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Abstract
This thesis examines one-day-ahead forecasting of the CBOE Volatility Index (VIX)
using public daily data from 2020–2024. The forecast target is the next-day VIX
level. Predictors include daily/weekly/monthly VIX components (HAR-style), realized
volatility computed from S&P 500 returns, the one-day change in VIX, and a high-
volatility indicator.

We compare classical econometric models ARIMA, GARCH and the HAR with
modern machine-learning methods (Random Forest, XGBoost, and a shallow neural
network). Models are trained on 2020–2023 and evaluated out-of-sample in 2024 using
a rolling-origin design that avoids look-ahead bias. Forecast accuracy is summarized
by RMSE, MAE, MAPE, 𝑅2, and directional accuracy. We apply DM tests to assess
pairwise differences in predictive accuracy. To evaluate economic value, forecasts are
translated into stylized volatility-timing rules using both discrete sign and continuous
sizing variants.

Across rolling windows, HAR and tree-based methods deliver the strongest level
accuracy, while a returns-only GARCH proxy tends to underpredict VIX, consistent
with a positive volatility risk premium. DM tests indicate statistically significant
improvements over weaker baselines. The best statistical models also yield positive
Sharpe ratios in the timing exercise. The contribution is a transparent, reproducible
VIX-forecasting pipeline based solely on public data, together with an integrated
statistical-and-economic evaluation that clarifies the distinction between risk-neutral
and realized volatility measures.

Keywords VIX, implied volatility, volatility forecasting, HAR, ARIMA, GARCH,
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Tiivistelmä
Tässä työssä tutkitaan CBOE:n volatiliteetti-indeksin (VIX) yhden päivän eteen-
päin tapahtuvaa ennustamista käyttäen vain julkista päivädataa vuosilta 2020–2024.
Ennustekohteena on seuraavan pörssipäivän VIX-taso. Selittäjinä käytetään VIXin
päivittäisiä, viikoittaisia ja kuukausittaisia komponentteja (HAR-tyyli), S&P 500 -
indeksin tuotoista laskettua realisoitunutta volatiliteettia, VIXin yhden päivän muutosta
sekä yksinkertaista korkean volatiliteetin indikaattoria.

Menetelmävertailussa ovat klassiset ekonometriset mallit ARIMA, GARCH ja
HAR sekä modernit koneoppimismenetelmät (satunnaismetsä, XGBoost ja ohut neu-
roverkko). Mallit opetetaan vuosilla 2020–2023 ja testataan vuodelta 2024 käyttäen
rullaavaa testi-ikkunaa, jolla pyritään estämään ennakointiharhaa. Ennustetarkkuutta
mitataan RMSE-, MAE-, MAPE- ja 𝑅2-mittareilla sekä suunnan osumatarkkuudella.
Mallien välisiä eroja testataan Diebold–Mariano -testeillä. Taloudellista arvoa ar-
vioidaan muuntamalla ennusteet tyylitellyiksi volatiliteetin ajoitussäännöiksi, joissa
hyödynnetään sekä diskreettiä suuntamerkkiä että jatkuvaa positiokokoa.

Tulosten mukaan HAR ja puupohjaiset menetelmät tuottavat parhaan ennusteen,
kun taas tuottoihin perustuva GARCH-vertailu aliarvioi VIX-tasoa, mikä on yhden-
mukaista positiivisen volatiliteettipreemion kanssa. Diebold–Mariano -testit osoittavat
tilastollisesti merkitseviä parannuksia heikompiin malleihin verrattuna. Parhaat ti-
lastolliset mallit tuottavat myös positiivisen Sharpe-suhteen ajoituskokeessa. Työn
panos on läpinäkyvä ja toistettava VIX-ennustamisen tulos pelkällä julkisella datalla
yhdistettynä tilastolliseen ja taloudelliseen arviointiin, mikä selkeyttää riskineutraalin
ja realisoituneen volatiliteetin eroa käytännössä.

Avainsanat VIX, implisiittinen volatiliteetti, volatiliteetin ennustaminen, HAR,
ARIMA, GARCH, satunnaismetsä, XGBoost, neuroverkko,
Diebold–Mariano, Sharpe-suhde
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Symbols and abbreviations

Symbols

𝑃𝑡 S&P 500 close level at day 𝑡
VIX𝑡 VIX close at day 𝑡
𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) Daily log-return of the S&P 500
𝑅𝑉
(𝑛)
𝑡 𝑛-day realised volatility (annualised), from returns

VIX(𝑑)𝑡 , VIX(𝑤)𝑡 , VIX(𝑚)𝑡 Daily, 5-day (weekly) and 22-day (monthly) VIX components
ΔVIX𝑡 = VIX𝑡 − VIX𝑡−1 One-day change in VIXˆ︃VIX𝑡+1 One-step-ahead forecast for VIX (made at 𝑡)
𝑦𝑡 , ˆ︁𝑦𝑡 , 𝑒𝑡 Actual, forecast, and error (𝑒𝑡 = 𝑦𝑡 −ˆ︁𝑦𝑡)
𝐶 (𝑆, 𝐾, 𝜏, 𝜎), 𝑃(𝑆, 𝐾, 𝜏, 𝜎) Black–Scholes call/put price
𝑆𝑡 Underlying index level (generic)
𝐾 Option strike price
𝜏 Time to maturity in years
𝑟, 𝑞 Continuously compounded risk-free rate and dividend yield
𝜎 Volatility parameter
𝑑1, 𝑑2 Black–Scholes terms used in 𝐶 and 𝑃
Φ(·), 𝜙(·) Standard normal CDF and PDF
𝐹, 𝐾0, Δ𝐾𝑖, 𝑇 VIX formula terms: forward level, pivot strike, strike interval, horizon
𝜃 Trading threshold for sign-based timing rule
𝑆𝑅 Annualised Sharpe ratio of strategy P&L

Operators

E[·] Expectation
Var(·), Cov(·, ·) Variance and covariance
⊮{·} Indicator function (1 if condition holds, else 0)
sign(·) Sign function (−1, 0, +1)
Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 First difference (daily change)
𝐿𝑥𝑡 = 𝑥𝑡−1 Lag operator
𝑥
(𝑛)
𝑡 = 1

𝑛

∑︁𝑛−1
𝑖=0 𝑥𝑡−𝑖 𝑛-day rolling mean at 𝑡

arg min𝜃 L(𝜃) Argument that minimizes a loss L
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Abbreviations

VIX CBOE Volatility Index (model-free 30-day implied volatility of S&P 500)
SPX S&P 500 index
RV Realised volatility (from historical returns)
IV Implied volatility
ARIMA Autoregressive Integrated Moving Average
GARCH Generalized Autoregressive Conditional Heteroskedasticity
HAR Heterogeneous Autoregression (daily/weekly/monthly components)
RF Random Forest
XGB Extreme Gradient Boosting (XGBoost)
NN Neural Network (MLP in this thesis)
OOS Out-of-sample
OLS Ordinary Least Squares
DM Diebold–Mariano (test of equal predictive accuracy)
HAC Heteroskedasticity- and Autocorrelation-Consistent (e.g. Newey–West)
FFT Fast Fourier Transform
PSD Power Spectral Density (Welch method)
P&L Profit and Loss
CV Cross-Validation
RMSE Root Mean Squared Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
𝑅2 Coefficient of determination
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1 Introduction

Volatility, the magnitude of fluctuations in asset prices, is central to option pricing,
risk management, and portfolio construction. In the Black–Scholes framework the
value of a European option depends sensitively on the volatility input (Black and
Scholes, 1973; Hull, 2014). Under the model’s assumptions one obtains closed-form
prices, yet empirical evidence is at odds with constant volatility: option markets
display smiles and skews across strikes and asset returns exhibit fat tails and volatility
clustering (Mandelbrot, 1963; Fama, 1965; Cont, 2001). These facts have motivated
volatility models that vary over time or state, including local and stochastic volatility
and jump diffusions (Dupire, 1994; Heston, 1993; Cont and Tankov, 2004), as well as
data-driven forecasting approaches.

