8. It is
common that the baseline CPU usage is very low for a regular application, while
there are some spikes indicating scheduled heavier calculations. These spikes are
often scheduled at somewhat similar times – as recurrent calculations are generally
performed during the night – which makes it more demanding to consolidate the
resources. In addition to these quite moderate CPU utilizers, a few applications have
significantly higher baseline CPU demands, and much lengthier spikes often during
the night. These applications leave little to no room on their servers for hosting other
applications.

Figure 8: CPU usage profile of one example application.
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Even though there is data on real-life applications, we do not utilize the actual
applications for the tests as they are. Rather, we create applications for the test scenarios
by randomly selecting instances from the pool of actual applications, and varying
their resource demands slightly. The selection and modification process allows single
applications to be selected multiple times, and any amount of application models can
be created with this method, without having multiple identical applications in the set.

For servers, we use multiple different RAM and CPU capacities separately. The
servers in the fleet of the organization range from 1 TB to 8 TB, but the most commonly
utilized servers have 3 TB or 4 TB of RAM. Here, we utilize 3 TB, 4 TB, and 6 TB
servers. For CPU capacities, we consider servers with 64, 128, 192, and 256 virtual
cores. The core count is used as the number of simultaneously available calculation
threads. In this section, when discussing the number of cores, we always refer to
virtual cores. Each combination of the RAM and CPU capacities is separately utilized
in the tests. The base application data contains applications that require more CPU
capacity that is available with 64, 128, and 196 core servers. Servers with 256 cores
and 4 TB or 6 TB of RAM are large enough to host any application. Excessively large
applications are left unallocated in the testing scenarios, and their handling in the
scenarios varies. In reality, applications that require more computational power than
what regular servers can provide, are hosted on more powerful dedicated servers.

An example of resource utilization profile of a server hosting 15 applications is in
figure 9. The resource capacities have been normalized so that the maximum capacity
is one throughout. The CPU utilization varies significantly and consists mainly of
alternatingly long spikes of specific applications. This is a common trend of resource
usage on most servers.

Figure 9: A server hosting 10 applications, with resource requirements of each
application cumulatively stacked. The bar on left represents memory utilization,
and the temporal graph shows the CPU usage per minute. The color selections that
represent individual applications are consistent between the RAM and CPU graphs.
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5.2 Methods

The tests in each scenario are performed using the Monte Carlo method. The number
of iterations varies between one and one thousand depending on scenario setup and
problem instance magnitude.

The heuristic algorithms we evaluate are implemented with MATLAB version
R2024b, and the exact solutions are solved and approximated with ready-made
MATLAB functions intlinprog.m and pso.m, respectively. The testing scenarios are
executed on the same platform.

All tests are performed with a 10-core Intel i5-12600K processor, with 32 GB of
RAM capacity.

5.3 Scenarios

We investigate three separate testing scenarios, and track the performance of the
algorithms in each scenario, respectively. Additionally, the results attained with
the heuristic algorithms are compared with the global optimal solutions in the first
scenario. The results from each scenario are reported in section 5.4.

5.3.1 Allocation to empty servers

In the first scenario, different numbers of applications are allocated to an unlimited set
of servers, with the goal of minimizing the number of servers required for hosting the
applications. The allocation is performed with all heuristic algorithms and with all
combinations of memory capacity and number of cores.

We create the applications to be allocated based on all available real-life appli-
cations, including ones with heavy computational requirements. This includes large
applications with requirements that cannot be satisfied with the lowest memory and
core options. In this scenario, applications that cannot fit on an empty server are left
unassigned and thus not included in the allocations. This makes comparing results
between different-sized servers non-relevant, as runs with larger servers will contain
more successful allocations in total. However, this is not an issue, because the goal is
to compare the algorithms within each server category, which remains feasible in this
setup.

We perform the allocations starting with 100 applications, and increase the instance
size discretely to 100 000 applications to investigate whether the performance of
some algorithms are dependent on the instance size. Additionally, we compare the
calculation times of the algorithms in this scenario with multiple problem instance
sizes.

To further investigate the solution quality of the algorithms, we compare the
heuristic results with the exact optimal solutions. The optimal solutions are only
calculated for the smallest instance size of 100, as larger instances cannot be solved
in a reasonable time. Nevertheless, these results provide insight on how close to the
optimum the heuristics can reach.
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5.3.2 Allocation of additional applications

In this scenario, we begin with a fleet of servers that host a set of applications. However,
additional applications are introduced to the system (e.g. due to organizational growth)
and need to be incorporated into the current allocation, while minimizing the number
of new servers we need to initialize. Each iteration of the scenario begins with the same
server fleet and the same initial allocation. The initial allocation contains 85 servers
hosting 699 applications, which have been allocated using the random allocation
algorithm introduced in section 4.3.5. Migrating the initially allocated applications
between the servers is not allowed. In this scenario, we have strictly 4 TB and 128-core
servers.

The number of additional applications is varied in the tests, ranging from 10 to
1000. The allocation is performed with each heuristic for the set of applications with
two different approaches. The first approach assumes that all additional applications
are allocated at once. This allows us to sort the applications before they are allocated.
The second approach assumes that the applications are received one at a time without
information of the subsequently incoming applications beforehand. Thus, they cannot
be sorted before the allocation. The second approach essentially transforms our BFD,
FFD, and WFD algorithms to their standard unsorted versions.

