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Abstract
Probabilistic seismic hazard analysis (PSHA) seeks to determine the frequency of
occurrence of seismic events where ground movement exceeds a given threshold. It is
a common first step in calculating seismic risk and engineering earthquake-resistant
structures. Due to many uncertain parameters and modelling options, an estimate
for seismic hazard can only be attained with significant uncertainty. Assessment of
the uncertainties is an important part of the analysis.

One of the necessary subjects to model is the magnitude-recurrence relationship of
eartquake events. The relationship is usually expressed by Gutenberg-Richter law,
which approximates the earthquake magnitudes to follow an exponential distribution.
Its two parameters are determined empirically from a historic earthquake catalog.

Operating a nuclear power plant (NPP) requires that the seismic risk to the plant
is assessed. A new PSHA was developed for Loviisa NPP in 2021, taking various
different modelling decisions compared to the last PSHA from 2018. In addition
to the Loviisa NPP, the model created for the 2021 PSHA was used to produce a
hazard estimate for Olkiluoto NPP. The aim of this thesis is to assess how much
the new decisions contribute to the estimated seismic hazards of the Loviisa and
Olkiluoto NPPs.

The general procedure of PSHA is reviewed and a picture of the methods and decisions
involved with Loviisa 2021 PSHA is formed. The recurrence estimation methods are
discussed with focus on maximum likelihood estimation of the Gutenberg-Richter
parameters. An open source hazard calculation software HAZ is adopted for the
analysis. Sensitivity is assessed through the primary output of PSHA, the annual
frequency of exceedance.
Keywords PSHA, Seismic Hazard, Nuclear safety, Gutenberg-Richter, Sensitivity

analysis, Loviisa, Olkiluoto
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Tiivistelmä
Todennäköisyysperusteinen seisminen hasardianalyysi (PSHA) pyrkii määrittämään
esiintymistaajuuden sellaisille seismisille tapahtumille, joilla jokin maanliikettä kuvaa-
van suureen taso ylittyy. Sen yleisiä käyttökohteita ovat seismisen riskin arvioiminen
sekä maanjäristyskestävien laitosten suunnitteleminen. Seismiseen hasardianalyysiin
liittyy paljon epävarmuuden lähteitä mallintamisessa sekä parametrien määritte-
lemisessä. Hasardiarvion aikaansaaminen ilman merkittäviä epävarmuuksia onkin
mahdotonta. Epävarmuuksien huomioiminen on oleellinen osa seismistä hasardiana-
lyysiä.

Eräs tärkeistä mallintamisen kohteista on järistysten magnitudin ja toistuvuuden
välinen suhde. Tavallinen tapa kuvata tätä suhdetta on Guternberg-Richter (GR)
laki, joka arvioi järistysten magnitudin eksponentiaalisesti jakautuneeksi. Siihen
sisältyvät kaksi parametria arvioidaan empiirisesti maanjäristysluettelon perusteella.

Ydinvoimalaitoksilta vaaditaan seismisen riskin huomioiminen laitoksen turvallisuu-
den arvioinnissa. Loviisan ydinvoimalalle kehitettiin vuonne 2021 uusi PSHA, johon
sisältyi useita entiseen vuoden 2018 arvioon eroavia mallintamispäätöksiä. Loviisan
lisäksi uuteen arvioon kehitettyä mallia käytettiin laskemaan hasardiarvio myös Olki-
luodon ydinvoimalalle. Tässä opinnäytetyössä tutkitaan näiden päätösten vaikutusta
Loviisan sekä Olkiluodon hasardiarvioihin.

PSHA:n yleinen menetelmä esitellään ja 2021 hasardiarvion menetelmiin ja mallinta-
mispäätöksiin tutustutaan kokonaiskuvaa muodostaen. GR-parametrien arvioimista
käsitellään keskittyen erityisesti suurimman uskottavuuden menetelmään. Avoimen
lähdekoodin hasardilaskentasovellus HAZ otetaan käyttöön Loviisan seismiseen hasar-
dianalyysiin. Tulosten herkkyyttä arvioidaan käyttäen vuosittaisen ylitystaajuuden
muutosta.
Avainsanat Todennäköisyysperusteinen seisminen hasardianalyysi, Seisminen

hasardi, Ydinturvallisuus, Herkkyysanalyysi, Loviisa, Olkiluoto
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Symbols and Abbreviations

Symbols
n(m) Earthquake recurrence as a function of magnitude m

in the Gutenberg-Richter equation lg(n(m)) = a − bm

b, β b-value in the Gutenberg-Richter equation, β = ln(10) b

a, α Recurrence parameter in the Gutenberg-Richter equation,
α = ln(10) a

nmin Recurrence calculated at minium magnitude
fX(x), F (X ≤ x) Probability density function, cumulative distribution function
P (X > x) Probability of exceedance

Abbreviations
AFE Annual frequency of exceedance
CDF Cumulative distribution function
DBE Design basis earthquake
GMPE Ground movement prediction equation
GR Gutenberg-Richter
GRS Ground response spectrum
IAEA International atomic energy agency
LS Least squares
MLE Maximum likelihood estimation
NPP Nuclear power plant
PSHA Probabilistic seismic hazard analysis
SSA Seismic source area
STUK Radiation and Nuclear Safety Authority
YVL Finnish regulatory guide on nuclear safety
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1 Introduction

In Finland, the operation of a nuclear power plant (NPP) requires that the ex-
ternal hazards that could result in spreading of radioactive materials are assessed.
Radioactive safety rules are determined and overseen by Radiation and Nuclear
Safety Authority (STUK) under the Finnish law, including general and plant-specific
instructions. The regulatory guide on nuclear safety B.7 (YVL B.7) mandates taking
into account seismic hazard in the design and risk analysis of NPPs [1]. A design
basis earthquake (DBE) and a corresponding ground response spectrum (GRS) shall
be developed to assess ground movement during earthquakes.

A DBE is described with a ground motion characteristic that is anticipated to be
exceeded less frequently than a predetermined rate. For Finnish NPPs, YVL B.7
requires the developement of a DBE with frequency less than once in hundred
thousand years (10−5 1/a). A GRS is the response of a damped harmonic oscillator
to ground movement as a function of the natural frequency of the oscillator (see e.g.
[2]). The response is commonly given as spectral acceleration, which is the maximum
acceleration the oscillator experiences with selected frequency and damping. The
methodology for producing the DBE and GRS is currently not specified by YVL
B.7, albeit it is required to be well-grounded. One approach is probabilistic seismic
hazard analysis (PSHA).

In the literature, PSHA is often divided into four or five steps [3, 4]. The first
step is seismotectonic study, where seismic sources are defined. The sources can
be specifically determined faults or general areas where the seismicity is assumed
to be uniform. These areas are known as seismic source areas (SSAs). The second
step is the assessment of earthquake recurrence with appropriate parameters: the
magnitude-recurrence relationships and maximum magnitudes for each source. The
dependency of magnitude on the frequency of occurrence is commonly estimated
via Gutenberg-Righter (GR) law. The third step is the definition of ground motion
attenuation from the source to the site. The functions describing this attenuation
are known as ground motion prediction equations (GMPEs). The fourth step is the
integration of hazard from different seismic sources to the site. International atomic
energy agency (IAEA) adds a fifth step where on-site ground movement is studied
[4], although this is not necessary for constructions founded on bedrock.
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Each step of PSHA involves a mixture of empiric data and expert modelling decisions,
which carry uncertainty. This uncertainty related to lack of knowlege is known as
epistemic uncertainty. On the other hand, the unpredictability of outcome of a
probabilistic model is known as aleatory uncertainty. Studying these uncertainties is
a major part of contemporary PSHA [4–6]. The recommended technique to propagate
epistemic uncertanty from the different steps is by the developement of a so called
logic tree [3, 4, 6].

Empirical determination of recurrence parameters relies on a seismic catalog with
complete listing of earthquakes and their magnitudes within a timeframe for the area
of interest. Open earthquake catalog FENCAT is one of the most comprehensive
lists of seismic events in the northern Europe region. While the first listed event is
from 1375 [7], instrumental data becomes available only after mid 20th century. This
makes the useful data shorter for low-magnitude events which are rarely felt without
instrumentation. The sensitivity and span of the seismic measurement network has
continued to improve to this day, hence assessment of the completeness of the data
becomes important for recurrence estimation. FENCAT provides the events with
various magnitude scales which should be homogenized for recurrence estimation,
normally to moment magnitude [4]. Probabilistic hazard studies also usually require
the removal of aftershocks and induced earthquakes to satisfy the assumption of
independent occurrences.

A Finnish nuclear company Fortum commissioned the developement of a new PSHA
by a geotechnical consulting company for Loviisa NPP. The project was joined by
TVO and the same model was used to estimate seismic hazard for Olkiluoto NPP.
The assessment covers the steps two to four of PSHA, leaning on a previous study
by the University of Helsinki [8] for the seismic source characterization. Various
decisions and updates to previous estimates create the need for a sensitivity analysis
on the most significant features of the assessment.