A practical challenge that unites these strands is that future volatility is not
observed. Machine-learning methods provide flexible, nonparametric mappings from
predictors to a volatility target and can capture nonlinear interactions that classical
linear models may miss (Gu, Kelly and Xiu, 2020). Neural networks are universal
function approximators (Hornik, Stinchcombe and White, 1989) and large-scale
evidence suggests that they can extract persistent structure from financial time series
(Sirignano and Cont, 2019). The objective in this thesis is not to replace pricing
models, but to evaluate whether machine learning can deliver more accurate and
practically useful volatility forecasts relative to interpretable econometric baselines.

A central design decision is the choice of forecast target. One possibility is realized
volatility computed from future S&P 500 returns, for example a forward 21 to 30
day measure (Andersen et al., 2001). In this thesis the primary target is the VIX,
which aggregates option implied expectations of 30 day variance for the S&P 500
in a model-free way (Whaley, 2009). This choice is motivated by implementability,
reproducibility, and conceptual alignment with option pricing. VIX is directly tradable
via futures and options, which allows a clean assessment of economic value from
forecasts. VIX is publicly available at daily frequency, so results are replicable
without proprietary option chain data or high frequency microstructure choices. VIX
is also the market’s risk-neutral volatility proxy, which is the quantity that matters
for Black–Scholes style valuation. VIX and subsequent realized volatility are not
identical. VIX typically exceeds realized volatility because option prices embed a
positive volatility risk premium (Blair, Poon and Taylor, 2001; Bondarenko, 2014).
For reproducibility, all software versions and Python libraries are documented in
Appendix A.
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The empirical work uses daily data from 1 January 2020 to 31 December 2024.
The dependent variable is the next day VIX level, denoted VIX𝑡+1. Predictors include
lagged and averaged VIX components inspired by the HAR framework, realized
volatility proxies from S&P 500 returns, and simple dynamics such as the daily change
in VIX (Corsi, 2009). All forecasts are strictly one step ahead. At time 𝑡 the models
form ˆ︃VIX𝑡+1 using only information available at time 𝑡.

The modelling suite combines classical econometric baselines and modern
machine-learning methods. The baselines include ARIMA, GARCH, and HAR.
The machine learning models include RF, XGBoost, and a shallow NN. Models are
trained on 2020 to 2023 and evaluated out-of-sample in 2024 using root mean squared
error, mean absolute error, the coefficient of determination, directional accuracy, and
pairwise DM tests for predictive accuracy (Engle, 1982; Bollerslev, 1986; Diebold
and Mariano, 1995). To assess economic value we implement simple timing rules that
take positions based on the predicted change in VIX and we report annualized Sharpe
ratios under transparent assumptions that ignore trading frictions.

This thesis makes three contributions. First, it provides a transparent and repro-
ducible comparison of econometric and machine learning models for one day ahead
VIX forecasting over 2020 to 2024 using public data and out-of-sample validation.
Second, it quantifies both statistical and economic value through standard accuracy
metrics, DM tests, and simple trading rules, and it highlights when tree based machine
learning can materially outperform linear baselines. Third, it discusses how the rela-
tionship between VIX and forward realized volatility, via the volatility risk premium,
affects the interpretation of the forecasting results.

The research questions are as follows. Do machine-learning methods improve one
step ahead VIX forecasts relative to ARIMA, GARCH, and HAR baselines? Do such
improvements translate into economically meaningful gains in VIX timing strategies?
How does the relationship between VIX and forward realized volatility, through the
volatility risk premium, affect the interpretation of the results? The remainder of the
thesis is structured as follows. Section 2 reviews the option pricing background and
volatility concepts. Section 3 describes data, features, models, and validation design.
Section 4 presents out-of-sample results and the economic evaluation. The software
environment and libraries used are listed in Appendix A.

Large language models were used in a limited manner to support literature discovery
and language polishing. Specifically, OpenAI’s GPT models assisted in searching for
references asked by the author, translating paragraphs originally drafted in Finnish and
helped with LATEX–syntax. All modeling decisions, code, data handling, and empirical
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results are the author’s own. AI outputs were verified and edited for accuracy by author
(OpenAI, 2025).
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2 Theoretical framework

2.1 Overview of options and derivatives

Derivatives are financial contracts whose value depends on the price of an underlying
asset or index, such as equities, commodities, interest rates, or currencies. Common
derivative types include forwards, futures, and swaps, which have linear payoffs,
and options, which have nonlinear payoffs. A European call option gives the holder
the right but not the obligation to buy the underlying at a specified strike price 𝐾 at
expiration 𝑇 , while a European put option gives the right to sell at the strike. The
payoff of a call is max(𝑆𝑇 − 𝐾, 0), and for a put max(𝐾 − 𝑆𝑇 , 0), so option payoffs
depend nonlinearly on the underlying price 𝑆𝑇 . Because of this nonlinearity and
leverage, pricing options requires careful modeling of the underlying’s uncertainty
(Hull, 2014).

The price of an option at time 𝑡 depends on several factors: the current underlying
level 𝑆𝑡 , the strike 𝐾 , the time to maturity 𝜏 = 𝑇 − 𝑡, the volatility of the underlying, the
risk-free interest rate 𝑟 , and the continuous dividend yield 𝑞 (if any). These inputs are
central to option valuation. In particular, understanding how volatility enters option
pricing is crucial. That is why we derive the classical option pricing formula in the
following subsection.

2.2 Symbols and conventions

We work under continuous time and continuous compounding. The risk-free rate 𝑟
and dividend yield 𝑞 are assumed to be continuously compounded rates (possibly
time-dependent). An overdot (e.g. 𝑆̇) or time derivative denotes differentiation with
respect to 𝑡. Other symbols used include:

• 𝑆𝑡 : underlying index (e.g. S&P 500) level at time 𝑡.

• 𝐾: strike price of an option.

• 𝜏 = 𝑇 − 𝑡: time remaining to option maturity (in years).

• 𝑟𝑡 : risk-free interest rate at time 𝑡.

• 𝑞𝑡 : continuous dividend yield at time 𝑡.

• Φ(𝑥), 𝜙(𝑥): the standard normal CDF and PDF.

• 𝜎: instantaneous volatility parameter.
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• Δ𝐾𝑖: strike interval used in the VIX calculation.

2.3 Dividend-adjusted Black–Scholes and the PDE

Under the Black–Scholes assumptions, under the risk-neutral measure the underlying
price satisfies the stochastic differential equation

𝑑𝑆𝑡 = (𝑟 − 𝑞)𝑆𝑡 𝑑𝑡 + 𝜎𝑆𝑡 𝑑𝑊𝑡 ,

where 𝑟 is the continuously compounded risk-free rate, 𝑞 is the continuous dividend
yield, and 𝜎 is the (constant) volatility. By applying Itô’s lemma and no-arbitrage
(delta-hedging) arguments, one shows that the price𝑉 (𝑆, 𝑡) of a derivative must satisfy
the Black–Scholes partial differential equation:

𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2 𝜕

2𝑉

𝜕𝑆2 + (𝑟 − 𝑞)𝑆
𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0.

This PDE is solved backward from the terminal payoff at expiry 𝑇 . For example, for a
European call option with payoff 𝑉 (𝑆, 𝑇) = max(𝑆𝑇 − 𝐾, 0), the closed-form solution
is given by the Black–Scholes formula (Black and Scholes, 1973; Hull, 2014):

𝐶 (𝑆, 𝐾, 𝜏, 𝜎) = 𝑆𝑒−𝑞𝜏 Φ(𝑑1) − 𝐾𝑒−𝑟𝜏 Φ(𝑑2), (1)

𝑃(𝑆, 𝐾, 𝜏, 𝜎) = 𝐾𝑒−𝑟𝜏 Φ(−𝑑2) − 𝑆𝑒−𝑞𝜏 Φ(−𝑑1), (2)

where

𝑑1 =
ln(𝑆/𝐾) + (𝑟 − 𝑞 + 1

2𝜎
2)𝜏

𝜎
√
𝜏

, 𝑑2 = 𝑑1 − 𝜎
√
𝜏,

and 𝜏 = 𝑇 − 𝑡. Here Φ(·) is the standard normal cumulative distribution. Put–call
parity holds: 𝐶 − 𝑃 = 𝑆𝑒−𝑞𝜏 − 𝐾𝑒−𝑟𝜏. From these formulas one can derive the option
Greeks (sensitivities), which we omit for brevity.