5.3.3 Removing servers from the fleet

The third scenario begins from a similar initial setup as the second scenario, with
a fleet of servers hosting a set of applications. In this scenario, a variable number
of servers is removed from our fleet due to some unavailability. This could mean
predictable occurrences, such as maintenance or cleanups, or unforeseen circumstances
like power outages, malfunctions, fires, or acts of terror. The applications that were
hosted on the servers removed from the fleet are left without a host, and they need to
be reallocated to servers that are still active. The initial allocation contains a fleet of
84 servers hosting 692 applications, allocated with the random algorithm. Similarly to
the previous scenario, we utilize only 4 TB and 128-core servers.

In this scenario, we assume no servers are available for initialization, in addition to
the ones already included in our fleet. Our goal is to allocate as many of the hostless
applications to a running server, to ensure that as few customers as possible suffer
system outages for their end users. We begin by removing one server and increase that
number until all but one server is left unusable. The performances of the algorithms
are compared based on the percentage of hostless applications that were successfully
reallocated to the server fleet.

We do not allow migrations between servers in this scenario either, even though
this would very likely allow us to allocate a higher percentage of applications on the
remaining servers. Migrations always require time and manual labor, and if servers
become suddenly unavailable, the hostless applications should be reassigned as fast as
possible.
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5.4 Results

5.4.1 Allocation to empty servers

The main metric for evaluating the allocation of applications to empty servers from
scratch is the number of servers needed to host the set of applications. The number of
servers used with each heuristic algorithm for three selected server sizes are reported
in table 2. These server sizes were selected to best represent the data. The full data
with all memory-core combinations is presented in appendix A. It is worth reiterating
that comparing the results between different server capacities is not sensible, since the
amount of successfully allocated applications varies significantly between different
server sizes. The average allocation success rate with each server size is explained in
the caption of table 2.

Table 2: The number of used servers with different algorithms while utilizing servers
with three selected capacities. The mean ratio of successful allocations was 29,8%
with 3 TB and 64 cores, 69,6% with 4 TB and 128 cores, and 99,8% with 6 TB and
256 cores. The results with all server capacities are shown in appendix A.

Apps RAM Cores FFD BFD WFD Random NF Iter
100 3 TB 64 3,9 3,9 4,0 8,0 5,7 1000
1000 3 TB 64 24,7 24,7 25,4 36,5 52,6 100
10000 3 TB 64 241,0 241,6 243,6 255,6 527,6 7
100000 3 TB 64 2342 2331 2344 2365 5326 1

100 4 TB 128 8,6 8,6 8,8 14,9 16,7 1000
1000 4 TB 128 59,4 59,3 63,0 76,9 162,1 100
10000 4 TB 128 544,0 539,4 582,0 575,4 1623,5 8
100000 4 TB 128 5389 5333 5744 5427 16277 1

100 6 TB 256 9,4 9,4 9,6 17,3 16,5 1000
1000 6 TB 256 77,0 76,7 77,6 94,8 160,1 100
10000 6 TB 256 766,7 766,9 763,9 773,7 1614,4 7
100000 6 TB 256 7687 7690 7590 7562 16154 1

The results indicate clearly that the two algorithms that provide the best allocations
with nearly all settings are FFD and BFD. These algorithms yield very similar results,
with BFD perhaps slightly outperforming FFD with larger problem instances. WFD
is not far behind. The number of servers used with WFD is consistently slightly
higher than with BFD and FFD, with the exception of large instances with a 6 TB
and 256-core server, in which WFD in fact illustrates the best performance out of
all algorithms. The random allocation algorithm provides significantly worse results
with smaller instances, but interestingly, the gap between its results to the more
sophisticated algorithms reduces significantly for large instances. The performance of
the NF algorithm seems completely unaffected by the number of applications, as the
number of servers used increases linearly while the number of applications increases.
These results are further illustrated in figure 10, which presents the mean number of
applications allocated to one server with each heuristic.
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Figure 10: Applications per server with each algorithm on a logarithmic scale, with a
4 TB and 128-core server.

The calculation times of one allocation from scratch with each algorithm, given
different sizes of application sets, are presented in figure 11. The figure shows that
clear differences in calculation times begin to emerge quite early, and those differences
are highlighted as the number of applications increases. Calculation times increase
exponentially, with the exception of next-fit, which has a linear increase, and its
calculation time is under two seconds even with ten thousand applications. Another
algorithm that performs well in comparison is FFD, whose calculation times increase
less for larger instances.

Figure 11: Calculation times with each algorithm with respect to the number of
applications allocated. Applications are allocated to empty servers, one iteration.
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We solve the allocation problem using HiGHS optimizer to locate the optimal
solution, allowing us to estimate the quality of our heuristic solutions compared
to global optimal solutions. The optimization proved infeasible even with very few
applications when operating in 1441 dimensions. We compress the problem to consider
CPU usage with 15-minute time slots, reducing the problem dimensions to 97. With
this simplification, the optimizer was generally able to locate optimal solutions fairly
quickly with small instance sizes, up to around 30 applications. However, when the
number of applications approached 100, the optimizer was rarely able to converge to a
global optimum within a cut-off time of two minutes. A summary of these calculations
can be seen in table 3. The server fleet size required for hosting the applications is
generally higher here than in the previous table due to the dimension reduction, as
now the CPU peaks of the applications are generally more long-lasting.

Table 3: The performance of FFD and BFD heuristics compared to the optimal
solutions obtained with HiGHS optimizer. A set of 100 applications was allocated
with 100 iterations for each server type.