Some sensitivity analysis regarding the modelling choices was already conducted
within the new PSHA. In addition, preliminary results of an ongoing seismic hazard
sensitivity study by STUK [9] have been provided to Fortum. It has been recognized
that Finnish PSHA is sensitive to the GR parameters. Coincidentally the parameters
have had significant changes in the new report due to both dataset and estimation
method differences. This thesis seeks to assess the influence of selected modelling
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decisions on the estimated hazard with focus on recurrence estimation. The addition
of new earthquake data to the estimation is also investigated.

The integration of seismic hazard to NPP site is achieved with a modified version
of an open-source program HAZ by Norman Abrahamson. The original source
code written in Fortran is available on Github [10]. The modifications include a
new magnitude-recurrence relation and additional GMPEs and earthquake depth
distributions. This version was provided to Fortum as a compiled program by the
geotechnical consultants. HAZ outputs annual frequency of exceedance (AFE) as a
function of spectral acceleration for all variations of the input parameters. Further
processing such as calculating confidence bounds is done with Excel. Sensitivity
analysis is performed for Loviisa NPP and repeated for Olkiluoto NPP. All given
magnitudes are in moment magnitude scale.
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2 Theoretical background

2.1 Probabilistic seismic hazard analysis

The roots of PSHA lie in a 1968s seminal paper by Cornell [11]. Guides, books and
descriptions of modern PSHA implementations have been published by multiple
sources, including nuclear authorities [3, 4, 6, 12, 13]. Naturally PSHA has also been
a target of criticism regarding its ability to predict strong ground motions [14]. While
progress has been made with its methods, the basic formula presented by Cornell
remains.

Generally, PSHA for a specific site seeks to find the rate ν(c) with which a seismic
characteristic C exceeds some value c at the location. This can be turned into
probability measure with an assumption of Poisson distribution of events. The
probability of one or more events occurring within time t with C exceeding c is

P (C > c | t) = 1 − e−ν(c)t . (1)

The rate ν(c) is often given as events per year, ergo the name annual frequency
of exceedance. The inverse of this is known as return period. When small, the
probability of exceedance is close to ν(c)t, hence the annual frequency and probability
are sometimes used interchangeably [6]. Different used characteristics include spectral
acceleration, peak ground velocity, fault displacement and others. Plots of ν(c) as a
function of the characteristic in question are known as hazard curves.

The research starts with the determination of seismic sources. The sources can consist
of areas of uniform recurrence or specifically defined faults. Since each source can be
assessed separately, PSHA gives the researcher a lot of freedom in the modelling. The
choice of source type is then based on the amount and type of information available
on the seismicity. After this step earthquake recurrence and ground attenuation can
be studied.



5

2.1.1 Earthquake recurrence

The widely known Gutenberg-Richter (GR) law relates the number of earthquake
occurrences to magnitude:

lg (n(m)) = a − bm . (2)

Here n(m) is predicted number of earthquake events with magnitudes greater-than
or equal to m and a and b are parameters. The notation lg() stands for logarithm
with base 10. The intercept a is known as the recurrence parameter, as it determines
the number of earthquake events within the observation period. The slope parameter
b, called b-value, describes the distribution of magnitudes.

Many studies have sought to find a physical meaning for the b-values, and some have
proposed its universality with value close to 1 [15–17]. Conclusions about a physical
meaning have not been achieved and significant deviations of b-values have been
observed [15–17]. For PSHA it is often preferred to fit the b-value to local earthquake
data.To this aim, one needs a catalog containing earthquakes of a certain area or
fault, classified by magnitudes. Various different methods are used to estimate the
parameters, frequently prioritizing simplicity instead of accuracy.

The GR equation is often given with exponential base

n(m) = eα−βm , (3)

where β = ln (10) b and α = ln (10) a . Maximum likelihood estimation (MLE) of β

has a long history. The often cited first estimate published in 1965 by Aki is [18]

1
β

= m̄ − m0 .

Here m̄ is the mean observed magnitude and m0 the lowest observed magnitude.
This approach has two severe limitations: the magnitudes are assumed to come from
a continuous distribution and there is only a single observation period for all seismic
activity. In practice, most datasets divide earthquakes into magnitude intervals
omitting precise magnitude values. In addition, these magnitude bins often have
unequal observation periods due to improvement in seismic measurements. Despite
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its inaccuracies, the method has remained popular in practical applications [16].

The MLE estimate of b with magnitude bins with unequal observation periods
was first presented by Weichert in 1980 [19]. This estimate is limited to small,
equally large magnitude intervals and the variance of a assumes known b-value.
The former issue is easy to ameliorate, and the approximation remains good up to
∼ 0.5 magnitude interval width [13, 20]. The latter error is likely a result of seismic
studies focusing on the magnitude distribution e−βm, omitting recurrence rate and
the parameter a [20]. On the other hand, assessing hazard requires both a and b

to be estimated simultaneously. The joint estimation of recurrence parameters by
developing covariance matrices are presented in derivations by Kijko and Sellevoll
[21] and by Johnston [22].

Some general results of maximum likelihood estimation of poisson-variates can be
found in statistics textbooks, eg. [23]. Here is presented a MLE method for producing
GR parameter estimates which is close to that by Weichert [19]. A more generalized
result is given in Appendix A with close resemblance to derivation in [20]. Equation
3 implies that the number of events between magnitudes mi − 1

2δm and mi + 1
2δm is

δni =
[︂
eα−βm

]︂⃓⃓⃓mi− 1
2 δm

m=mi+ 1
2 δm

(4)

=
(︂
eβ 1

2 δm − e−β 1
2 δm

)︂
eα−βmi (5)

= 2 sinh (β 1
2δm)eα−βmi . (6)

If βδmi/2 is sufficiently small equation (6) can be approximated by δmiβeα−βmi .
Let us assume earthquakes recur following a Poisson process with rate parameter
δnit . The probability of observing n events within magnitude interval mi − 1

2δm to
mi + 1

2δm in time period ti is

Pi(n) = (δmiβeα−βmiti)n

n! e−δmiβeα−βmi ti . (7)

Assuming independent observations, the likelihood of observing ni observations for
each magnitude bin i ∈ [1,I] with completeness periods ti is

L =
I∏︂

i=1
Pi(ni) . (8)
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Following a common practice of MLE, the likelihood function is maximized by
maximizing its logarithm

ln L =
I∑︂

i=1

[︂
ni(α − βmi + ln(δmiβti)) − log(ni!) − δmiβtie

α−βmi

]︂
. (9)

To maximize this, it suffices to find the two roots

∂ ln L
∂α

=
I∑︂

i=1

[︂
ni − δmiβtie

α−βmi

]︂
= 0 , (10)

∂ ln L
∂β

=
I∑︂

i=1

[︂
ni(−mi + 1

β
) − δmitie

α−βmi(1 − miβ)
]︂

= 0 . (11)

Defining the total observed earthquakes ∑︁I
i=1 ni = N equation (10) gives

eα = N

β
∑︁I

i=1(δmitie−βmi)
.

Inserting into (11) gives

N

β
−

I∑︂
i=1

(nimi) −
I∑︂

i=1

(︂
δmitie

−βmi(1 − miβ)
)︂ N

β
∑︁I

i=1(δmitie−βmi)
= 0

I∑︂
i=1

(nimi) − N

∑︁I
i=1(miδmitie

−βmi)∑︁I
i=1(δmitie−βmi)

= 0 .

The last equation can be solved for β numerically. If the magnitude intervals are
equal in size, Weichert’s original result is redeemed as

∑︁I
i=1(mitie

−βmi)∑︁I
i=1(tie−βmi)

=
∑︁I

i=1(nimi)
N

. (12)

For a sufficiently large number of events N , GR parameter uncertainty can be assessed
by inverting Fisher-information matrix to acquire the covariance matrix for a and
b-value, a method familiar in maximum likelihood estimation. A distribution of the
predicted number of earthquake events can then be sampled from one-dimensional
normal distribution [20]. The covariance matrix of the GR parameter estimates is
given in appendix A.

For ease of computation, least-squares (LS) regression is often used in place of MLE.
At its simplest, the number of earthquakes is given in incremental or cumulative
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form on magnitude axis, and a LS line is fitted on the logarithmic scale, yielding
the GR parameters. To account for unequal observation periods, the incremental
number of earthquakes is divided by time, resulting in earthquake rates for each
magnitude interval. To change to cumulative plots, it is these rates that can be
summed. Let nm≥mlow denote the earthquake recurrence rate above magnitude mlow

and δni the rate for magnitude bin i. By using the independence of occurrences
between magnitude bins, the expectation of nm≥mlow can be written as

E[nm≥mlow ] =
∑︂

i

E[δni] , {i ∈ I | mlow ≤ mi ≤ mmax}

While the estimates by the LS method can be close to MLE with some datasets
[19], the statistical assumptions behind LS are commonly violated and many suggest
against using it [13, 19, 20, 24]. Its inability to consider magnitude bins with
n = 0 was already noted by Weichert [19], while the logarithmic transformation
and the nonindependent observations add to the inaccuracy of the method [13, 24].
Importantly, the variability from these issues is not covered by the common LS
uncertainty estimates, resulting in underestimated confidence intervals [24].