2.4 Limitations and model extensions

The Black–Scholes model’s assumptions of constant volatility, continuous trading, and
log-normal returns imply a flat implied-volatility surface across strikes and maturities.
In contrast, empirical market data show a pronounced skew/smile in the implied-
volatility surface (Cont, 2001; Hull, 2014), and return distributions exhibit fat tails and
volatility clustering (Mandelbrot, 1963; Fama, 1965). To address these discrepancies,
various extensions have been proposed:
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• Local volatility models: Allow volatility to be a deterministic function 𝜎loc(𝑆, 𝑡)
calibrated to match today’s implied-volatility surface exactly. Dupire (1994)
showed how to compute 𝜎loc(𝐾,𝑇) from market prices of calls 𝐶 (𝐾,𝑇). Local-
vol models fit current prices perfectly but assume future volatility is fully
determined by the current state.

• Stochastic volatility models: Volatility itself follows a random process. For
example, the Heston model (Heston, 1993) assumes the variance has its own
mean-reverting dynamics. Stochastic-volatility models capture volatility clus-
tering and produce more realistic dynamics of the implied surface. They require
estimation of additional parameters and often lack closed-form solutions.

• Jump-diffusion models: Incorporate occasional jumps in the underlying price.
Merton’s jump-diffusion or more general models (Cont and Tankov, 2004) add a
jump component to capture fat tails and extreme events. These models better fit
option prices across strikes but add complexity and computational challenges.

These extensions can improve the fit to option market data, but at the cost of additional
calibration complexity and potential overfitting.

2.5 Implied volatility, realized volatility and the surface

Market option prices are often expressed in terms of implied volatility. For a
given observed option price 𝐶mkt, the implied volatility 𝜎𝐼𝑉 is defined by solving
𝐶 (𝑆, 𝐾, 𝜏, 𝜎𝐼𝑉 ) = 𝐶mkt in the Black–Scholes formula. The mapping (𝐾, 𝜏) ↦→
𝜎𝐼𝑉 (𝐾, 𝜏) defines the implied-volatility surface. Equity index options typically exhibit
a downward-sloping skew: out-of-the-money puts (low strikes) have higher implied
volatilities than at-the-money options. In Dupire’s framework, a local volatility
function can be extracted from a smooth call price surface 𝐶 (𝐾,𝑇). Dupire’s formula
is

𝜎2
loc(𝐾,𝑇) =

𝜕𝐶
𝜕𝑇
+ 𝑟𝐾 𝜕𝐶

𝜕𝐾

1
2𝐾

2 𝜕2𝐶
𝜕𝐾2

,

which shows how the curvature of option prices in strike and time determines the local
variance.

Realized volatility is a backward-looking measure computed from historical
returns. Given daily log-returns 𝑟𝑖 of the S&P 500, an 𝑛-day realized volatility is often
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estimated as ˆ︁𝜎RV =

⌜⎷
1

𝑛 − 1

𝑛∑︁
𝑖=1
(𝑟𝑖 − 𝑟)2,

which is essentially the sample standard deviation (annualized by multiplying by√︁
252/𝑛 if desired) (Andersen et al., 2001). Empirically, realized volatility clusters

over time: large returns tend to be followed by large returns (of either sign), and
similarly for small returns. This persistence is why econometric models like GARCH
(Bollerslev, 1986) are used to capture volatility clustering in return series.

2.6 The VIX as model-free implied variance

The VIX is a widely-followed measure of the S&P 500’s expected 30-day volatility,
derived from option prices. It is constructed to represent the risk-neutral expectation
of variance over the next month (Whaley, 2009). In practice, VIX is computed as 100
times the square root of a weighted sum of out-of-the-money option prices across
strikes. The CBOE formula is:

VIX𝑡 = 100 ×
√︄

2
𝑇

∑︁
𝑖

Δ𝐾𝑖

𝐾2
𝑖

𝑒𝑟𝑇𝑄(𝐾𝑖) −
1
𝑇

(︂ 𝐹
𝐾0
− 1

)︂2
,

Where the sum is over strike prices 𝐾𝑖, Δ𝐾𝑖 is the spacing between strikes, 𝑄(𝐾𝑖)
are the mid-quote prices of out-of-the-money options (calls for 𝐾𝑖 > 𝐾0 and puts for
𝐾𝑖 < 𝐾0), 𝐹 is the forward S&P 500 level, 𝐾0 is the first strike below 𝐹, and 𝑇 is the
time to the 30-day horizon via interpolation (CBOE, 2019). Because VIX is derived
under the risk-neutral measure, it typically exceeds the actual realized volatility that
follows as figure 4 shows. This difference is known as the volatility risk premium
(Blair, Poon and Taylor, 2001; Bondarenko, 2014) embedded in option prices.

2.7 Volatility forecasting approaches

Forecasts of volatility (or VIX) can be obtained from several sources:

• Econometric time-series models: These include ARIMA models on volatility or
returns to capture autoregressive patterns, and GARCH models to capture volatil-
ity clustering (Engle, 1982; Bollerslev, 1986). For example, an ARIMA(𝑝, 𝑑, 𝑞)
can model VIX dynamics directly, while GARCH(1,1) models the conditional
variance of returns.
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• Implied-volatility measures: One may use market-based forecasts directly. For
instance, today’s VIX is often used as a predictor for tomorrow’s volatility,
since it summarizes current option market expectations (Hull, 2014; Poon and
Granger, 2003).

• Hybrid/long-memory models: The HAR model (Corsi, 2009) regresses future
volatility on its recent daily, weekly, and monthly averages, capturing persistent
long-range dependence.

• machine-learning methods: Techniques like RF, XGB, and NN can flexibly
model nonlinear interactions among many predictors (past volatilities, returns,
etc.). Such methods have been applied to asset pricing and may uncover complex
patterns (Gu, Kelly and Xiu, 2020).

In this thesis, we implement representatives of each category (as described in 3.4)
and compare their one-step-ahead VIX forecasts on the same data. The short-term
dynamics and potential predictability of implied volatility have also been studied by
Konstantinidi et al. (2008), who report limited but statistically significant forecasting
power in the evolution of implied volatility surfaces.
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3 Data and methodology

3.1 Scope and sample selection

We do not have access to detailed option-chain data, so we forecast a market-wide
VIX instead. Our primary target is the daily close of the VIX. To complement this,
we use the S&P 500 index to derive historical return-based volatility measures. We
select the five-year period January 1, 2020 to December 31, 2024 for analysis. This
window contains both low-volatility periods and high-volatility events (for example,
the market crash of March 2020), allowing a robust evaluation of forecasting methods.
All data are aligned to trading days: if the S&P market is closed, that day is omitted.
If VIX is missing while S&P is open (rare), we forward-fill the last VIX value. In
practice, data gaps are minimal.

3.2 Data sources and basic transformations

• VIX index (𝑉𝐼𝑋𝑡): Daily closing values from January 2020 through December
2024. Obtained from the CBOE and cross-checked with Yahoo Finance (ˆVIX
historical data) (Yahoo Finance, 2025). This is our forecast target series.

• S&P 500 index (𝑃𝑡): Daily closing values GSPC from Yahoo Finance (Yahoo
Finance, 2025). We compute log-returns 𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) from this series.

• Realized volatility (RV): From the daily returns 𝑟𝑡 , we construct backward-
looking volatility measures. For example, the 𝑛-day realized volatility is defined
as

𝑅𝑉
(𝑛)
𝑡 =

⌜⃓⎷
252
𝑛

𝑛−1∑︁
𝑖=0

𝑟2
𝑡−𝑖 ,

where 252 is the trading-day annualization factor (Andersen et al., 2001). In
this study we use 𝑅𝑉 (5)𝑡 and 𝑅𝑉 (30)

𝑡 to capture short-term and medium-term
historical volatility.

• Data alignment: All series are aligned by date. If a trading day is missing in one
series, it is removed from all series (or VIX is forward-filled if missing). This
ensures that the feature and target vectors for forecasting line up in time.
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3.3 Feature engineering

Volatility exhibits persistence over multiple horizons (Corsi, 2009). We therefore
construct lagged volatility features analogous to the HAR model components:

VIX(𝑑)𝑡 = VIX𝑡 ,

VIX(𝑤)𝑡 =
1
5

4∑︁
𝑖=0

VIX𝑡−𝑖,

VIX(𝑚)𝑡 =
1

22

21∑︁
𝑖=0

VIX𝑡−𝑖 .