Server capacity (RAM (TB), cores) 3, 64 4, 128 6, 192
Optimum found 100 / 100 21 / 100 4 / 100
Heuristic found optimum 84 / 100 4 / 21 0 / 4
Heuristic required 1 additional server 16 / 100 11 / 21 4 / 4
Mean optimal used servers 4,9 9,7 11,8
Mean used servers, FFD 5,0 11,1 13,0
Mean used servers, BFD 5,0 11,0 12,8
Mean number of successful allocations 29,8 69,6 95,1

With a 64-core server, on average 29,8% of the 100 applications were successfully
allocated. Here, the optimizer was able to locate the optimal solution in seconds nearly
every time. In these cases, at least one of the heuristics found the optimal solution
in 84 out of 100 attempts and required only one additional server in the remaining
16 iterations. Increasing the server capacity to 4 TB and 128 cores, the optimizer
found the optimum only 21 times out of 100, due to the larger amount of successful
allocations. Out of these successes, the heuristics were able to locate the optimum
four times and used one additional server in 11 attempts. With the heuristics, the mean
solutions utilized on average 13% more servers than the optimum. With the largest
server capacity in these tests, the optimal solution was found within the two-minute
cut-off time only four times out of 100, as the average number of successful allocations
increased to 95,1. The solutions found with the heuristics were one server away in
each of these iterations, while the total mean distance from the optimum was 8% with
BFD.

The implemented PSO method was unable to locate feasible solutions near the
optimum in any reasonable time frame in nearly all cases. This was most likely due
to the immensely large number of local optima in our problem, which causes the
algorithm to get overwhelmed with the sea of possibilities. Heavily increasing the
swarm size allowed the algorithm to generate better solutions with the expense of
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increased runtime, but even then, the solutions proved suboptimal. The only cases in
which the PSO algorithm found the optimal solution in an almost feasible manner,
was with a server upper limit, 𝑚, that was initially within one server of the optimum.

The exact optimizer provided better results than the heuristics as expected, but our
other assumption that the PSO metaheuristic could yield near-optimal solutions in a
reasonable time proved faulty, as the solutions were in fact far from optimal and run
times were often longer than those of the exact optimizer. Thus, we can state at this
point that our implementation of the PSO algorithm is not a suitable method for our
allocation system.

5.4.2 Allocation of additional applications

In this scenario, we are focused on the number of additional servers needed as new
applications need to be allocated on top of the existing set already hosted on our
server fleet. We investigate two separate instances: one in which the applications are
allocated at once, and another in which the applications appear sequentially one at a
time. The average number of additional servers required with each set of applications
and with each algorithm is presented in table 4.

Table 4: Additional servers needed with different amounts of new applications to
allocate. Each instance size has been allocated both sorted (S) and not sorted (N).
Server capacity is 4 TB and 128 cores. Each instance size was iterated 1000 times
with each allocation method.

FFD BFD WFD Random NF
Applications S N S N S N S N N

10 0,0 0,0 0,0 0,0 0,0 0,1 0,4 0,5 0,1
50 0,3 0,3 0,3 0,3 0,8 1,1 2,6 2,5 4,1
100 1,4 1,4 1,4 1,4 2,1 3,1 5,5 5,4 12,1
200 4,7 4,8 4,7 4,8 5,1 7,9 11,2 11,5 28,3
500 18,3 18,7 18,4 18,8 20,3 24,8 29,4 30,0 77,1
1000 43,7 43,0 44,2 43,8 46,8 54,4 58,8 60,2 158,4

The results show that FFD and BFD provide the best allocations with each
application set, similarly to the first scenario. These two algorithms manage to allocate
nearly all applications to the current server fleet with 10 and 50 new applications. The
expected value of new servers will never be exactly zero even with one application,
as there is always a chance that there is a substantially large application among the
additional applications, requiring an empty or a nearly empty server. WFD is able to
reach allocations that are quite close to FFD and BFD, especially with sorting, but
again shows that its performance is slightly worse with all application sets. Random
allocation algorithm performs better as the number of applications increases, similarly
to the first scenario. However, it cannot compete with the other heuristics. NF provides
the worst allocations of the five algorithms. This is to be expected especially in this
scenario, as the behavior of the heuristic can cause a large number of servers with
some empty space to be discarded when an unsuitable application presents itself.
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Interestingly, the sorting seems to have little to no effect on the results in this
scenario for FFD and BFD. In fact, the sorting seems to degrade the performance of
the algorithms with 1000 additional applications. This shows that the advantage given
by the sorting when allocating to empty servers is diminished, when there are smaller
spaces where to allocate the incoming applications from the start, as is the case in this
scenario.

5.4.3 Removing servers from the fleet

In the scenario, we remove servers from the current fleet and reallocate the applications
that are left hostless to the remaining server fleet. The metric we are investigating
here is the percentage of applications that were successfully reallocated back to the
servers after their original host had been deactivated. These results are presented in
table 5 for all algorithms with different numbers of servers removed from the fleet.
The number of server removals ranges from one to 83, meaning all but one server
became unavailable.

The results show that with all algorithms except NF, on average over 90% of the
hostless applications managed to get reallocated up until 20 servers were removed.
This means that even if one fourth of the fleet becomes unavailable, a large majority
of applications can be kept running even without any rearrangement of the initial
allocations. In fact, even if three fourths of our fleet is removed, over 50% of the
hostless applications can still be reallocated. This can be achieved as the large majority
of our applications do not require significant portions of server resources, while there
are some applications that take up the majority of the resources of a server. The largest
applications remain without a host nearly without exception in this scenario.