Several modifications to the GR relation exist [13], such as characteristic magnitude
distribution [13], separate b-values for main and aftershocks [15, 17] and quadratic
magnitude-frequency law [25]. These modifications seek to better describe non-
linear earthquake data, but with more complicated models, more data is needed
to determine their applicability. The assumption of Poisson process prohibits the
inclusion of fore- and aftershocks in the earthquake dataset, however after excluding
these from the data the assumption is the most appropriate one to make [11].

2.1.2 Minimum and maximum magnitudes

In seismic hazard studies the GR law is often dealt like a magnitude distribution,
which necessitates the determination of a minimum magnitude, below which the
integration is stopped. The choice of minimum magnitude is not however purely a
computational issue, it is also an important parameter when the results are used for
seismic risk [26]. As a consequence, decreasing the minimum magnitude of a PSHA
can still change the shape of the hazard curves [26]. It is recommended by IAEA that
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the omitted magnitudes should not contribute risk and that the minimum magnitude
should not exceed the value 5 [4]. Including a minimum magnitude requires no
modifications to the GR law, but often the equations are written with a shifted
magnitude m → m − mmin, so that

nmin = eα−βmmin (13)

n(m) = nmine−β(m−mmin) . (14)

While GR law predicts the occurrence of arbitrarily large magnitudes, seismic studies
and physical reasoning suggest otherwise [27]. Seismic hazard studies therefore incor-
porate the concept of a maximum magnitude. Assessing the maximum magnitude is
a difficult task. Various estimation methods exist, including physical studies on the
faults and earthquake history based methods [22, 28, 29]. A physical study has been
attempted for the Finnish area in a thesis work resulting in maximum magnitude 7,
although it is noted that the uncertainties remain large [28].

The standard way of incorporating maximum magnitude is by truncation of the GR
law

n(m) = nmin
e−β(m−mmin) − e−β(mmax−mmin)

1 − e−β(mmax−mmin) , mmin ≤ m ≤ mmax . (15)

The shift in the numerator can be understood as removing the contribution of the
tail m ≥ mmax from n(m) . This leaves the MLE estimates unchanged, as seen from
equation (A2). The scaling by 1 − e−β(mmax−mmin) is necessary to normalize the value
at mmin so that n(mmin) = nmin. It can be included into the definition of nmin through
change of variables, resulting in no error to the estimated parameters, but deviating
the estimated variance of a slightly. In the literature these estimates are often taken
to be equivalent [13, 20].

2.1.3 Ground motion prediction equations

The relationship of magnitude and distance to ground movement is described by
GMPEs. A large number of GMPEs have been developed to match the different
geologies and available seismic data around the world. The sparsity of strong
ground movement data brings challenges to choosing the form of the function and
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its parameters. Developing GMPEs for Finland is a continuing task that has seen
much recent advancements [30–33].

For PSHA the ground motion is captured by a probability of exceedance at the site

Pω(C > c | m, r) , (16)

with the given earthquake magnitude m and distance r. The parameter ω denotes
the dependency on frequency. Commonly a log-normal distribution is used, so that
the GMPE function is the mean of the logarithmic characteristic log c [3, 6]. While
this uncertainty is treated as aleatory and integrated over in the hazard calculations,
GMPEs are also an important source of epistemic uncertainty [5]. The common
approach is to include multiple GMPEs in the logic tree approach [3, 34].

2.1.4 Integration of hazard

The integration step of PSHA can be performed in multitudes of ways using law of
total probability. Generally one seeks to add up the hazard of all sources, integrating
over the source volume and magnitude.

The cumulative magnitude distribution is conventionally defined as the proportion of
magnitudes below the value m, which is the reverse of the convention with the GR
law. The truncated GR equation (15) implies Poisson distribution of magnitudes
with probability density

fM(m) = β
e−β(m−mmin)

1 − e−β(mmax−mmin) . (17)

The cumulative form and the truncated GR equation become:

F (M ≤ m) =
∫︂ m

mmin
fM(M) dM (18)

n(m) = nmin
(︂
1 − F (M ≤ m)

)︂
. (19)

The seismic sources were defined at the first step of PSHA. Each source will be
integrated over with the appropriate dimensionality depending on the type of the
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source. For SSAs, the integration should consider the depth distribution in addition
to the surface area. Given the minimum depth dmin and the threshold value d, the
CDF of depth will be

F (D ≤ d) =
∫︂ d

dmin
fD(D) dD . (20)

Options for the depth density function pD(d) include triangular, normal and uniform
distributions. The source area integral is

A =
∫︂ x2

x1

∫︂ y2

y1
dy dx . (21)

Let (x0, y0, d0) denote the coordinates of the NPP or other location of interest, and
let r denote the distance

r =
√︂

(x − x0)2 + (y − y0)2 + (d − d0)2 .

Consider a set of sources S, which consists solely of SSAs. The frequency of exceedance
for the location is

ν(c) =
∑︂
S

∫︂ mmax

mmin

∫︂ x2

x1

∫︂ y2

y1

∫︂ dmax

dmin

nmin

A
fD(d) fM(m) Pω(C > c | m, r) dd dy dx dm .

(22)
The integration bounds, the recurrence per area nmin

A
and the density functions fD(d)

and fM(m) are assessed separately for each source. In real studies, the integrals
in eq. (22) are calculated numerically and continuous definitions may not even be
considered. The total output will be the ν(c) calculated for a number of threshold
values c and frequencies.

Each parameter in equation (22) is assessed as a part of the PSHA, therefore carrying
epistemic uncertainty. A logic tree approach was introduced by Kulkarni et al. in
1984 to take the epistemic uncertainty into consideration [5, 35]. Each node of
the tree corresponds to an uncertain parameter. Multiple values of the uncertain
parameters are picked and a branch is made for each. The branches are associated
with weights that commonly sum to unity. If a parameter is dependent on another,
the dependent parameter is placed later in the tree.

Hazard is calculated for every leaf node of the tree, picking the parameters from
the path to the leaf. Total weights of the paths are calculated as the product of the
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associated weights. Rather than summing over the sources like in equation (22), the
sources are dealt with separately.

The mean hazard and fractiles can be calculated by either calculating the hazard
through each path or by random sampling of the tree with a Monte Carlo method.
In the former method, the mean is attained by weighting the results with the
corresponding total weights and summing them together. Fractiles can be calculated
by sorting the total hazard results and finding the fractile from the cumulative
sum of the total weights. When adding up the contribution of each source, every
combination of the results of different sources has to be considered. The Monte Carlo
method becomes useful for large trees, but may cause slow convergence as a new
problem [12].

The weighting scheme makes it possible to consider expert opinions and epistemic
uncertainty without specific requirements on the distribution. However it is recognized
by some that if the weights represent subjective merits of the different models
rather than valid probabilities, the calculated mean result does not necessarily
correspond to the expected value [36]. When a distribution of error can be assumed
it can be considered with a mathematically founded approximation of the associated
distribution. For instance, the epistemic uncertainty of the GR parameter estimation
can be reduced into a one-dimensional normal distribution [20]. The branch weights
are chosen to describe the shape of the distribution e.g. with the method introduced
by Miller and Rice [37].
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3 Setup for the sensitivity analysis

3.1 Loviisa PSHA

This thesis focuses on a 2021 PSHA by Slate geotechnological consultants [38],
which was developed following some remarks on the previous 2018 PSHA by AFRY
(former ÅF) and Fortum [39–41]. The assessments are founded on a comprehensive
seismotectonic study by Korja et al. (2016), which compiles works by the University
of Helsinki, Uppsala University, Geological Survey of Finland, Geological Survey of
Sweden and Geological Survey of Estonia [8]. The logic tree used in the 2021 PSHA
is depicted in Figure 1. The parameters and weights are coded directly into a HAZ
input file. It was found however that changing the parameters seismogenic thickness
and fault plane dip in the HAZ input do not affect the results. A separate tree was
used to assess various GMPEs producing a single median estimate.

The SSAs come directly from the report by Korja et al.. Only those that reside
within a 300 km radius of the NPP are considered in the calculations. Two models
were adopted as branches to the logic tree, with the only difference of a subdivision
of area 6 into three smaller areas 6a, 6b and 6c with individually assessed earthquake
recurrence. The Loviisa NPP itself situates on area 10, while 6 is in close proximity
westward from the location. Areas 1–5 and 9 are not included in Loviisa PSHA.
Areas 7 and 11 are within the study area but have had virtually no seismicity. This
has lead to area 6 recurrence being used as a conservative estimate for the two.