These represent the current VIX level, the 5-day (weekly) average, and the 22-day
(monthly) average. We also include the one-day change ΔVIX𝑡 = VIX𝑡 − VIX𝑡−1 to
capture short-term momentum. From realized volatility, we add 𝑅𝑉 (5)𝑡 and 𝑅𝑉 (30)

𝑡 as
features, capturing recent market volatility measured from returns. Finally, we include
simple regime indicators such as ⊮{VIX𝑡 > 30} to flag high-volatility states. All
numeric features are standardized (zero mean, unit variance) when used in machine
learning models. This ensures stable training and comparability of coefficients (but
does not affect the interpretation of linear models).

3.4 Models

At date 𝑡, let X𝑡 denote all features available (Section 3.3) and let the target be
𝑦𝑡+1 ≡ VIX𝑡+1. All models produce a one–step–ahead forecast ˆ︁𝑦𝑡+1 = ˆ︃VIX𝑡+1 using
only information up to 𝑡. Econometric baselines are specified mathematically, while
ML models include a short pseudocode box.

Statistical baselines

ARIMA on VIX: ARIMA provides a transparent linear benchmark for short-run
dependence in VIX (Box–Jenkins tradition). Let 𝑧𝑡 be either VIX𝑡 or log(VIX𝑡)
(optional variance stabilization). After 𝑑 differences, 𝑤𝑡 = Δ𝑑𝑧𝑡 , the ARMA form is

𝜙(𝐿) 𝑤𝑡 = 𝜃 (𝐿) 𝜀𝑡 , 𝜙(𝐿) = 1−𝜙1𝐿−· · ·−𝜙𝑝𝐿𝑝, 𝜃 (𝐿) = 1+𝜃1𝐿+· · ·+𝜃𝑞𝐿𝑞,

with white-noise innovations 𝜀𝑡 and lag operator 𝐿𝑥𝑡 = 𝑥𝑡−1. Orders (𝑝, 𝑑, 𝑞) are
chosen by BIC on the training window, subject to stationarity. One-step forecasts use
the standard ARMA recursion and, if modeling log(VIX), are exponential back to
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levels with optional bias correction (Box et al., 2015).

Algorithm ARIMA(𝑝, 𝑑, 𝑞) (estimate & one-step forecast)
Input: univariate series {𝑦𝑡}𝑇𝑡=1 (here 𝑦𝑡 = VIX𝑡); candidate grids P,D,Q.
Model selection (training window)
1. for (𝑝, 𝑑, 𝑞) ∈ P × D × Q do
1.1 Difference 𝑑 times to obtain 𝑦 (𝑑)𝑡 .
1.2 Fit ARMA(𝑝, 𝑞) on 𝑦 (𝑑)𝑡 by MLE; record BIC.
end for
2. Choose ( 𝑝̂, 𝑑̂, 𝑞̂) with the lowest BIC and refit by MLE on the full training window.
One-step forecast at time 𝑡
3. Update the ARIMA state with 𝑦𝑡 (innovation filter).
4. Compute ˆ︁𝑦𝑡+1|𝑡 from the fitted ARMA( 𝑝̂, 𝑞̂) representation of 𝑦 (𝑑̂) .
Rolling origin (if used): re-estimate at scheduled refit dates; otherwise only update the
state each day.

GARCH(1,1) on returns (variance proxy):To capture volatility clustering, we
estimate a GARCH model on SPX log-returns and use the one-step conditional
variance as a proxy for next-day risk under the physical measure (Engle, 1982;
Bollerslev, 1986; Nelson, 1991):

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,
𝜀𝑡 = 𝜎𝑡𝑧𝑡 , 𝑧𝑡∼𝑡 (0,1)𝜈 , 𝜈 > 2,

𝜎2
𝑡 = 𝜔 + 𝛼 𝜀2

𝑡−1 + 𝛽 𝜎
2
𝑡−1, 𝜔 > 0, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 < 1.

We annualize the one-day-ahead variance forecast via 252 trading days and convert to
an annualized standard deviation in percent as

𝑥𝑡+1 ≡ 100
√︃

252ˆ︁𝜎2
𝑡+1|𝑡 .

Because VIX is a risk-neutral 30-day expectation, while ˆ︁𝜎2
𝑡+1|𝑡 is a one-day conditional

variance under the physical measure, this proxy can systematically underpredict VIX
in the presence of a volatility risk premium (Blair, Poon and Taylor, 2001; Bondarenko,
2014; Whaley, 2009). To map the proxy into a VIX level, we fit an affine calibration
on the training set by OLS:

VIX𝑡 = 𝑎 + 𝑏 𝑥𝑡 + 𝑢𝑡 ,
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and then predict ˆ︃VIX𝑡+1 = 𝑎 + 𝑏 𝑥𝑡+1.

If a through-the-origin mapping is desired, set 𝑎=0 and estimate a single scale 𝑏 by
OLS.

Algorithm GARCH(1,1) variance proxy (estimate & one-step VIX level)
Input: SPX log-returns 𝑟𝑡 , 𝑡 = 1, . . . , 𝑇 ; training set indices Ttrain.
Specification
𝑟𝑡 = 𝜇 + 𝜀𝑡 , 𝜀𝑡 = 𝜎𝑡𝑧𝑡 , 𝑧𝑡 iid∼ 𝑡 (0,1)𝜈 ; 𝜎2

𝑡 = 𝜔 + 𝛼 𝜀2
𝑡−1 + 𝛽 𝜎

2
𝑡−1.

Estimation (MLE with constraints)
1. Initialize 𝜎2

0 (e.g., sample variance) and choose starting 𝜃 = (𝜇, 𝜔, 𝛼, 𝛽, 𝜈).
2. Maximize the Student-𝑡 log-likelihood over Ttrain subject to 𝜔 > 0, 𝛼, 𝛽 ≥ 0,
𝛼 + 𝛽 < 1, 𝜈 > 2.
3. With 𝜃̂, filter ˆ︁𝜎2

𝑡 recursively over the training window.
Map to a VIX-level proxy
4. For each training date 𝑡: 𝑥𝑡 ← 100

√︃
252ˆ︁𝜎2

𝑡 |𝑡−1.
5. Fit an affine calibration by OLS on the training set: VIX𝑡 = 𝑎 + 𝑏 𝑥𝑡 + 𝑢𝑡; store
(𝑎̂, 𝑏̂).
One-step forecast at time 𝑡
6. Compute ˆ︁𝜎2

𝑡+1|𝑡 = 𝜔̂ + 𝛼̂ 𝜀̂
2
𝑡 + 𝛽̂ˆ︁𝜎2

𝑡 with 𝜀̂𝑡 = 𝑟𝑡 − 𝜇̂.

7. Set 𝑥𝑡+1 ← 100
√︃

252ˆ︁𝜎2
𝑡+1|𝑡 and output ˆ︃VIX𝑡+1 = 𝑎̂ + 𝑏̂ 𝑥𝑡+1.

Rolling origin (if used): re-estimate 𝜃̂ and (𝑎̂, 𝑏̂) at refit points. Otherwise update
recursively.

HAR on VIX: To approximate long memory with interpretable components (Corsi,
2009), we regress next-day VIX on daily/weekly/monthly VIX aggregates:

VIX(𝑑)𝑡 = VIX𝑡 , VIX(𝑤)𝑡 =
1
5

4∑︁
𝑖=0

VIX𝑡−𝑖, VIX(𝑚)𝑡 =
1

22

21∑︁
𝑖=0

VIX𝑡−𝑖,

and estimate by OLS

VIX𝑡+1 = 𝑎0 + 𝑎1 VIX(𝑑)𝑡 + 𝑎2 VIX(𝑤)𝑡 + 𝑎3 VIX(𝑚)𝑡 + 𝜀𝑡+1.

HAC standard errors are optional. The forecasting formula is the fitted linear
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combination.

Algorithm HAR (estimate & one-step forecast)
Input: 𝑦𝑡 = VIX𝑡 , 𝑡 = 1, . . . , 𝑇 .
Feature construction (requires 𝑡 ≥ 22)
1. For each 𝑡: compute VIX(𝑑)𝑡 = VIX𝑡 , VIX(𝑤)𝑡 = 1

5
∑︁4
𝑖=0 VIX𝑡−𝑖, VIX(𝑚)𝑡 =

1
22

∑︁21
𝑖=0 VIX𝑡−𝑖.