The FFD, BFD, WFD, and Random algorithms show very similar performance
in this scenario. The variances and worst-case values in the results also showed no
significant differences between these heuristics. The efficient performance of FFD
and BFD is not surprising, as they have provided the best allocations in the earlier
scenarios as well. WFD yields similar or slightly worse results than FFD and BFD,
which is also in line with the previous tests. However, the relative success of the
random allocation seems exceptional. This shows that in a scenario in which there
are a lot of smaller gaps in servers, finding a specific fit for an application does not
seem as relevant. Rather, it is more important to identify some feasible assignment
for the application. To achieve better results with the FFD algorithm, one could sort
the servers in decreasing order before allocation, starting with those with the most
capacity.
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Table 5: Expected value of the percentage of applications successfully reallocated
after different numbers of servers were removed from the fleet. Initial fleet size is 84
servers. One through 10 server removals were iterated 1000 times, and the rest were
iterated 500 times. Server capacity is 4 TB and 128 cores.

Servers
removed FFD BFD WFD Random NF

1 98,7% 98,7% 98,5% 98,7% 92,1%
2 98,4% 98,4% 98,2% 98,3% 74,3%
3 98,3% 98,3% 97,6% 98,1% 54,7%
4 98,1% 98,1% 97,1% 97,7% 42,2%
5 97,9% 97,9% 96,6% 97,4% 32,9%
6 97,5% 97,6% 96,0% 96,9% 27,4%
7 97,2% 97,3% 95,3% 96,5% 24,2%
8 97,0% 97,1% 95,0% 96,2% 20,7%
9 96,6% 96,8% 94,7% 95,7% 17,2%
10 96,3% 96,5% 94,2% 95,3% 15,9%
15 94,8% 95,0% 92,8% 93,7% 11,0%
20 93,1% 93,2% 91,3% 92,0% 7,4%
25 90,6% 90,7% 89,1% 89,6% 5,2%
30 87,6% 87,9% 86,5% 86,9% 4,2%
35 84,4% 84,6% 83,6% 83,7% 3,1%
40 80,7% 80,9% 80,1% 80,3% 2,4%
45 76,9% 77,0% 76,5% 76,7% 2,0%
50 73,2% 73,4% 73,0% 73,1% 1,6%
55 69,0% 69,1% 68,9% 69,0% 1,2%
60 63,8% 63,9% 63,9% 64,0% 1,0%
65 53,7% 54,1% 54,7% 54,9% 0,8%
70 36,2% 36,1% 36,0% 36,7% 0,5%
75 20,5% 20,3% 20,9% 20,8% 0,3%
80 7,9% 8,1% 7,8% 7,9% 0,1%
83 1,8% 1,8% 1,8% 1,8% 0,0%

5.5 Algorithm selection

The results from the three presented scenarios and the computational efficiency
investigated in the first scenario indicate that FFD is the most suitable algorithm. The
performance of BFD is very similar to FFD with regard to the performed allocations
in each scenario, but its clearly longer running times make it less appealing. Other
evaluated heuristics provided subpar results. Thus, we select the first-fit-decreasing
algorithm for investigating allocations in a real data center in section 6.
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6 Capacity allocation in a private cloud infrastruc-
ture

In this section, we apply the first-fit-decreasing algorithm described in section 4.3.1 to
the server fleet of one DC of our target organization. We use the existing allocation of
applications at the DC as a starting point and examine several reallocation scenarios
to investigate the possibility of improving the utilization of servers, and the resilience
of the fleet come possible outages.

The server fleet consists of approximately one hundred servers that are located
in the same DC. The servers are hosting multiple types of applications, including
customer production applications, other applications used by the customers, and
several types of internally used applications. We exclude internal applications from
our analysis and only consider the customer applications as usability problems with
internal applications are not as critical. Internal applications can be considered a
separate entity within the DC, as they are hosted on their own servers. Removing
them from the analysis essentially just excludes a subset of the server fleet from the
investigation. However, we keep in mind that in case of disasters, there is potential
room to be utilized in the servers hosting internal applications. If necessary, these
servers can be entirely emptied to host customer applications.

From a resource utilization standpoint, the different customer application types
are identical. However, production applications are the most critical from a business
point-of-view, and outages in other types of applications are more tolerable. Therefore,
our priority needs to be in every situation to have the customer production applications
hosted at all times, if possible. To simplify the investigation, each customer is
considered equally important.

6.1 Initial allocation

In the initial state, we consider 89 servers hosting 520 customer applications. The
applications are not at all evenly distributed among the servers, as the number of
applications per server varies from one to 26. The total resource load on the servers
also has significant variation. The server fleet in the DC is not homogeneous, because
there is a large collection of different server models. The servers hosting customer
applications range from 2 TB to 4 TB and contain between 88 and 128 physical cores.
However, as each server supports hyper-threading (explained in section 2.2), the
number of available virtual cores is double the number of physical cores. Thus, the
CPU capacity of the servers, which relates to the number of simultaneous calculation
tasks that can be performed, is equal to the number of virtual cores. From here on, the
number of cores each server has refers to the virtual core count. The most common
server type we have contains 4 TB of memory and 256 virtual cores. For safety reasons,
and because the operating system and other mandatory programs require memory on
the servers, we initially limit the memory usage on each server to a maximum 80% of
total capacity.

We know the initial allocation of each application in the DC, as well as the
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capacities of each server. The applications are modeled similarly to the previous
section, by taking the minute-wise CPU usages from a regular weekday and using
those as the requirements for CPU seconds at each minute-long time slot. RAM
requirements are static, and they have been manually determined based on historical
memory use.