The earthquake catalog used in the report was compiled from the previously used by
Korja et al., with additional earthquakes from FENCAT to cover years 2012–2014.
The catalog was processed further to contain moment magnitudes for all events,
to remove clusters and to consider completeness. Earthquake cluster removal was
done with the Reasenberg algoritm [42]. The original catalog already sought to
remove events that do not result from seismicity, such as ice quakes and explosions.
Completeness was evaluated for magnitude intervals with a visual inspection of the
occurrences. For this work, the starting point is chosen to be the first day of the
year of the first observed event. The earthquake counts and completeness periods
are given for each SSA in Table 1.
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Mean GR parameter estimates are obtained via the ordinary LS method, fitting
a line to the cumulative earthquake rates located at the centers of the magnitude
intervals. Covariance matrix elements of the two estimates are calculated with usual
methods. The epistemic uncertainty is assessed with a single node in the logic tree
with pairs of GR parameters. The two-sided 90 % confidence bounds used in the 2021
PSHA are developed by assuming a normal distribution of error of the parameter
a. Denoting the mean estimate with â and the estimated variance with var(a), the
90 % confidence interval is

(︂
â − 1.65

√︂
var(a), â + 1.65

√︂
var(a)

)︂
. (23)

The b-values are then picked by considering its covariance with a. Denoting the
mean estimate with b̂ and the covariance with cov(a,b), the values corresponding to
the parameter a confidence bounds are given by

(︂
b̂ − 1.65 cov(a,b)√︂

var(a)
, b̂ + 1.65 cov(a,b)√︂

var(a)

)︂
. (24)

The recurrence values were recalculated for this thesis because precise information
on the dataset completeness times used in the 2021 PSHA was unavailable. The
earthquake events were also recounted from the catalog. The estimated GR param-
eters are given in appendix B. As a novel modelling decision to the 2021 PSHA,
the estimated b-values are only used up to magnitude 5.75. Beyond this the mean
b-value is set to 2 and the confidence bounds are repicked from (24).

Mean hazard curves for each SSA and the total are presented in Figure 2. The most
significant part of the hazard can be seen to come from areas 6 and 10. The large
contribution of area 6 is explained by the comparatively large seismic activity within
area 6c and the close proximity of area 6b to Loviisa.
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Figure 1: The logic tree used in the study. Branch weights are included in braces.
Note that Loviisa PSHA excludes the areas 1–5 from the study.

Bin 1–1.5 1.5–2 2–2.5 2.5–3 3–3,5 3.5–4 4–4.5 4.5–5
End 31.12.2014
Start 1.1.2013 1.1.2012 1.1.1994 1.1.1944 1.1.1909
SSA 1 3 1 8 2 2 2 0 0
SSA 2 9 8 16 1 1 0 0 0
SSA 3 3 6 16 1 0 0 0 0
SSA 4 0 6 7 1 2 0 0 0
SSA 5 37 22 22 5 6 0 1 0

SSA 6a 1 1 2 0 0 0 0 0
SSA 6b 3 1 1 0 0 0 0 0
SSA 6c 1 1 1 0 0 3 1 0
SSA 8 9 3 6 1 2 0 1 0

SSA 10 34 9 1 0 1 0 0 0

Table 1: Earthquake counts for each SSA for each magnitude bin. Completeness
period end and start for each magnitude interval. Areas 7 and 11 are excluded since
their GR parameters were not determined from historical seismicity. Area 9 was not
included in the study.
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3.2 Olkiluoto PSHA

The methods and data of the Loviisa 2021 PSHA were also used to produce a PSHA
for Olkiluoto NPP. For this thesis, the sensitivity studies selected for Loviisa are
duplicated for Olkiluoto. The Olkiluoto results are given as relative changes only, and
the absolute values of the hazard estimates are omitted. The locational difference
means that Olkiluoto model uses all of the SSAs 1–11 excluding 9. Situated in area
6a, the contribution of the different areas changes. Area 10 no longer has a high
contribution to the hazard and area 6 becomes dominant.

3.3 Choice of parameters and presentation

The use of a different b-value for high magnitudes in the 2021 PSHA is a novel
approach, hence its effect on the estimated hazard is chosen to be presented in
this thesis. This is achieved by comparing the calculated hazard curve to one with
the basic truncated GR equation in use with parameters estimated from the data.
Another point of interest is the contribution of the two SSA models, other with the
undivided area 6 and the other with the subdivided area 6. The two models were
included in the 2021 PSHA with equal weighting. Their contribution to the estimated
hazard is studied by fully weighting each one in separate hazard calculations.

The GR parameters were estimated with an LS method instead of the appropriate
MLE. The recurrence parameters are re-estimated from the original data by using
the MLE method presented in this thesis. While the accurate confidence interval
estimation produces recurrence bounds for each magnitude, HAZ accounts for uncer-
tainty only by considering pairs of b-value and recurrence at minimum magnitude
nmin. The 90 % confidence bounds are included by inserting the accurate recurrence
bounds at minimum magnitude and the unconditional estimates for b-value:

(︂
b̂ + 1.65

√︂
var(b), b̂ − 1.65

√︂
var(b)

)︂
, (25)

where b̂ is the mean estimate and var(b) the estimated variance.

Some additional parameter variations are explored with the MLE method to form a
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picture of its behaviour compared to the LS. Finally, the datapoints used to estimate
the GR parameters were set at the centers of the magnitude intervals. The points
are moved to the lower bounds of the intervals and GR estimates are recalculated
with the LS method.

The the mean hazard curves plotted for each SSA showed that a significant portion
of the total hazard of Loviisa NPP comes from areas 6 and 10. For the sensitivity
analyses that involve the recurrence parameters, these two areas are focused on. As
discussed previously, changes to the recurrence of area 6 also applies to areas 7 and
11, making it even more important to the total hazard.

One of the most significant differences to the previous PSHA was the completeness
evaluation of the earthquake dataset. As a result, a large part of the available seismic
history was omitted. The effect of the completeness evaluation for high magnitudes
is studied by adding back the removed history for magnitudes 4–4.5. The data is
retrieved from FENCAT and individual earthquakes are picked according to the
dates of omitted events in the Loviisa PSHA report. The observation periods of
magnitude bins 4–4.5 and higher were increased down to the first observed event.

The earthquake data for the lowest magnitudes spanned two years only, while new
data is constantly being updated to the FENCAT catalog. Despite being far from
the magnitudes relevant to structural integrity, it may considerably affect the hazard
through GR parameter estimation when the higher magnitude data is sparse. This
motivates the study of the sensitivity to the addition of new low-magnitude data. A
Monte Carlo method was implemented to assess the variation of the GR parameters
with the addition of data. The new data was acquired from FENCAT search tool [7]
for years 2015–2021. The involved methods are discussed in section 3.4.

It is conceivable that the model is sensitive to new events in the high-magnitude end,
especially in areas 10 and 6. This is studied for area 10 by adding an event to the
highest magnitude interval with a nonzero event count. It is of particular interest
to see how the GR parameter estimation behaves when an event is added to the
empty magnitude interval 2.5–3. Two studies are made, one with an event added to
this interval and one with an additional event in the interval 3–3.5 where the largest
event was observed.
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To evaluate the importance of parameter variations, point estimates of hazard
(hereinafter called hazard estimates) were chosen. Following the formulation of
PSHA, AFE was used as the target variable at fixed values of frequency and spectral
acceleration. Loviisa seismic risk analysis and DBE use the mean hazard curves, so
the target AFE is also picked from the mean curve for the purpose at hand.

Regarding the choice of frequencies two things were considered. The most important
frequencies for hazard are those near the acceleration peak in the different GRS. For
Loviisa, this is around 10 Hz–15 Hz. Regulatory guides are also interested in the
ground movement where the oscillator is rigid, known as peak ground acceleration
[1]. In the previous Loviisa PSHA this has been defined as the 100 Hz curve. Two
values of frequency were chosen for presentation: 10 Hz and 100 Hz. After choosing
the frequency, the spectral acceleration which corresponds to AFE closest to the
value 10−5 1/a was picked from the mean hazard curve. The chosen frequencies and
acceleration levels with the corresponding mean AFE are given in Table 2.

In addition to the hazard estimates, hazard curves including fractals are presented
for some parameter variations. For this study, the fractile calculation was performed
in a simplified way, where the seismic model is assumed to be the same for every SSA.
This means that instead of calculating combinations of the different SSAs results,
they were summed and the total weights were calculated as for a single SSA. The
results for the fractals, namely the median and the 90 % confidence interval, should
be taken with some reservation.

Table 2: Two point estimates are picked from hazard curves to make comparisons
between the parameter variations. The chosen frequency and spectral acceleration
with corresponding annual frequency of exceedance are tabulated here for both
estimates. The Olkiluoto AFE results are omitted.

Frequency Acceleration AFE

Loviisa 10 Hz 0.1 g 2.4 · 10−5 1/a
100 Hz 0.05 g 1.32 · 10−5 1/a

Olkiluoto 10 Hz 0.25 g
100 Hz 0.1 g
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3.4 New earthquake data generation

The yearly numbers of earthquakes of the acquired FENCAT dataset are given in
Table 3 for areas 6 and 10 and for 6 subareas in Table 4. Original data is presented
down to year 2012 for comparison. The events included in the study were considered
up to magnitude 2.5, as the return periods for higher magnitudes become much
larger than the timeframe. One event with magnitude 2.5–3 was found in the new
data and no larger events. A mean yearly occurrence rate was calculated for each
bin taking into account both the acquired data and the original data included in the
study. These are also given in the forementioned tables.