Estimation (OLS)
2. Regress 𝑦𝑡+1 on (1, VIX(𝑑)𝑡 , VIX(𝑤)𝑡 , VIX(𝑚)𝑡 ) over the training window. Store
𝑎̂0, 𝑎̂1, 𝑎̂2, 𝑎̂3.
One-step forecast at time 𝑡
3. Form predictors at 𝑡 and compute ˆ︁𝑦𝑡+1|𝑡 = 𝑎̂0+ 𝑎̂1 VIX(𝑑)𝑡 + 𝑎̂2 VIX(𝑤)𝑡 + 𝑎̂3 VIX(𝑚)𝑡 .
Rolling origin (if used): recompute (𝑎̂ 𝑗 ) on each expanding/rolling window.

Machine-learning models

Preprocessing (common to all ML models). Features are standardized on the train-
ing window. Time-series (rolling-origin) validation selects hyperparameters and guards
against look-ahead. Inputs may include {VIX(𝑑)𝑡 ,VIX(𝑤)𝑡 ,VIX(𝑚)𝑡 ,ΔVIX𝑡 , 𝑅𝑉

(5)
𝑡 , 𝑅𝑉

(30)
𝑡 }.

RF: An ensemble of decorrelated CART trees reduces variance and captures
threshold interactions with minimal tuning (Breiman, 2001). With 𝑇 trees {ℎ𝑏}𝑇𝑏=1,
prediction is the mean ˆ︁𝑦𝑡+1 = 1

𝑇

∑︁𝑇
𝑏=1 ℎ𝑏 (X𝑡). Leaf limits control complexity.
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Algorithm: RF
Inputs: training data {(X𝑖, 𝑦𝑖)}𝑁𝑖=1, number of trees𝑇 , maximum depth𝐷, max_features
𝑚.

for 𝑡 = 1, . . . , 𝑇 do
1. Draw a bootstrap sample of size 𝑁 with replacement.
2. Train a CART regression tree ℎ𝑡 on the bootstrap:
At each node, sample 𝑚 features uniformly at random;
choose the split that minimizes mean squared error (MSE).
Stop if depth = 𝐷 or leaf size below threshold.
end for

Prediction: For a new X, output ˆ︁𝑦 = 1
𝑇

∑︁𝑇
𝑡=1 ℎ𝑡 (X).

Notes: No shuffling across time in CV (expanding windows). Set random seed for
replicability.

Gradient Boosting / XGBoost: Stage-wise additive trees fit pseudo-residuals with
shrinkage, depth constraints, and regularization, well-suited to weak nonlinear signals
(Friedman, 2001; Chen and Guestrin, 2016). Learning rate 𝜂 ∈ (0, 1) and early
stopping control overfitting.
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Algorithm: XGB
Inputs: {(X𝑖, 𝑦𝑖)}𝑁𝑖=1, rounds 𝑀 , learning rate 𝜂, max depth 𝑑, regularization (𝜆, 𝛾).
Initialize 𝐹0(X) = 𝑦̄.
for 𝑚 = 1, . . . , 𝑀 do
For each 𝑖: gradient 𝑔𝑖 = 𝜕ℓ/𝜕𝑦̂𝑖 = 𝑦̂𝑖 − 𝑦𝑖, hessian ℎ𝑖 = 𝜕2ℓ/𝜕𝑦̂2

𝑖 = 1.
Fit a depth-𝑑 tree by maximizing split gain using node sums 𝐺 =

∑︁
𝑔𝑖, 𝐻 =

∑︁
ℎ𝑖:

Leaf weight: 𝑤∗ = − 𝐺

𝐻 + 𝜆 .

Split gain: Gain = 1
2

(︄
𝐺2
𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
− 𝐺2

𝐻 + 𝜆

)︄
− 𝛾.

Add the new tree ℎ𝑚 to the ensemble: 𝐹𝑚 (X) = 𝐹𝑚−1(X) + 𝜂 ℎ𝑚 (X).
Validate; apply early stopping (patience 𝑃).
end for

Prediction: ˆ︁𝑦 = 𝐹𝑀 (X).
Notes: Column/row subsampling can be used to regularize. With squared error the
residuals equal gradients.

NN: A single hidden layer MLP with ReLU approximates smooth nonlinear
maps. 𝐿2 regularization and early stopping aid generalization in noisy, low-signal data
(Hornik, Stinchcombe and White, 1989; Goodfellow, Bengio and Courville, 2016).
With 𝐻 hidden units:

ℎ = 𝜎(𝑊1X𝑡 + 𝑏1), 𝜎(𝑢) = max{0, 𝑢}, ˆ︁𝑦𝑡+1 = 𝑤⊤2 ℎ + 𝑏2,

trained to minimize MSE + 𝜆∥𝑊1∥22 + 𝜆∥𝑤2∥22.
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Algorithm: NN (regression)
Inputs: {(X𝑖, 𝑦𝑖)}𝑁𝑖=1, hidden size 𝐻, optimizer (Adam), batch size 𝐵, learning rate 𝜂,
𝐿2 weight decay 𝜆.

Preprocess: standardize features (zero mean, unit variance) on training set.
Initialize𝑊 (1) , 𝑏 (1) ,𝑊 (2) , 𝑏(2) .
for epochs = 1, 2, . . . do
Split data into mini-batches of size 𝐵. For each batch:
Forward: ℎ = ReLU(𝑊 (1)X + 𝑏 (1)), ˆ︁𝑦 = 𝑊 (2)ℎ + 𝑏 (2) .
Loss: L = 1

𝐵

∑︁(ˆ︁𝑦 − 𝑦)2 + 𝜆∥𝑊 ∥22.
Backward: compute gradients and update parameters with Adam(𝜂).
Track validation MSE. Stop early if no improvement for 𝑃 epochs.
end for

Prediction: apply the forward pass to standardized inputs.

Notes: Linear output, MSE loss. Fixed random seed improves replicability.

3.5 Estimation design and validation

We split the data into a training sample (2020–2023) and an (out-of-sample) OOS test
period (2024). Econometric models (ARIMA, GARCH, HAR) are estimated once on
the full training set, and their fitted parameters remain fixed when forecasting the test
period. Machine learning models (RF, XGBoost, NN) are tuned using time-series CV
(rolling-origin): we repeatedly fit the model on expanding windows of the training
data and validate on the next holdout block. This simulates real-time forecasting and
prevents look-ahead bias. At each forecast date, only information available up to that
date is used (no future data is accessed), ensuring a strict OOS evaluation.

3.6 Evaluation metrics

Forecast accuracy is summarized by standard error metrics. Let 𝑦𝑡 be the actual
observed value (VIX) and ˆ︁𝑦𝑡 the forecast. We compute where 𝑦̄ is the mean of 𝑦𝑡 in
the test period. RMSE penalizes larger errors more strongly, while MAE measures the
average absolute error. 𝑅2 indicates the fraction of variance explained (1 is perfect fit,
0 is as good as the sample mean).
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𝑅𝑀𝑆𝐸 =

√︄
1
𝑁

∑︁
𝑡∈Ttest

(︁ˆ︁𝑦𝑡 − 𝑦𝑡 )︁2
, 𝑀𝐴𝐸 =

1
𝑁

∑︁
𝑡∈Ttest

|︁|︁ˆ︁𝑦𝑡 − 𝑦𝑡 |︁|︁,
𝑀𝐴𝑃𝐸 =

100
𝑁

∑︁
𝑡∈Ttest

|︁|︁|︁|︁ˆ︁𝑦𝑡 − 𝑦𝑡𝑦𝑡

|︁|︁|︁|︁ , 𝑅2 = 1 −
∑︁
𝑡∈Ttest

(︁ˆ︁𝑦𝑡 − 𝑦𝑡 )︁2∑︁
𝑡∈Ttest

(︁
𝑦𝑡 − 𝑦̄

)︁2 .

We also report MAPE for interpretability. To assess directional accuracy, we
compute

Pr{sign(̂︅ΔVIX𝑡) = sign(ΔVIX𝑡)},

the proportion of days where the forecasted change has the same sign as the actual
change. For statistical comparison between models, we use the DM test (Diebold and
Mariano, 1995) on the forecast errors.