Based on the DC server loads reflecting the application resource requirements and
the initial allocation, some servers are being overutilized with respect to their capacity
limits. We however know that in reality, the servers are running generally with no
issues given the current allocation. Thus, we suspect that there are some inaccuracies
in the data. These issues were handled by performing manual modifications to the
application requirements for roughly 10 applications. The modifications were slight,
mainly including scaling down single suspicious CPU usage peaks; limiting the
memory reservation for one application that had over 80% of total memory capacity
reserved; and lowering very high CPU usages just after zeros, as that indicates
additional computation required for starting an application, which can be considered
not part of the general daily CPU usage patterns. With these small modifications, the
set of applications respects the capacity limits on all servers.

The applications use CPU throughout the day, but there is clear variation in the total
demand for computational load depending on the time of day. The total cumulative
CPU requirements of all applications are illustrated in figure 12. The figure clearly
indicates that the most demanded time period for computation is roughly between
04:00 and 08:00 (UTC+2) in the morning. This occurs as all of the applications are
Europe-based, and the daily recurring calculations are commonly performed during
the night when end users do not need to access the application. The afternoon and
especially the evening are correspondingly less crowded. The noticeable peaks on
many even hours are the result of lighter scheduled runs throughout the day. The
total CPU resource utilization is 13% compared to continuous full CPU utilization.
This might seem quite low, but the high and short peaks in CPU usage that many
applications have, make continuous high utilization rather infeasible. Most servers are
utilizing their CPU capacities at high levels at some points during the day, and the

Figure 12: The combined CPU requirements of all 520 applications in the DC.
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median peak CPU utilization of servers is 83% of maximum capacity.
The memory requirements of applications range from 5 GB to 3,2 TB. As our

largest servers have 4 TB of RAM capacity and we only allow 80% of that to be
used, this means that the 3,2 TB applications require their own dedicated servers.
However, only a handful of applications demand 3 TB of memory or more, while most
applications require much less, as depicted in figure 13a, which shows the distribution
of RAM reservations for the set of applications. From the histogram, it is clear that
the vast majority of applications are on the smaller side of the scale, roughly half
requiring 100 GB of memory or less.

The total memory utilization of all servers in the DC is roughly 57% given the
initial allocation. This load is not evenly distributed among the 89 servers, as some
utilize the full 80% and a few run with less than 10% utilization. The distribution
of memory utilization among servers is shown in figure 13b. All five servers that
utilize the full 80% host only one large application respectively. Many servers with
low memory utilization host applications with heavier computational needs. Thus,
even though the memory utilization is low, the servers are not necessarily totally
underutilized.

(a) Memory requirements in GB of all 520
applications in the DC.

(b) Memory utilization of each server in the
DC.

Figure 13: Memory requirements of applications and the memory utilization on each
server in the DC presented as histograms.

6.2 Optimal allocation

Next, we perform a reallocation for the set of 520 applications with the available
servers in the DC, using the FFD allocation heuristic presented in section 4.3.1.

This allocation is performed as in previous sections, except that the servers are
heterogeneous. Our goal is again to minimize the number of servers, regardless of
server type. Thus, we assume that the cost savings gained from reducing the server
fleet by one is equal for all server types. With this assumption, it is most beneficial
for us to allocate applications to the largest servers first, before initializing servers
with less capacity. We achieve this by sorting the servers in decreasing order based on
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their resource capacities before commencing the allocation procedure. The sorting
is conducted primarily based on memory capacity and secondarily based on CPU
capacity.

Reallocation with FFD yields a significant reduction in the number of required
servers. We manage to host the 520 applications on 60 servers, cutting fleet size by
almost a third, while respecting the limit that we utilize 80% of memory capacity at
most. In the achieved allocation, we only utilize the largest server type with 4 TB and
256 cores, as we have 69 of those servers available. The total memory utilization with
60 servers is 79,8%, and the total memory requirement of the applications is only
some 500 GB less than 80% of the total memory capacity of the servers. This means
that decreasing fleet size from 60 with the current memory requirements cannot be
achieved. Thus, the result would be the same even if we ignore the CPU capacity
limits. However, if we relax the 80% memory limit to 95%, we can further reduce
fleet size to 51. The relevant metrics of the server fleet after reallocation are presented
in table 6, with a comparison to the initial situation.

Table 6: Server fleet metrics after reallocation with FFD compared to the initial
situation.

Initial allocation Reallocation
Number of applications 520 520
Active server fleet size 89 60
Server memory capacities 2 TB - 4 TB 4 TB
Server number of virtual cores 176 - 256 256
Total RAM utilization 57,2% 79,8%
Total CPU utilization 12,5% 17,5%
Peak CPU utilization 28,7% 40,2%
Median server peak CPU utilization 83,2% 96,2%
Mean server peak CPU utilization 78,5% 85,4%
Servers hosting only one application 32 4

The allocations of individual servers have significant variations, even though the
memory usage is similar on all servers. Many larger applications that are allocated
first are hosted on their own servers, or they have some smaller applications hosted
with them. Another common allocation pattern contains a few moderately large
applications, along with a variety of small applications. Examples of servers with
these types of allocations are in figure 14, with further examples shown in appendix B.
Perhaps the most noticeable change in the single server assignments, is that only
four applications remain hosted on dedicated servers after reallocation, whereas the
number was 32 originally. This suggests that the decision to provide a dedicated server
for a customer application is performed overly liberally, from a resource utilization
perspective.

The total CPU utilization of the fleet remains low, only reaching 18%. However,
the median peak utilization of individual servers now eclipses 96%, indicating that the
majority of servers are achieving high utilization during some time periods. There are
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Figure 14: Two example servers illustrating common resource allocations. Server 9
is hosting three applications and server 35 is hosting 15 applications.

however some servers in which the CPU utilization is very low throughout. This is
caused by applications with large memory requirements, but very limited CPU usage.