There were uncertainties in the new data that were deemed too large for the scope
of this thesis. The acquired data is not declustered or checked for independence of
events in any way, which may lead to unusually high event counts and increased
variance. The magnitude scales used in the dataset vary between events, and in many
cases a local magnitude measure is used. Given the small magnitudes of this study,
the differences between the magnitude scales may not be large [13]. The verification
of the data remains a subject for further study.

For the purpose of sensitivity analysis of the GR parameters, it made sense to
generate a distribution of new data, using the full dataset to assess the distribution
parameters. It was decided to force the generated yearly counts to follow the Poisson
distribution, which provides the amount of variance that is expected for ideal data.
Furthermore, the effect of nonindependent event occurrence within the data calls
for a separate study. Using a random generator, 300 Poisson distributed earthquake
counts were generated for each magnitude bin for each SSA. The area 6 counts were
calculated as a sum from the subareas counts.

Three studies were made with one, three and six years of the generated data added
to the GR parameter calculations. Magnitude bins 0.5–1 and lower were omitted to
match the original study. The parameter pairs were plotted in scatter plots for each
SSA. Hazard calculations were performed for six pairs from each study to sample
the change in hazard by the new data.
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Table 3: Earthquake event counts between year 2012 and end of 2021. Counts of
years 2012–2014 are from the original dataset, and are presented here for comparison.
Mean rates calculated from the full dataset are given after the data.

Area 10 Area 6
0.5–1 1–1.5 1.5–2 2–2.5 0.5–1 1–1.5 1.5–2 2–2.5

2021 23 11 2 1 2 5 4 0
2020 6 4 1 0 2 5 0 0
2019 4 5 1 1 6 5 1 0
2018 4 6 1 0 1 4 2 2
2017 3 2 1 0 0 3 2 2
2016 2 6 2 1 3 5 1 0
2015 12 11 3 1 1 1 1 0
2014 18 28 5 0 0 3 2 0
2013 1 6 2 0 0 2 1 0
2012 2 0 0 0
Mean (1/a) 8.778 2 0.1786 3.667 1.4 0.319

Table 4: Earthquake event counts between year 2012 and end of 2021. Counts of
years 2012–2014 are from the original dataset, and are presented here for comparison.
Mean rates calculated from the full dataset are given after the data.

Area 6a Area 6b Area 6c
1–1.5 1.5–2 2–2.5 1–1.5 1.5–2 2–2.5 1–1.5 1.5–2 2–2.5

2021 1 0 0 1 2 0 3 2 0
2020 4 0 0 1 0 0 0 0 0
2019 2 0 0 3 0 0 0 1 0
2018 2 0 2 1 0 0 1 2 0
2017 0 0 0 1 1 0 2 1 2
2016 4 0 0 1 0 0 0 1 0
2015 0 0 0 1 0 0 0 1 0
2014 1 1 0 2 0 0 0 1 0
2013 0 0 0 1 1 0 1 0 0
2012 0 0 0 0 0 0
Mean
(1/a) 1.556 0.1 0.143 1.333 0.4 0.069 0.778 0.9 0.107
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(a)

(b)

Figure 2: (a) Loviisa 10 Hz mean hazard curves from each SSA and the total
corresponding to the sum of the individual curves. (b) Individual weighted mean
hazard curves of the area 6 subareas and the undivided area. Total hazard curve of
area 6.
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4 Results

The changes in the Loviisa hazard estimate for the different parameter variations
are given in Table 5. The relative changes of the 10 Hz hazard estimates are shown
in a tornado plot in Figure 3 for Loviisa. The Loviisa 100 Hz results can be found
in Appendix D. Figure 4 shows the 10 Hz tornado plot for Olkiluoto, other results
are gathered in Appendix E. Some individual results are presented in following
subsections.

Table 5: Absolute hazard estimate changes (∆ν) and the relative changes for Loviisa
for 10 Hz, 0.1 g and 100 Hz, 0.05 g.

10 Hz 100 Hz
Parameter change ∆ν (1/a) Relative ∆ν (1/a) Relative
Area 10 additional
2.5-3 event

-6.05·10−6 -22.92 % -3.97·10−6 -30.07 %

Area 10 additional 3-
3.5 event

2.32·10−5 88.03 % 1.53·10−5 115.66 %

High-magnitude
completeness

-4.12·10−6 -15.61 % -1.18·10−6 -8.92 %

Without high-
magnitude b split

1.40·10−5 53.10 % 4.21·10−6 31.93 %

Minimum magnitude
4

5.04·10−6 19.09 % 3.71·10−6 28.14 %

Minimum magnitude
5

-4.74·10−6 -17.97 % -3.57·10−6 -27.06 %

MLE recurrence esti-
mation

-2.25·10−5 -85.20 % -1.22·10−5 -92.67 %

Lower-bound magni-
tude datapoints

-1.15·10−5 -43.45 % -6.10·10−6 -46.22 %

Area 6 subdivision
100%

-5.50·10−6 -20.84 % -1.84·10−6 -13.94 %

Area 6 subdivision
0%

5.50·10−6 20.84 % 1.84·10−6 13.94 %
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Figure 3: Relative Loviisa hazard estimate changes at 10 Hz for each parameter
variation. Each color and shade denotes a single result. A positive 100 % change
means that the hazard estimate is doubled, while a negative 100 % means that the
estimate becomes zero.

Figure 4: Olkiluoto relative hazard estimate changes at 10 Hz for each parameter
variation. Each color and shade denotes a single result. A positive 100 % change
means that the hazard estimate is doubled, while a negative 100 % means that the
estimate becomes zero.
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4.1 Source area 6 subdivision

Figure 5 shows the 10 Hz hazard curves with fully weighted undivided area 6 model
and Figure 6 shows the fully subdivided area 6 hazard curves. The subsdivided model
has the lower hazard of the two at important levels of acceleration. The subdivision
can also be seen widen the confidence interval.

Figure 5: Loviisa 10 Hz hazard curves after fully weighting undivided area 6. The
original curve is plotted as a reference with lighter colour.
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Figure 6: Loviisa 10 Hz hazard curves after fully subdivided areas 6a, 6b and 6c. The
original curve is plotted as a reference with lighter colour.

4.2 High-magnitude events in source area 10

The recalculated GR parameters after the addition of an event to area 10 high-
magnitude bins are in Table 6. The mean b-values decrease after the additions
as could be expected, since the event magnitudes were higher than the mean of
the previously included magnitudes. Figure 7 shows the recurrence curves after
the modification. In contrast to the increase in the mean recurrence, the hazard
estimates decrease with the event added to the second highest magnitude interval.
The corresponding 10 Hz hazard curve (Figure 8) shows that this applies to the entire
mean curve. The decrease in mean can only be attributed to the significant decrease
in the upper confidence bound of the recurrence. The simultaneous increase in
median hazard supports this, as the median is less sensitive to changes in confidence
bounds of the model parameters.
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Table 6: Sensitivity of area 10 b-value and recurrence parameter to additional high-
magnitude events. Two variations were made, one with an added event in magnitude
interval 2.5–3 and the other with an additional event in 3–3.5. Results are given for
the new value, absolute and relative difference to the original.

b nmin
mean 0.05 0.95 mean 0.05 0.95

Magnitude
3–3.5 add

1.466 2.079 0.854 1.98·10−4 1.00·10−5 3.93·10−3

Change -0.159 -0.215 -0.104 1.32·10−4 7.47·10−6 2.21·10−3

Relative -9.81 % -9.36 % -10.88 % 199.82 % 292.42 % 129.06 %
Magnitude
2.5–3 add

1.603 2.121 1.085 8.89·10−5 7.91·10−6 9.98·10−4

Change -0.023 -0.173 0.126 2.27·10−5 5.36·10−6 -7.16·10−4

Relative -1.42 % -7.53 % 13.18 % 34.32 % 209.87 % -41.78 %

(a) (b)

Figure 7: Area 10 recurrence curves and the confidence intervals (CI) after adding an
earthquake event to the GR parameter estimation to magnitude interval (a) 3–3.5
and (b) 2.5–3. The original recurrence curves are plotted as a reference. Curves are
drawn with maximum magnitude 6.
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Figure 8: Loviisa 10 Hz hazard curve after adding an event to area 10 magnitude
interval 2.5–3. The original curve is plotted as a reference with lighter colour.

4.3 High-magnitude completeness

The earthquake events with magnitudes 4 and higher included in the 2021 PSHA
dataset are listed in Table 7. One event from year 1497 with magnitude 4.5 was
omitted from this thesis. For the completeness study, the earthquake counts were
updated to include all events listed in the table. Observation times of the affected
magnitude intervals were increased down to the year of the first included event 1540.
Due to the LS estimation method, only those areas with nonzero counts for the
magnitudes above 4 saw change in the GR parameters. The b-values of these areas
are given in Table 8. It is interesting to note that the upper recurrence bound of
area 4 saw the b-value change sign, shown by the larger-than 100 % relative drop.
This is not allowed by the GR law, and the result should not be used for hazard
calculations.
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Table 7: Events of magnitudes 4–4.5 that were included in the 2021 PSHA before
completeness evaluation. Provided are the date, SSA, geographic coordinates and
inclusion after completeness evaluation for each event.