For economic evaluation, we simulate a simple volatility-timing strategy. Each day
𝑡, if the model predicts a sufficiently large increase in VIX, we take a long volatility
position (e.g. buy VIX futures). If it predicts a decrease, we go short volatility. We
then compute the strategy’s daily P&L and annualized Sharpe ratio. This idealized
strategy (ignoring transaction costs and slippage) provides a proxy for the potential
alpha that could be harvested from the forecast signals.

3.7 Data summary

Table 1 summarizes the variables and their sources. Figure 1 plots the daily VIX
index over 2020–2024, highlighting periods of extreme volatility. Figure 2 shows an
example segment of OOS actual vs. predicted VIX for one model.

Table 1: Variables and sources (01 Jan 2020–31 Dec 2024).

Variable Symbol Freq. Source
VIX close VIX𝑡 Daily CBOE; Yahoo Finance
S&P 500 close 𝑃𝑡 Daily Yahoo Finance
Log-return 𝑟𝑡 = ln(𝑃𝑡 ) − ln(𝑃𝑡−1) Daily Computed
RV (5-day) 𝑅𝑉

(5)
𝑡 Daily Computed

RV (30-day) 𝑅𝑉
(30)
𝑡 Daily Computed

VIX daily comp. VIX(𝑑)𝑡 Daily Computed
VIX weekly avg VIX(𝑤)𝑡 Daily Computed
VIX monthly avg VIX(𝑚)𝑡 Daily Computed
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Table 2: Model settings (concise).

Model Key choices
ARIMA Orders by BIC on training window
GARCH(1,1) Student–𝑡 errors; annualize ˆ︁𝜎𝑡+1
HAR (VIX) OLS on (VIX(𝑑)𝑡 ,VIX(𝑤)𝑡 ,VIX(𝑚)𝑡 )
RF ∼200 trees; max depth ≤ 5
XGBoost Depth 3; shrinkage 𝜂 ∈ [0.03, 0.1]; early stopping
Neural Net 1 hidden layer (ReLU, ≈ 10 units), 𝐿2, early stop
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Figure 1: VIX daily close (2020–2024). The sample spans calm and stressed regimes,
providing variation for model evaluation.

3.8 Notes on interpretation

It is important to recognize that VIX is a forward-looking, risk-neutral volatility
measure. In practice, VIX tends to exceed the realized volatility that follows, reflecting
a positive volatility risk premium (Whaley, 2009; Blair, Poon and Taylor, 2001;
Bondarenko, 2014). Therefore, a model based purely on historical returns (such as
GARCH) will often underpredict VIX. Models that directly include implied volatility
information such as using past VIX levels in a HAR model or training on the VIX
series can partially account for this effect (Corsi, 2009; Chen and Guestrin, 2016). As
a result, we expect models leveraging VIX data directly to produce higher average
forecasts than purely returns based models. For package versions, see Appendix A.

3.9 Visual and spectral diagnostics

To complement the descriptive statistics, we examine whether the VIX series exhibits
patterns that forecasting models can exploit. The first set of panels contrasts OOS
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predictions against the realised VIX level under two rolling estimation windows.
The 300-day window reacts more quickly to regime changes (Figure 2), whereas the
500-day window stabilises parameter estimates in calm periods but adapts more slowly
during spikes (Figure 3).
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Figure 2: OOS VIX forecasts under a rolling 300-day training window for represen-
tative models (e.g., HAR, GARCH, XGBoost). Forecast errors expand around sharp
spikes. Otherwise the models track level dynamics well.
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Figure 3: Same comparison with a 500-day rolling window. The longer window
dampens noise in tranquil markets but adapts more slowly to abrupt transitions.

Next, we compare the VIX level with the forward 21-day realized volatility
(annualized) computed from S&P 500 returns (Figure 4). VIX typically exceeds future
realized volatility, consistent with a positive volatility risk premium, and motivates
forecasting VIX directly when the aim is to anticipate option-implied risk.

Finally, we assess the frequency content of the core series. Fourier magnitude
and Welch power spectral density indicate that most energy lies at low frequencies,
reflecting persistent regimes rather than short-horizon periodicity (Figures 5–6).
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Distinct narrow band cycles are weak, supporting models that capture long-memory
and regime changes instead of strict seasonality.
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Figure 5: Fourier magnitude of the VIX series. Power concentrates at low frequencies
(regime variation). Strong short-period cycles are not evident.
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Figure 6: Welch power spectral density of S&P 500 daily log-returns. The spectrum
is relatively flat at high frequencies with modest low-frequency power, consistent with
weak daily serial dependence.
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4 Results and evaluation

This section reports OOS forecasting results for the 2024 test period using the models
and rolling-estimation design described in Section 3. We first compare statistical
accuracy across econometric and machine-learning (ML) models under two rolling
windows (300 and 500 trading days) in tables 3–4. We then assess the significance
of performance differences via DM tests (Tables 5–6), examine calibration and error
profiles through visual diagnostics (Figures 7–8), translate forecasts into a stylised
volatility-timing rule and finally discuss computational efficiency.

4.1 Forecast accuracy

Tables 3–4 summarise RMSE, MAE, MAPE, 𝑅2, and directional accuracy for all
models. Consistent with heterogeneous volatility persistence, the HAR specification
performs strongly in levels, and tree-based ML methods (RF, XGBoost) deliver
competitive or superior RMSE by capturing non-linear interactions among lagged VIX
components and realised-volatility covariates. ARIMA and the returns-based GARCH
proxy underperform in level prediction, reflecting the imperfect and state-dependent
link between conditional return variance and the option-implied VIX level.

Table 3: OOS forecast performance in 2024 (rolling window𝑊=300). Lower is better
for RMSE/MAE/MAPE and higher is better for 𝑅2.

Model RMSE MAE MAPE (%) R2 Dir. Acc. (%)
Mean 3.733 2.841 17.567 -0.231 52.0
ARIMA 3.075 1.850 10.676 0.165 50.4
GARCH(1,1) 3.595 2.444 14.380 -0.142 54.8
HAR 1.941 0.938 5.241 0.667 53.6
RF 3.040 1.649 9.354 0.184 50.0
XGB 2.923 1.590 9.049 0.245 48.0
NN 7.264 5.055 31.140 -3.662 53.6

Table 3 shows thatHAR attains the strongest statistical accuracy (lowestRMSE/MAE/MAPE
and highest 𝑅2), followed by XGB and ARIMA. The returns-based GARCH proxy
underperforms in level prediction despite the highest directional accuracy, reflecting
an imperfect mapping from conditional return variance to the VIX level. RF is weaker
than XGB in this setting, and the simple MLP (NN) is clearly overfit/mis-specified.
Directional accuracy is clustered near 50–55%, with limited separation across models
during the 2024 OOS window.

Table 4 HAR remains the strongest in level accuracy under𝑊=500, while tree
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Table 4: OOS forecast performance in 2024 (rolling window𝑊=500). Lower is better
for RMSE/MAE/MAPE and higher is better for 𝑅2.

Model RMSE MAE MAPE (%) R2 Dir. Acc. (%)
Mean 5.130 4.375 30.046 -1.325 50.0
ARIMA 3.147 1.903 11.031 0.125 48.4
GARCH(1,1) 3.414 2.294 13.441 -0.030 53.6
HAR 1.857 0.946 5.347 0.695 50.0
RF 2.904 1.603 9.102 0.255 50.0
XGB 2.913 1.607 9.134 0.250 48.0
NN 5.355 4.352 27.365 -1.533 54.8
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ensembles (RF, XGB) are competitive, ARIMA is middling, the GARCH-based level
proxy remains weak and the simple MLP (NN) underperforms.

Figure 7 overlays actual and predicted VIX for core models under𝑊=300, illus-
trating that errors concentrate around abrupt volatility spikes. Per-model calibration
scatters (Figures 9–18) align closely with the 45-degree line for the best-performing
specifications, indicating good level calibration.
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Figure 7: OOS actual VIX vs. predictions for HAR, GARCH, RF, XGB, and NN
under a rolling window𝑊=300.
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Figure 8: OOS actual VIX vs. predictions for HAR, GARCH, RF, XGB, and NN
under a rolling window𝑊=500.

4.2 DM tests

Pairwise DM tests use squared-error loss with a Newey–West HAC variance estimator
and lag 𝐿 = 1 (one-step-ahead, non-overlapping errors). We report two-sided 𝑝-values.