6.3 Disaster recovery

We investigate a situation in which one or more servers become unusable due to
some disturbance. The disturbance can be known in advance, such as a shutdown
for maintenance, or it may be unpredictable, such as a power outage. We begin with
removing one server from the fleet and move on to shutting down full racks of servers.
The goal in each case is to reallocate the newly hostless applications to some of the
still active servers without conducting any migrations within the undisturbed servers.

We begin each scenario with the initial allocation as described in section 6.1. If
possible, we aim to respect the 80% memory utilization cap. However, if the reallocation
is not possible with the limit, we relax the limit to 95% at most. Additionally, if we
cannot allocate all hostless applications, we can attempt to allocate only the production
applications, as their availability is more important than for the other applications.

6.3.1 One server disabled

We remove each one of the 89 servers separately and attempt to reallocate the
applications that were hosted on the removed server. We perform four allocation
rounds with each server, each with different limitations. First, we respect the original
80% memory limit in the allocations. Second, we relax the limit to 90% and attempt
to allocate again. Third, we further raise the memory limit to 95% and allocate.
Last, we maintain the 95% memory limit, but this time we only allocate production
applications and ignore the rest. As we were able to allocate the set of applications to
29 fewer servers than the initial allocation in the previous section, we can hypothesize
that removing one server from the fleet should not cause any applications to remain
without a host.

The test results, also summarized in table 7, show that while respecting the 80%
memory limit, all applications previously hosted on the removed servers can be
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reallocated in 73 out of 89 cases. This means that there were 16 servers, in which we
are unable to find enough room for the hosted applications. Interestingly, in each of
the 16 unsuccessful reallocations, the server removed from the fleet hosted only one
application. This clearly indicates that these applications would require the majority
of the memory capacity of one server, and there is not enough room on any server to
accommodate their needs. The number of unsuccessful reallocations reduces as we
relax the memory limit. With 95% of memory in use, we can successfully reallocate
all but one application. This application requires 3,2 TB of memory, and a very high
portion of the CPU capacity throughout the day. It cannot be run unless it has a
dedicated server.

Table 7: Results from reallocating hostless applications after separately disabling one
of the 89 servers at a time. A success means that all applications were reallocated
successfully.

Limitation Successes Total hostless applications
80% memory 73 / 89 16
90% memory 83 / 89 6
95% memory 88 / 89 1
95% memory, only production 88 / 89 1

6.3.2 One rack disabled

It is possible that a rack full of servers becomes unusable at once, given some
malfunctions or issues with the rack itself. In this case, all servers within that rack are
taken out of the fleet, and the applications hosted on the servers need to be reallocated.
In our model, the DC has 10 racks, each containing on average nine servers. The
servers, however, may not be equally distributed among the racks. We simulate the
rack distribution here by randomly generating a rack assignment, in which each server
has an equal chance of being located on any rack. However, we restrict the number of
servers on one rack to 25 due to physical limitations.

We generate 100 separate rack assignments, and with each of them, we separately
remove each rack one at a time. Then, we attempt to reallocate the applications
previously hosted on the servers belonging to the rack. To track the success of the
reallocations, we measure the number of successful allocations compared to the
total number of hostless applications in each iteration. Additionally, we maintain
other relevant indicators, such as the size of hostless applications, which proved very
impactful in the previous tests.

The success rate of reallocations compared to the total number of hostless applica-
tions and the mean memory requirement of hostless applications are shown in figure 15.
These figures indicate that the factor lowering the success rate of reallocations is not
the number of hostless applications, but their size. In fact, figure 15a clearly shows
that the more applications there are, the more likely it is that most of them can be
successfully allocated. This means that single large applications are again the ones
that cause difficulties in reallocations.
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(a) Reallocation success rate with different
amounts of hostless applications.

(b) The effect of average application memory
requirement on reallocation success rate.

Figure 15: After one rack of servers is disabled, we attempt to reallocate the hostless
applications to other servers that are still running. The success rate of reallocations
reflecting the share of hostless applications that found a new host with the 80% memory
cap is shown.

Furthermore, we investigate the specific individual applications that have been left
hostless in these tests. Out of the 520 applications, only 41 remained hostless even
once when performing 100 iterations of each 10 racks separately removed from the
fleet. Furthermore, 16 applications were never reallocated. These difficult-to-allocate
applications are presented in figure 16, which illustrates the relation of large memory
requirement with the number of failed reallocations for these applications.

Figure 16: The effect of memory requirement on the difficulty of reallocating an
application is illustrated. Each point represents a distinct application. The points
include slight jitter for better visualization.
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6.3.3 Multiple racks disabled

If the DC faces larger disturbances, multiple racks may become unavailable simul-
taneously. Additionally, it is common that two server racks utilize several shared
components necessary for the functioning of the racks. If these components are
damaged, both racks may shut down. Major disruptions, such as fires or power outages,
can also make multiple or even all racks unusable. We therefore investigate how to
reallocate the hostless applications efficiently in scenarios in which multiple server
racks are disabled.