Year Month Day SSA Lat. Long. Included
1540 4 57.70 18.70 False
1723 8 2 62.60 18.00 False
1751 11 14 2 63.50 19.50 False
1827 9 28 6c 59.00 23.50 False
1879 2 2 4 58.80 16.20 False
1888 7 28 2 63.30 19.00 False
1909 3 9 5 64.00 22.00 True
1931 11 16 8 62.50 25.80 True
1976 10 25 6c 59.26 23.39 True

Table 8: Relative change of b-values and their confidence bounds after high-magnitude
completeness increase. The reference are the original values. A higher b-value means
a steeper slope and reduced hazard at high magnitudes. Red color highlights a
decrease in the b-value, green color an increase.

4.4 Sensitivity to recurrence estimation method

The recurrence estimation with the presented MLE method demonstrated all-around
reduced hazard with significant changes to the upper confidence bound and mean
curves. The formulas without assumption of small magnitude intervals were used.
The changes of b-values are shown in Table 9. Most SSAs saw considerable changes
to the slope, with largest differences in the upper confidence bound. Figure 9 shows
the mean hazard curves for each SSA with 10 Hz frequency. A massive reduction in
hazard from area 10 is seen, and consequently area 6 almost completely dominates
the mean hazard. The GR estimates of each SSA calculated with MLE are given in
appendix B.
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Table 9: Relative change of b-values and their confidence bounds after re-estimating
recurrence with the MLE method. A higher b-value means a steeper slope and
reduced hazard at high magnitudes. Red color highlights a decrease in the b-value,
green color an increase.

Figure 9: Loviisa mean hazard curves with the MLE recurrence estimation at 10 Hz
for each SSA and the total corresponding to the sum of the individual curves.

The area 6 recurrence curves with the three estimation methods are plotted in Figure
10. The figure shows that the regression line fitted on the center magnitude intervals
overestimates the intercept a compared to MLE. Recurrence curves for the other
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areas are given in Appendix B. Note that these curves do not include the change in
b-value at high magnitudes.

The recurrence confidence interval extrapolation from accurate bounds at magnitude
4.5 is also demonstrated in Figure 10. Visual inspection shows a good match between
the used method and accurate bounds for area 6. Alternative method of linear
interpolation of the slope between minimum magnitude and magnitude 7 showed a
relative difference less than 1 % for all other areas but 6c for which it was less than
5 %.

Figure 10: Area 6 recurrence curves calculated with LS with center magnitude
interval datapoints (blue), with the points at lower bounds of the intervals (green)
and MLE estimate (gray). The cumulative annual earthquake rates (CAR) set at
lower bounds of the intervals (orange points). Ten percent confidence intervals for
center magnitude LS (dots) and MLE (dashes). Confidence interval extrapolation
from point estimates at magnitude 4.5 with unconditional 90 % estimates for b-value
(red). Curves are drawn with maximum magnitude 6.

Hazard curves using the MLE method and LS with datapoints shifted to lower bounds
of the magnitude intervals are plotted in Figure 11 for 10 Hz frequency. The 100 Hz
plots are in Appendix D. With the use of the MLE method, a substantial drop in
AFE is evident at high accelerations. This is consistent with the increase of b-values
of most areas. The shifted datapoint LS hazard curve looks much like the original
but scaled down, which is anticipated as the shift leaves the b-values unchaged. The
effect is much smaller than that of the MLE, suggesting the position of the datapoints
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is not the predominant difference leading to the smaller hazard with the MLE.

The addition of high-magnitude event to area 6 and the high-magnitude completeness
increase were performed together with MLE method. The GR parameter changes
after new event addition are given in Table 10. Unlike with LS, adding an event to
the magnitude bin with zero previous events does not lead to a major decrease in
the upper confidence bound. The changes to hazard estimates are almost neglible:
the 10 Hz hazard estimates at 0.05 g only increased 2.0 % when the event was added
to magnitude interval 3–3.5 and 1.3 % when it was added to the interval 2.5–3.

The completeness increase affected all SSAs, as the method was able to include
high-magnitude bins without events in the calculation. The changes in b-values are
presented in Table 11. While all SSAs were affected, the individual differences were
small except for area 6c. The importance of area 6 is highlighted by the hazard
estimate change: −53.61 % for 10 Hz frequency.
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(a)

(b)

Figure 11: Loviisa 10 Hz hazard curves with GR parameters estimated by (a) MLE
method and (b) LS with points shifted to lower bounds of the magnitude intervals.
Original curves are plotted as a reference with lighter colour.
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Table 10: Sensitivity of area 10 b-value and recurrence parameter calculated with
MLE to additional high-magnitude events. Two variations were made, one with an
added event in magnitude interval 2.5–3 and the other with an additional event in
3–3.5. Results are given for the new value, absolute and relative difference to the
original.

b nmin
mean 0.05 0.95 mean 0.05 0.95

Magnitude
3–3.5 add

1.854 2.123 1.584 6.292·10−6 7.727·10−7 5.123·10−5

Change -0.125 -0.161 -0.090 3.969·10−6 5.596·10−7 2.591·10−5

Relative -6.33 % -7.03 % -5.38 % 170.87 % 262.65 % 102.32 %
Magnitude
2.5–3 add

1.885 2.162 1.608 4.929·10−6 5.677·10−7 4.279·10−5

Change -0.094 -0.121 -0.066 2.606·10−6 3.547·10−7 1.747·10−5

Relative -4.74 % -5.32 % -3.96 % 112.20 % 166.46 % 68.99 %

Table 11: Relative change of b-values and their confidence bounds after high-
magnitude completeness increase. The reference are the original MLE calculated
values.

4.5 Sensitivity to new data

The recalculated recurrence parameters after adding generated earthquake data are
in Figure 12 for area 6 and Figure 13 for area 10. Figures for 6 subareas are in
Appendix C. The figures also show the parameters after adding the full 7-year
FENCAT dataset covering magnitudes 1–2.5.
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(a)

(b)

(c)

Figure 12: Scatter plot of b-values and nmin at magnitude 4.5 after adding generated
earthquake data for area 6. (a) 1 year of added data. (b) 3 years of added data. (c)
6 years of added data. The numbered squares are the samples included for hazard
calculation. Also shown are the original values (gray sphere) and values after adding
the whole acquired dataset (orange triangle). The sizes of the sample points are
scaled by the total number of added events and divided by the original number of
events.
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(a)

(b)

(c)

Figure 13: Scatter plot of b-values and nmin at magnitude 4.5 after adding generated
earthquake data for area 10. (a) 1 year of added data. (b) 3 years of added data.
(c) 6 years of added data. The numbered squares are the samples included for hazard
calculation. Also shown are the original values (gray sphere) and values after adding
the whole acquired dataset (orange triangle). The sizes of the sample points are
scaled by the total number of added events and divided by the original number of
events.
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5 Discussion and conclusions

The 2021 PSHA demonstrated high sensitivity to some modelling decisions. The
largest variation was related to the GR parameter estimation method. Both Loviisa
and Olkiluoto saw the hazard estimates drop significantly after using MLE method for
estimating the GR parameters. The difference of the GR parameters estimated with
LS and MLE was mixed, however. LS often showed a shallower slope, as expected
from it not taking into account empty magnitude intervals at the high-magnitude
end. This was not the case for the SSAs 2, 3, 4 and 6c for undetermined reasons.
The use of magnitude interval centers for the LS regression results in an upwards
shift to the recurrence curves. While the rationale behind its use is unclear, it is to
be noted that important questions regarding the handling of magnitude scales were
not considered in this thesis.

With area 10, the high earthquake count at low magnitudes makes the MLE recurrence
confidence interval tiny compared to LS estimate. This may suggest that the MLE
method is more sensitive to the assumption of Poisson distribution of event counts.
On the other hand, area 6c shows a wider confidence interval with the MLE method.
Both methods rely on a large enough earthquake count to make the confidence
intervals accurate. For areas with low earthquake counts, some suggest the use of
bootstrapping as an alternative method.

The MLE method has its own intricacies that the implementer has to consider. The
theory permits using arbitrarily large magnitude intervals with zero events, but
omitting the maximum magnitude truncation makes the variance estimates less
accurate if magnitudes close to it are considered. In this thesis, bins were considered
up to magnitude 5, which should remain consistent with the maximum magnitudes
as well as the use of a different b-value for magnitudes higher than 5.75. Regarding
the choice of making the small magnitude interval approximation, it is hard to see
where this approximation would be necessary as the accurate equations are equally
easy to solve. Without the approximation the magnitude interval widths can be
chosen arbitrarily, but the effect on the estimates calls for another study.