To assess whether differences in predictive accuracy are statistically significant, we
apply the DM test to pairwise loss differentials under squared-error loss. The matrices
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Figure 9: Calibration scatter (actual vs. predicted VIX) for HAR, rolling 𝑊=300.
The 45° line is shown for reference.
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Figure 10: Calibration scatter (actual vs. predicted VIX) for HAR, rolling𝑊=500.
The 45° line is shown for reference.
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Figure 11: Calibration scatter (actual vs. predicted VIX) for GARCH, rolling𝑊=300.
The 45° line is shown for reference.
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Figure 12: Calibration scatter (actual vs. predicted VIX) for GARCH, rolling𝑊=500.
The 45° line is shown for reference.
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Figure 13: Calibration scatter (actual vs. predicted VIX) for XGB, rolling𝑊=300.
The 45° line is shown for reference.
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Figure 14: Calibration scatter (actual vs. predicted VIX) for XGB, rolling𝑊=500.
The 45° line is shown for reference.
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Figure 15: Calibration scatter (actual vs. predicted VIX) for RF, rolling𝑊=300. The
45° line is shown for reference.
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Figure 16: Calibration scatter (actual vs. predicted VIX) for RF, rolling𝑊=500. The
45° line is shown for reference.
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Figure 17: Calibration scatter (actual vs. predicted VIX) for NN, rolling 𝑊=300.
The 45° line is shown for reference.
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Figure 18: Calibration scatter (actual vs. predicted VIX) for NN, rolling 𝑊=500.
The 45° line is shown for reference.
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below report the test statistic and 𝑝-value (Tables 5–6). Positive entries indicate
the row model has higher loss than the column model. Under both rolling windows,
HAR and the leading ML specifications significantly outperform weaker baselines.
Differences among the top ML models are smaller and frequently not significant.

Table 5: DM tests (squared-error loss), OOS 2024, rolling window𝑊=300. Positive
entries mean the row model has higher loss than the column model.

HAR GARCH RF XGB NN

HAR — -4.21, p=0.000 -2.53, p=0.011 -2.59, p=0.010 -2.90, p=0.004
GARCH 4.21, p=0.000 — 2.04, p=0.042 2.46, p=0.014 -2.48, p=0.013
RF 2.53, p=0.011 -2.04, p=0.042 — 1.14, p=0.254 -2.85, p=0.004
XGB 2.59, p=0.010 -2.46, p=0.014 -1.14, p=0.254 — -2.87, p=0.004
NN 2.90, p=0.004 2.48, p=0.013 2.85, p=0.004 2.87, p=0.004 —

Table 6: DM tests (squared-error loss), OOS 2024, rolling window𝑊=500.

HAR GARCH RF XGB NN

HAR — -3.59, p=0.000 -2.49, p=0.013 -2.45, p=0.014 -6.30, p=0.000
GARCH 3.59, p=0.000 — 2.13, p=0.033 2.14, p=0.033 -4.75, p=0.000
RF 2.49, p=0.013 -2.13, p=0.033 — -0.30, p=0.762 -5.33, p=0.000
XGB 2.45, p=0.014 -2.14, p=0.033 0.30, p=0.762 — -5.38, p=0.000
NN 6.30, p=0.000 4.75, p=0.000 5.33, p=0.000 5.38, p=0.000 —

4.3 Error profiles and robustness

We analyse bias and dispersion through rolling means of signed errors and rolling
MAE. Figure 19 shows no persistent bias for the strongest models Short-lived drifts
coincide with regime shifts. Rolling MAE (Figure 21–22) increases around volatility
spikes, as expected. Binning errors by the actual VIX level (Figure 23–24) reveals
larger absolute errors at high levels, although relative errors remain controlled. Error
distributions (Figure 25) exhibit heavier tails during stress episodes.

4.4 Economic value

We map forecasts into a stylised volatility-timing rule using the predicted change in
VIX and either a discrete sign position with a data-driven threshold or a continuous,
standardised sizing rule. Tables 7–10 report annualised Sharpe ratios, active-day hit
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Figure 19: Smoothed (20-day) signed errors by model, rolling𝑊=300. No persistent
bias is evident.
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Figure 20: Smoothed (20-day) signed errors by model, rolling𝑊=500. No persistent
bias is evident.
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Figure 21: Rolling MAE (20-day window) by model, rolling𝑊=300. Errors peak
around volatility spikes.
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Figure 22: Rolling MAE (20-day window) by model, rolling𝑊=500. Errors peak
around volatility spikes.
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Figure 23: Binned errors by actual VIX level, rolling 𝑊=300. Absolute errors
increase with level and relative errors remain contained.
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Figure 24: Binned errors by actual VIX level, rolling 𝑊=500. Absolute errors
increase with level and relative errors remain contained.
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Figure 25: Error distributions (violin plots), rolling 𝑊=300. Tails widen during
stress episodes.
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Figure 26: Error distributions (violin plots), rolling 𝑊=300. Tails widen during
stress episodes.
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rates, and activity shares. The strongest statistical models yield the highest economic
performance, with sensitivity to the threshold and clustering of spikes.

Table 7: Economic evaluation (discrete sign rule), OOS 2024, rolling𝑊=300.

Sharpe HitActive(%) ActiveDays(%)

Mean 1.61 52.86 90.8
ARIMA -0.97 46.78 68.4
GARCH 0.42 54.9 81.6
HAR 0.73 71.43 2.8
RF -0.62 50.74 54.4
XGB -0.50 52.67 60.0
NN -1.43 53.78 90.0

Table 8: Economic evaluation (continuous sizing), OOS 2024, rolling𝑊=300.

Sharpe HitActive(%) ActiveDays(%)

Mean 0.94 51.63 98.4
ARIMA -0.25 49.79 97.2
GARCH 0.47 55.42 96.0
HAR 0.03 53.09 97.2
RF -0.73 49.17 96.0
XGB -0.62 47.76 98.0
NN -1.24 53.66 98.4

Table 9: Economic evaluation (discrete sign rule), OOS 2024, rolling𝑊=500.

Sharpe HitActive(%) ActiveDays(%)

Mean 1.87 50.22 92.4
ARIMA -0.49 47.73 70.4
GARCH 0.28 51.66 84.4
HAR 1.36 100.0 0.8
RF -0.79 49.65 56.4
XGB -0.65 49.04 62.8
NN -0.51 55.84 92.4

4.5 Computational efficiency

We compare training time and accuracy to assess efficiency. Figure 27 contrasts
total training time by model across windows, while Figure 28 plots RMSE against
training time for𝑊=300. HAR and RF offer favorable accuracy–cost trade–offs deeper
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Table 10: Economic evaluation (continuous sizing), OOS 2024, rolling𝑊=500.

Sharpe HitActive(%) ActiveDays(%)

Mean 2.19 50.2 99.6
ARIMA -0.37 49.19 98.4
GARCH 0.35 53.63 99.2
HAR 0.34 49.8 98.8
RF -0.67 49.79 96.4
XGB -0.71 47.48 95.2
NN -0.45 55.06 98.8
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boosting and NN can be competitive at higher computational expense. In addition
to RMSE–time frontiers (Figures 28–29), Sharpe–time frontiers (Figures 30–31)
summarize the economic efficiency trade-off.
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Figure 27: Total training time by model under rolling windows𝑊=300 and𝑊=500.
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Figure 28: Efficiency frontier: RMSE versus training time, rolling𝑊=300.

4.6 Summary

We constructed a daily one–step–ahead volatility forecasting framework centered on
VIX over 2020–2024 using public inputs (variables and sources in Table 1 and model
settings in Table 2). VIX is a model-free, risk-neutral proxy for 30-day variance
(Whaley, 2009; CBOE, 2023), while S&P 500 returns provide backward-looking
realized-volatility covariates (Andersen et al., 2001). The sample spans calm and
stressed regimes (Figure 1). Because risk-neutral expectations embed a positive
volatility risk premium, returns-based conditional variance models often under predict
VIX levels (Blair, Poon and Taylor, 2001; Bondarenko, 2014; Whaley, 2009).
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Figure 29: Efficiency frontier: RMSE versus training time, rolling𝑊=500.
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Figure 30: Efficiency frontier: Sharpe versus training time, rolling𝑊=300.
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Figure 31: Efficiency frontier: Sharpe versus training time, rolling𝑊=500.
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Our model set balances interpretability and flexibility: ARIMA, GARCH and HAR
capture linear autocorrelation, volatility clustering and multi-horizon persistence,
respectively (Engle, 1982; Bollerslev, 1986; Corsi, 2009), while RF, XGB and a shal-
low NN allow non-linear interactions across daily/weekly/monthly VIX components
and realised volatility inputs (Breiman, 2001; Chen and Guestrin, 2016; Goodfellow,
Bengio and Courville, 2016). Oos overlays illustrate tracking and spike misspeci-
fication patterns (Figures 7–8). Calibration scatters show level fit (Figures 9–18).
Spectral/volatility-gap diagnostics motivate targeting VIX directly (Figures 4–6).