We utilize 10 server racks in the DC, and similarly to the previous scenario, the
servers are randomly assigned to the racks. The number of servers on each rack is
between zero and 25. The initial allocation of the applications is as described in
section 6.1. We simulate the disabling of racks by generating 1000 random rack
assignments for each number of server removals and attempting to allocate the hostless
applications to the remaining servers. The main results from these iterations, including
the mean success rate of reallocation, the mean number of unsuccessful allocations,
and minimum and maximum values of these metrics from the iterations, are presented
in table 8. As expected, the success rate of reallocations decreases as the number of
disabled racks grows. Interestingly though, the decline in mean success rate is very
gentle from one to four racks. This again relates to the large applications, because
when there are fewer applications to allocate, the success rate decreases drastically.
Another notable finding is the high maximum success rates with the majority of racks
being disabled. For instance, if we disable seven out of our 10 racks, there is still a
possibility that we can reallocate 85% of the hostless applications. The differences
between the iterations are however distinctively high, as depicted by the large standard
deviations across the board, and especially between five and seven disabled racks.

The success rates and the number of unsuccessful allocations are illustrated in
figures 17a and 17b. The figures include the standard deviations of the mean values as

Table 8: Mean reallocation success rate and mean number of hostless applications after
reallocation with different numbers of disabled racks and their respective minimum
and maximum values. The results were obtained with 1000 iterations for each number
of disabled racks.

Racks
removed Success rate Std dev Max Min Hostless Max Min

1 94,9% 5,8% 100% 0% 2,0 12 0
2 94,5% 3,0% 100% 68,0% 5,3 16 0
3 93,0% 2,4% 98,7% 82,8% 10,4 23 2
4 90,2% 4,9% 97,1% 52,4% 20,9 158 6
5 77,1% 13,3% 95,3% 27,3% 63,8 274 10
6 55,6% 14,0% 91,8% 21,5% 142,7 333 18
7 35,7% 10,0% 85,1% 14,0% 238,5 387 36
8 21,4% 6,7% 51,1% 6,6% 328,8 471 150
9 9,9% 4,1% 31,0% 0,8% 423,0 515 276
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the error bars and the comparison between the standard 80% memory limitation and the
less restrictive limits of 90% and 95%. The difference between the different memory
limits is clearly noticeable throughout. The distinction becomes more significant after
four racks, as the success rate with an 80% limit remains quite stable until the four-rack
mark, while the more relaxed limits hold the higher rates still at five disabled racks.
The standard deviations are also significantly larger around five to eight racks. Thus,
the means do not with a high probability represent the actual success rates if a real-life
disturbance disables roughly half of the fleet.

(a) Reallocation success rate with three differ-
ent memory utilization limits.

(b) The number of applications unsuccessfully
reallocated with the different memory limits.

Figure 17: Results from attempting to reallocate applications back to servers as an
increasing number of racks are taken out of use. The error bars represent one standard
deviation in both directions.

In conclusion, these tests indicate that some applications require special attention
due to their large resource requirements. Locating these applications and the servers
hosting them is crucial for proper capacity management and disaster recovery. If we
can locate the difficulties and bottlenecks in our system, we can increase the resilience
of the system, e.g. by deviating the difficult servers to different racks, or perhaps
by attempting to reduce the memory requirements of certain applications with more
frequent database cleanups. The removal of several racks furthermore paints a rather
positive picture of the persistency of our server fleet. Some racks can be lost with most
likely a small fraction of applications becoming unavailable. Additionally, because
there are internal servers available in the DC, one may be able to generate the required
resources on those servers, even if the large applications require their own dedicated
servers.
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7 Conclusions

In this thesis, we investigated the resource allocation process of a private cloud
environment. We modeled the system with the vector bin packing problem with
the objective of minimizing the number of required servers and implemented five
heuristics for solving the problem. The performance of the heuristics was thoroughly
evaluated in several scenarios simulating real-life settings, and the most suitable
algorithm, first-fit-decreasing (FFD), was selected and applied to a real DC of the
target organization.

The formulated resource allocation problem proved extremely large and complex,
even with rather limited instance sizes and static allocations. Locating exact optimal
solutions became infeasible quickly as the number of applications increased, even with
significant simplifications made to the system. The computational difficulty of the
problem was known from the literature, as such problems have been proven NP-hard
at minimum, and essentially all papers on DC resource allocation utilize heuristic
methods for solving the problem. The problem is further complicated by including the
dynamic movement of applications and additional resource restrictions.

The modeling of CPU utilization of applications was eventually performed with
one-minute time intervals. The decision to narrow down the intervals from the initial
one hour was necessary due to the major overlapping of CPU demand peaks during rush
hours, which would have caused excessive CPU reservations for many applications,
thus yielding lackluster core utilization. A downside of this decision came from the
decreased sensitivity of the model, as with tighter resource allocation, smaller changes
in the actual CPU usage can cause runs to overlap and to slow down. Additionally, the
added resolution further complicated the system, yielding longer calculation times.
To address this issue, the time intervals could be lengthened during off hours while
maintaining the desired peak-hour accuracy.

Some of the implemented heuristics proved to be very usable in the evaluations in
section 5. FFD and BFD algorithms performed best, providing competitive allocations
in all investigated scenarios and in comparison with the exact results received with the
HiGHS optimizer given the simplified problem instances. With regard to calculation
times, the performance of the heuristics that scan through the entire active server fleet
before performing the allocation degraded in larger problem instances. Due to its
superior computational efficiency, FFD was chosen over BFD to be applied to the
realistic server fleet in section 6.

We were able to improve the fleet utilization significantly with simple heuristic
allocation in section 6.2, reducing the fleet size by almost a third in comparison to
the current prevailing allocation in the DC. With the reallocation, nearly the entire
memory capacity of the active server fleet was utilized, indicating that computational
power is the less sought-after resource and has less weight when determining the
allocations. The most significant change in the allocation regarded the number of
servers that host only one application, which decreased from 32 to four with the
reallocation. There is no binding reason for this many applications to demand their
individual servers, even if they utilize the majority of available resources on the server.
This finding suggests that dedicated servers are perhaps excessively liberally allocated
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to customers to reduce the risk of resource overutilization. Balancing between this
risk and the cost reduction received from server fleet minimization requires careful
consideration when conducting the allocation decisions.