The high-magnitude completeness increase showed small changes compared to other
parameters, although this would change if the MLE method was used. The MLE and
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LS methods seem to have a very different behaviour regarding the magnitude bin
observation times. Naturally increasing the admitted history should make the GR
paramteter estimates less sensitive to addition of new data, bias nothwithstanding.
The LS method only shows this change for the areas where high-magnitude events
had occurred. The study left out an event with magnitude 4.5-5 within area 4 that
happened before 1540, though the changes were also omitted for this SSA due to the
change of sign of the b-value confidence bound. While a negative b-value does not
make sense for the GR law, the result could be used if the correct normalization of
the magnitude distribution within the calculation software is verified.

Sensitivity to the addition of low-magnitude earthquake data was investigated. A
sample of Poisson distributed yearly event counts were created with rate parameters
assessed from the combined original data and new data acquired from FENCAT. The
GR parameters proved out to be quite sensitive to the variation of the yearly event
counts, as could be expected from the short completeness times of the low-magnitude
intervals. The study did not directly show how the sensitivity changes after adding
the data. For area 6 where the generated distribution remains similar after the
different numbers of years added, the estimates could converge quickly. The GR
parameter confidence estimation should accurately take into account the variation in
the yearly event counts, but this depends on the assumption of Poisson process.

With area 10 the original and the fully updated datapoints appear at extremes of
the generated data. It seems unlikely that the original and the new yearly counts
come from a Poisson distribution with a common rate parameter. Comparing the
original yearly event counts to the new data suggests that year 2014 is an outlier
with its high count between magnitudes 0.5–1.5, although high variation can be seen
occurring other times as well. Further studies should be made to verify the new data
and to make sure it is treated identically to the original data.

The datapoints after updating with the new data in full showed a substantial change
for both NPPs near the important levels of spectral acceleration. Even after generating
noise to the event counts a consistent increase to the Loviisa hazard estimate was
observed. Olkiluoto saw a lot more variation with inclination towards lower hazard.
In interpreting the results, it is to be kept in mind that the dataset was used without
rigorous verification and that the events were added only up to magnitude 2.5. The
study was only performed with LS GR estimation. The results could look very
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different with MLE due to the dissimilarities discussed previously.

The newly used GMPE in the 2021 PSHA was known to be a major contributor to
the changes in the estimated hazard compared to the previous PSHA. This important
part was left out of this thesis for technical reasons. The GMPEs are coded directly
into HAZ and modifying them requires access to the source code. In addition, the
new PSHA adopted novel methods to the GMPE assessment that were out of the
scope of this thesis. Ground motion prediction for Finnish soil likely remains a
subject of much discussion in the near future.

The results of the chosen 10 Hz and 100 Hz hazard estimates showed some disparity.
This can be understood against the background that the hazard curves themselves
remained apart at important levels of spectral acceleration and the estimates were
picked at different points. It would be desirable to be able to report the sensitivity
also in terms of the acceleration to deduce effects on the design basis earthquake.
However, this can not be directly obtained from the presented point estimates. With
some additional analysis on the hazard curves, changes in acceleration for a set
frequency of exceedance could be produced.
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A Derivation of maximum likelihood estimation
for GR–parameters

This appendix presents a derivation of the maximum likelihood estimation method
for double truncated GR–equation parameters, without the assumption of small
magnitude intervals. Minimum magnitude shift is omitted from the equations,
because it leaves the MLE estimates without change. This is the case also for the
inclusion of maximum magnitude truncation, although the variance of α and the
covariance will be affected.

The truncated GR-relation is

n = eα e−βm − e−βmmax

1 − e−βmmax
. (A1)

Equation A1 implies that the number of events between magnitudes mi − 1
2δm and

mi + 1
2δm

δni =
[︂eα−βm − e−βmmax

1 − e−βmmax

]︂⃓⃓⃓mi− 1
2 δm

m=mi+ 1
2 δm

(A2)

= eα−βmi

1 − e−βmmax

(︂
eβ 1

2 δm − e−β 1
2 δm

)︂
(A3)

= 2 sinh (β 1
2δm) eα−βmi

1 − e−βmmax
. (A4)

Let us assume that earthquakes recur following a Poisson process with rate parameter
δniti . The probability of observing ni events within magnitude interval mi − 1

2δm

to mi + 1
2δm in time period ti is

Pi(n) = (δniti)ni

ni!
e−δniti (A5)

Assuming that the occurrences between magnitude intervals are independent, the
likelihood of observing ni observations for each magnitude interval i ∈ [1,I] with
completeness periods ti is

L =
I∏︂

i=1
Pi(ni) . (A6)
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The logarithm of its likelihood is

ln L =
I∑︂

i=1

[︂
ni ln(δniti) − ln(ni!) − δniti

]︂
. (A7)

To maximize this, it suffices to find the roots of the derivatives

∂ ln L
∂α

=
I∑︂

i=1

[︂
ni − δniti

]︂
= N −

I∑︂
i=1

δniti = 0 (A8)

∂ ln L
∂β

=
I∑︂

i=1

[︂
ni

δn′
i

δni

− δn′
iti

]︂
= 0 . (A9)

The parameter α can be evaluated from (A8)

eα

1 − e−βmmax
= N∑︁I

i=1 2 sinh (β δmi

2 )e−βmiti

. (A10)

The partial derivative of the occurrence δni with respect to β has the following
expression:

δn′
i = 2eα−βmi

(︂δmi

2 cosh (β δmi

2 ) 1
1 − e−βmmax

− mi sinh (β δmi

2 ) 1
1 − e−βmmax

− sinh (β δmi

2 ) mmaxe−βmmax

(1 − e−βmmax)2

)︂
= δni

(︂δmi

2 coth (β δmi

2 ) − mi − mmax

1 − e−βmmax

)︂
= δniϕi .

The multiplier in parenthesis is marked with ϕi to shorten the notation. Using this,
equation (A9) can be written as

I∑︂
i=1

[︂
(ni − δniti)ϕi

]︂
= 0 . (A11)

This can be solved for β numerically by using the definition of δni (A4) and equation
(A10) to obtain

δni =
N sinh (β δm

2 )e−βmi∑︁I
i=1 sinh (β δmi

2 )e−βmiti

. (A12)

Note that equation (A8) implies that only those terms of ϕi which depend on i

contribute to the sum (A11), hence the term involving mmax can be omitted.
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To assess uncertainty, the covariance matrix Cαβ can be approximated by inverting
the Hessian of negative of the log-likelihood

Cαβ ≈

⎡⎣−∂2 ln L
∂α2 −∂ ln L

∂α∂β

−∂2 ln L
∂α∂β

−∂2 ln L
∂β2

⎤⎦−1

. (A13)

Here α and β are assumed to be optimal, hence A8 and A9 can be used to simplify
the expressions for the derivatives. The covariance matrix elements are:

var(α) ≈ −1
D

I∑︂
i=1

[︂
(ni − δniti)(

δmi

2 )2(1 − coth2 (β δmi

2 )) − δnitiϕ
2
i

]︂
(A14)

var(β) ≈ N

D
(A15)

covar(α, β) ≈ −1
D

I∑︂
i=1

niϕi . (A16)

Here D is the determinant of the Hessian, given by

D =
(︂∂2 ln L

∂α2

)︂(︂∂2 ln L
∂β2

)︂
−

(︂∂2 ln L
∂α∂β

)︂2

= − N
I∑︂

i=1

[︂
(ni − δniti)(

δmi

2 )2(1 − coth2 (β δmi

2 )) − δnitiϕ
2
i2

]︂

− (
I∑︂

i=1
niϕi2)2 ,

(A17)

where ϕi2 only contains terms which depend on i:

ϕi2 = δmi

2 coth (β δmi

2 ) − mi . (A18)

A simple and efficient algorithm for solving (A11) is the Newton’s method. The
update rule for a Newton’s method iteration is

β̂i+1 = β̂i −
∑︁I

i=1

[︂
(ni − δniti)ϕi2

]︂
∑︁I

i=1

[︂
(ni − δniti)( δmi

2 )2(1 − coth2 (β δmi

2 )) − δnitiϕi2
2
]︂ . (A19)

The terms containing mmax have been omitted as they do not affect the estimate at
convergence.
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B Recurrence curves

Figure B1 shows the recurrence curves of Loviisa source areas, calculated with LS
and MLE methods. The curves do not show the change in slope at high magnitudes
that were used in the hazard calculations. The recurrence curve of source area 6 is
given in the main text (Figure 10). The estimated b-value and recurrence parameter
nmin are given in Tables B1 for LS estimation and B2 for MLE.

Table B1: GR parameters for each source area calculated with LS method. The
parameters of area 6 are also used for areas 7 and 11.

LS b-value nmin
Source area mean 0.05 0.95 mean 0.05 0.95

1 0.7846 0.9897 0.5795 0.0068210 0.0030440 0.0152845
2 1.4523 1.9163 0.9883 0.0002467 0.0000283 0.0021535
3 1.2823 1.8252 0.7395 0.0005144 0.0000275 0.0096295
4 1.3059 1.8355 0.7762 0.0005234 0.0000532 0.0051522
5 1.1802 1.4844 0.8759 0.0037024 0.0012586 0.0108911
6 0.7907 1.0344 0.5470 0.0076737 0.0036095 0.0163143
6a 0.9895 1.5285 0.4505 0.0006383 0.0000237 0.0172175
6b 1.5973 2.4553 0.7393 0.0000131 0.0000001 0.0024904
6c 0.5800 0.7633 0.3966 0.0096638 0.0054786 0.0170461
8 0.9429 1.1889 0.6969 0.0033003 0.0013794 0.0078966
10 1.6258 2.2933 0.9584 0.0000661 0.0000026 0.0017138

Table B2: GR parameters for each source area calculated with MLE method. The
parameters of area 6 are also used for areas 7 and 11.

MLE b-value nmin
Source area mean 0.05 0.95 mean 0.05 0.95

1 0.8353 1.0321 0.6385 0.0034951 0.0009804 0.0124609
2 1.1672 1.3408 0.9936 0.0007722 0.0002250 0.0026509
3 1.0699 1.2579 0.8819 0.0011140 0.0003025 0.0041030
4 0.9412 1.1620 0.7203 0.0015970 0.0003650 0.0069880
5 1.2374 1.3497 1.1251 0.0012567 0.0005591 0.0028249
6 0.9208 1.1391 0.7025 0.0018193 0.0004269 0.0077531
6a 1.2100 1.7403 0.6797 0.0000655 0.0000015 0.0029376
6b 1.6374 2.3120 0.9627 0.0000036 0.00000002 0.0006265
6c 0.5301 0.8208 0.2394 0.0079353 0.0014340 0.0439103
8 1.1191 1.3306 0.9076 0.0006756 0.0001530 0.0029836
10 1.9790 1.6746 1.6746 0.0000023 0.0000002 0.0000253
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(a) (b)

(c) (d)

(e)

Figure B1: Recurrence curves calculated with LS with center magnitude interval
datapoints (blue) and MLE estimate (gray). Cumulative annual earthquake rates
(CAR) at lower bounds of the intervals (orange points). Ten percent confidence inter-
vals for LS (dots) and MLE (dashes). Curves are drawn with maximum magnitude
6.
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C Results for addition of new data

Recurrence parameters b and nmin at magnitude 4.5 are plotted after addition of
new data in Figure C1 for area 6a, Figure C2 for area 6b and Figure C3 for area 6c.
The Loviisa hazard estimate changes after using the chosen recurrence parameter
samples are listed in Table C1. Changes after adding the unmodified new FENCAT
data are also presented.

Years added,
sample

10 Hz 100 Hz
Absolute (1/a) Relative Absolute (1/a) Relative

6 a, sample 6 1.07·10−5 40.40 % 5.95·10−6 45.07 %
6 a, sample 5 5.02·10−6 19.05 % 3.28·10−6 24.82 %
6 a, sample 4 3.09·10−6 11.70 % 1.77·10−6 13.44 %
6 a, sample 3 9.82·10−7 3.72 % 1.04·10−6 7.89 %
6 a, sample 2 8.80·10−6 33.36 % 5.43·10−6 41.13 %
6 a, sample 1 6.77·10−6 25.67 % 4.85·10−6 36.76 %
3 a, sample 6 6.90·10−7 2.61 % 7.10·10−7 5.38 %
3 a, sample 5 1.33·10−6 5.06 % 1.14·10−6 8.60 %
3 a, sample 4 6.88·10−6 26.06 % 4.31·10−6 32.63 %
3 a, sample 3 4.04·10−6 15.33 % 2.60·10−6 19.68 %
3 a, sample 2 3.23·10−6 12.25 % 2.44·10−6 18.51 %
3 a, sample 1 5.53·10−6 20.96 % 3.83·10−6 29.02 %
1 a, sample 6 4.43·10−6 16.81 % 2.66·10−6 20.18 %
1 a, sample 5 1.14·10−7 0.43 % 1.49·10−7 1.13 %
1 a, sample 4 3.60·10−7 1.36 % 6.37·10−7 4.82 %
1 a, sample 3 3.92·10−6 14.85 % 2.33·10−6 17.69 %
1 a, sample 2 1.35·10−6 5.12 % 1.03·10−6 7.79 %
1 a, sample 1 1.97·10−6 7.47 % 1.51·10−6 11.48 %
FENCAT 1.02·10−5 38.70 % 7.24·10−6 54.82 %

Table C1: Loviisa hazard estimate change at 10 Hz, 0.1 g and 100 Hz, 0.05 g after
adding generated data. Also included is the estimates after addition of the acquired
7-year FENCAT dataset.
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(a)

(b)

(c)

Figure C1: Scatter plot of b-values and nmin at magnitude 4.5 after adding generated
earthquake data for source area 6a. (a) 1 year of added data. (b) 3 years of added
data. (c) 6 years of added data. Numbered squares are the samples included for
hazard calculation. Also shown are the original values (gray sphere) and values after
adding the whole acquired dataset (orange triangle). The sizes of the sample points
are scaled by the total number of added events and divided by the original number
of events.
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(a)
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Figure C2: Scatter plot of b-values and nmin at magnitude 4.5 after adding generated
earthquake data for source area 6b. (a) 1 year of added data. (b) 3 years of added
data. (c) 6 years of added data. Numbered squares are the samples included for
hazard calculation. Also shown are the original values (gray sphere) and values after
adding the whole acquired dataset (orange triangle). The sizes of the sample points
are scaled by the total number of added events and divided by the original number
of events.
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(a)
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Figure C3: Scatter plot of b-values and nmin at magnitude 4.5 after adding generated
earthquake data for source area 6c. (a) 1 year of added data. (b) 3 years of added
data. (c) 6 years of added data. Numbered squares are the samples included for
hazard calculation. Also shown are the original values (gray sphere) and values after
adding the whole acquired dataset (orange triangle). The sizes of the sample points
are scaled by the total number of added events and divided by the original number
of events.
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D Loviisa 100 Hz figures

All hazard results were acquired for 10 Hz and 100 Hz frequencies. Here is presented
some figures for 100 Hz that were left out of the main text. Figure D1 shows the
tornado plot of all parameter variations. Figure D2 gives the mean hazard curves for
each SSA. Figure D3 contains the hazard curves for MLE and shifted datapoint LS
methods.

Figure D1: Relative Loviisa hazard estimate changes at 100 Hz for each parameter
variation. Each color and shade denotes a single result. A positive 100 % change
means that the hazard estimate is doubled, while a negative 100 % means that the
estimate becomes zero.
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(a)

(b)

Figure D3: Loviisa 100 Hz hazard curves with GR-parameters estimated by (a) MLE
method and (b) LS with points shifted to lower bounds of the magnitude intervals.
Original curves are plotted as a reference with lighter colour.
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(a)

(b)

Figure D2: (a) Loviisa 100 Hz mean hazard curves from each SSA and the total
corresponding to the sum of the individual curves. (b) Individual weighted mean
hazard curves of the SSA 6 subareas and the unsplit area. Total hazard curve of SSA
6.
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E Results for Olkiluoto powerplant

Hazard estimate changes for different parameter vatiations are given in table E1.
The sensitivity analysis of adding generated data was performed for 1 and 6 years
of added data. The results are presented in table E2. Changes after adding the
unmodified new FENCAT data are also presented. The hazard estimate changes
for different parameter vatiations are visualized with a tornado plot Figure E1 for
100 Hz.

Table E1: Absolute and relative hazard estimate changes for Olkiluoto for 10 Hz,
0.1 g and 100 Hz, 0.05 g.

10 Hz 100 Hz
Parameter change Relative Relative
Area 10 additional 3–
3.5 event

0.00 % 0.00 %

High-magnitude
compliteness

-14.36 % -14.64 %

Without high-
magnitude b split

42.73 % 31.52 %

Minimum magnitude
4

-2.43 % 3.91 %

Minimum magnitude
5

-1.29 % -8.31 %

MLE recurrence esti-
mation

-80.90 % -80.23 %

Lower-bound magni-
tude datapoints

-30.13 % -30.25 %

Area 6 subdivision
100%

37.49 % 36.05 %

Area 6 subdivision
0%

-37.49 % -36.05 %



XIV

Years added,
sample

10 Hz 100 Hz
Relative Relative

6 a, sample 6 13.05 % 13.05 %
6 a, sample 5 -50.99 % -49.97 %
6 a, sample 4 -53.65 % -52.45 %
6 a, sample 3 -51.90 % -50.87 %
6 a, sample 2 -32.05 % -30.99 %
6 a, sample 1 -23.66 % -22.94 %
1 a, sample 6 -32.80 % -31.96 %
1 a, sample 5 -20.12 % -19.60 %
1 a, sample 4 11.74 % 11.35 %
1 a, sample 3 19.24 % 18.49 %
1 a, sample 2 38.60 % 37.71 %
1 a, sample 1 -48.35 % -47.19 %
Full FENCAT -37.95 % -36.49 %

Table E2: Olkiluoto hazard estimate change at 10 Hz and 100 Hz after adding
generated data. Also included is the estimates after addition of the full acquired
FENCAT dataset.

Figure E1: Relative hazard estimate changes at 100 Hz for each parameter variation.
Each color and shade denotes a single result. A positive 100 % change means that the
hazard estimate is doubled, while a negative 100 % means that the estimate becomes
zero.
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