The server fleet of the DC demonstrated surprisingly effective resilience toward
outages in individual servers and full server racks. We were able to reallocate on
average over 90% of the hostless applications back to active servers if up to 40% of
the fleet was disabled due to some malfunction. The reallocation success rate also
improved clearly once we relaxed the 80% memory utilization limit we generally have
on the servers. The most difficult applications to reallocate were the heavy memory
consumers, which accounted for nearly all failed reallocations when one rack was
disabled. This comes as no surprise, as some of these applications require the large
majority, or in some cases, the entire, RAM capacity of one server, and these memory
shares are rarely available on active servers. To mitigate the damages from many large
applications becoming hostless, servers hosting these large applications should be
identified and placed rather evenly among available racks. This reduces the number of
difficult applications requiring reallocation when individual racks become unavailable.

While the results point to massive room for improvement in the utilization of
server resources, the simplifications in the application modeling must be considered
before celebrating any major successes in fleet size reduction. The CPU utilization
requirements of the applications were approximated based on data from a single date,
which is unlikely to represent the actual demand for computational power at all times.
There is slight unpredictable variation in CPU usage every day, and there can be larger
spikes at unexpected times for many reasons. If the server resources are more tightly
allocated, deviations from predicted use have a higher probability of causing service
disruptions for the customers. Nevertheless, the scale of the evidenced server fleet
reduction clearly indicates that improvements to resource allocation are achievable
with systematic application placement within the data center.

7.1 Future research

This thesis leaves room for further improvement and expansion in many directions
regarding the capacity management of the private cloud infrastructure. The most evident
future research topic concerns the CPU requirement modeling for the applications. In
this thesis, the CPU profile was modeled based on a single date, but this can easily be
extended to include a weekend, which has a different usage pattern, or a full week of
data. The data range can be further extended to a significantly longer time period, and
a dynamic CPU requirement forecast can be calculated based on the data, including
possible seasonal variation and trend regressors.

Working with increased amounts of data in order to extend the model call for more
scalable and automated methods for gathering and handling the data. Even with the
CPU data used for the model in this thesis, plenty of manual labor was required to
handle the outliers and gaps in the dataset. The reasons behind the data exceptions
demand further investigation, in case the data is taken into regular use.

An additional point of interest concerning the application resource demands
arises from the correlation between RAM and CPU utilization. For most cases, the
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correlation between memory and computation is positive, but there is a significant
minority of applications that demand an extensive amount of CPU power although
having miniscule memory reservations. The reason behind this phenomenon is not
evident. Additionally, cases in which the CPU need increases heavily while RAM use
remains constant have been noticed. Pinpointing the drivers of this behavior possibly
allows us to mitigate the increase or at least prepare for it in advance.

We have assumed strict capacity limits in all resource dimensions in this thesis.
This is mostly sensible, as the capacities cannot be exceeded due to physical hardware
limitations. If a CPU interval is overallocated, the system will not completely fail, but
the execution of active runs is prolonged. This can be perilous at times, as delayed
scheduled runs can cause customers to miss business-critical deadlines. However, a
slight deceleration in short but heavy runs during off-peak hours often has little to no
adverse effects for the customer users. These short spikes in CPU demand can still
prevent applications from being hosted on the same server if the spikes are directly
aligned. Locating such scenarios in which capacity breaches are less critical or can be
avoided with slight run schedule modifications, can be used for further improving the
resource consolidation of our fleet.

In the empirical sections of this thesis, we did not consider the possibility of
migrating applications between servers during the allocation processes to simplify the
investigation. Currently, the process of migrating an application from one server to
another is rather laborious and slow, and it is avoided whenever possible. However,
investigating how migrations can help reduce the fleet size is valuable in determining
roadmaps for future capacity management process development. If the relative cost of
one migration compared to the expenses of server acquisition and maintenance can be
calculated, it is possible to measure the added value that can be created with seamless,
or at least more elastic, migrations.

The privacy and security given by the private cloud infrastructure comes with the
downside of reduced scalability because computational resources cannot be extended
simply with a higher subscription fee. Combining the resource allocation model with
the growth forecast of the organization, predictions can be generated on the future
demand for new servers, racks, and additional DCs. These predictions can assist the
organization in scaling the computational resources proactively and systematically,
rather than reacting to expansions as they come. Further research is therefore required
to build reliable resource demand forecasts.
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A Algorithm performance evaluation results

Allocations in the scenario presented in section 5.3.1 are performed with five separate
heuristic algorithms and the numberof servers required forhosting the set of applications
is compared. The size of the set varies from 100 to 100 000 applications. The heuristics
are described in section 4.3, and the results of these tests are presented and analyzed
in section 5.4.1. The full data from the allocations is shown in tables A1 and A2.
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B Example server allocations

A set of 520 applications is allocated to a set of servers using the FFD heuristic. The
set of servers and applications belong to one DC, which is described in section 6.1.
The allocation required 60 servers in total, of which four examples are presented in
figure B1.

(a) Server 1 hosting 10 applications. (b) Server 2 hosting one application.

(c) Server 6 hosting 13 applications. (d) Server 54 hosting 35 applications.

Figure B1: Four example server allocations after the set of applications has been
reallocated using FFD heuristic. Each server has 4000 GB of memory capacity, of
which 3200 GB is used at most, and 256 virtual cores.
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