Accuracy comparisons (Tables 3–4) and DM tests (Tables 5–6) show that specifi-
cations leveraging lagged VIX (e.g., HAR) attain the strongest level RMSE/MAE/𝑅2

across windows, while tree-based ML is competitive by capturing nonlinearities.
Error profiles concentrate around volatility spikes (Figures 19–26). Mapping signals
into simple timing rules translates statistical gains into economic terms (Tables 7–
10). Training-time frontiers summarize accuracy–cost trade-offs (Figures 27–29).
The framework is transparent and extensible to alternative horizons/targets without
changing the validation logic (Andersen et al., 2001; Corsi, 2009; Chen and Guestrin,
2016).
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5 Discussion

Across both rolling windows (𝑊=300, 500), models that explicitly exploit multi-
horizon persistence in implied volatility deliver the most accurate level forecasts. The
HAR specification, which aggregates daily, weekly and monthly VIX components,
attains the best RMSE/MAE and maintains good level calibration (Tables 3–4;
Figures 7–8, 9–10). This is consistent with the long-memory view of volatility and
the idea that implied volatility behaves as a persistent state variable (Corsi, 2009). A
returns-based GARCH proxy underpredicts the VIX level throughout the out-of-sample
period (Tables 3–4; Figures 11–12). The gap lines up with prior evidence on the
volatility risk premium embedded in option prices and with the well-known difference
between risk-neutral and physical-measure objects (Blair, Poon and Taylor, 2001;
Bondarenko, 2014; Whaley, 2009). In practical terms, when the aim is to anticipate
option-implied risk, forecasting the VIX directly is preferable to mapping conditional
return variance into a VIX level. Our findings reinforce this and are consistent with
Ahoniemi (2008), who found that GARCH did not outperform simpler ARIMA models
in VIX prediction, and with Liu, Guo and Qiao (2015), who documented that GARCH
forecasts systematically underpredict VIX levels. Wang (2019) further supports HAR’s
superiority by showing that lagged VIX components improve forecast accuracy over
naïve AR(1) alternatives.

Flexible learners help insofar as they capture nonlinear interactions among lagged
VIX components and realized-volatility covariates. Tree ensembles (RF, XGBoost)
are competitive on RMSE and level calibration (Figures 13–16), which is consistent
with recent results on machine learning in asset pricing and scalable boosting (Gu,
Kelly and Xiu, 2020; Chen and Guestrin, 2016; Breiman, 2001). Our evidence is
in line with Grefhorst (2024), who used XGBoost to predict VIX and achieved a
MAPE around 4.8%, and with Degiannakis, Filis and Hassani (2018), who showed that
nonlinear and non-parametric methods can improve global volatility index forecasts.
Wu, He and Xie (2023) report that enhanced GARCH-MIDAS models outperform
standard GARCHs by accounting for time-varying risk aversion, consistent with our
finding that more flexible structures capture shifts better. Forecasting volatility spikes
remains challenging therefore errors widen in stress, and signed errors drift near
regime shifts (Figures 25–26; 19–20). This pattern is acknowledged in recent work
such as Bai and Cai (2024), who note the limits of predictive capacity under turbulence.
Regime-adaptive strategies and covariate expansion help, but perfect spike capture
remains out of reach.
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Statistical gains do not automatically translate into tradable gains. The stylised
timing rules show that Sharpe improvements depend on sizing choices, participation
thresholds and regime clustering (Tables 7–10). Selective participation can produce
high hit rates with few active days (HAR under discrete rules), whereas continuous
sizing can add value even without markedly better direction. The efficiency views make
the trade-offs explicit RMSE–time frontiers capture statistical efficiency (Figures 28–
29) and Sharpe–time frontiers summarize economic efficiency (Figures 30–31), while
Figure 27 shows absolute training-time profiles. Prior studies also caution against
assuming statistical advantage implies economic value. Ahoniemi (2008) reported
strategy profits that diminished after costs. Poon and Granger (2003) highlight that
even highly accurate models may not lead to arbitrage opportunities. Net Sharpe
must account for slippage, turnover and capacity. In our results, HAR’s smoother
signals likely hold up better under costs, whereas tree models could suffer unless
post-processed. This mirrors conclusions in S. Wang et al. (2024), who emphasise
signal sparsity and cost-aware tuning in ML-based VIX trading systems. Our findings
support the view that models should be evaluated not only by predictive power, but
also implementation robustness an approach aligned with best practices in recent
volatility-timing literature.

5.1 Limitations and threats to validity

Our conclusions are conditioned on the 2024 out-of-sample window and daily close
data. Intraday information and official settlement mechanics are not used. The
mapping from statistical to economic value is sensitive to transaction costs, fees,
slippage and execution timing, and model rankings can change once frictions are
included. The GARCH-to-level mapping is approximate because VIX is risk-neutral
while conditional return variance is a physical-measure object (Blair, Poon and Taylor,
2001; Bondarenko, 2014; Whaley, 2009). These caveats frame the contribution as a
transparent, reproducible benchmark rather than a production trading system.

5.2 Trading costs and sensitivity analysis

When frictions are accounted for, signal stability becomes central. Linear and HAR-
type models typically require fewer adjustments and generate lower turnover, which
can make them look relatively better after costs. Tree ensembles may introduce jitter
near split thresholds unless signals are post-processed. In practice, models should be
tuned on cost-aware objectives for example a turnover-penalized loss or net Sharpe,
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rebalancing should be disciplined and execution assumptions should be explicit.
Psaradellis et al. (2016) further demonstrate that high predictive accuracy in implied
volatility models does not necessarily translate into economic gains once transaction
costs and execution frictions are accounted for. Sensitivity checks should vary costs,
rebalancing frequency and thresholds, key hyperparameters, regimes and execution
timing. Model rankings that persist across these scenarios are more credible for live
use. The Sharpe–time frontiers (Figures 30–31) together with turnover statistics from
the timing results provide a concise view of how much friction each approach can
absorb before underperforming (Gu, Kelly and Xiu, 2020; Chen and Guestrin, 2016;
Breiman, 2001).

5.3 Conclusions

In conclusion, this study demonstrates that machine-learning methods can improve
one-day-ahead VIX forecasts relative to ARIMA and GARCH. However, the statistical
gains translate into economic value only under realistic frictions and when signals
are sufficiently stable. HAR remains a strong benchmark because of volatility
persistence (Figures 9–10), while tree-based models (RF (Figures 15–16) and XGBoost
(Figures 13–14)) capture nonlinearities that lift forecast accuracy.
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Appendix A

All analyses were performed in Python 3.x (Python Software Foundation, 2025). The
following third-party libraries were used.

• NumPy: array programming, linear algebra utilities (Harris et al., 2020).

• pandas: tabular data structures, I/O, time-series handling (McKinney, 2010).

• SciPy: scientific routines; specifically scipy.stats and scipy.signal (Virtanen
et al., 2020).

• Matplotlib: plotting (pyplot) and date formatting (matplotlib.dates) (Hunter,
2007).

• scikit-learn: preprocessing (StandardScaler), linearmodels (LinearRegression),
ensembles (RandomForestRegressor), neural nets (MLPRegressor), and metrics
(mean_squared_error, mean_absolute_error, r2_score) (Pedregosa et al., 2011).

• XGBoost: gradient boosting regressor (xgboost.XGBRegressor) (Chen and
Guestrin, 2016).

• statsmodels: time-series modelling (ARIMA) and related utilities (Seabold and
Perktold, 2010).

• arch: volatility models (arch.univariate.arch_model) for GARCH-type speci-
fications (Sheppard, 2014).

• yfinance: historical market data downloader used for VIX and related series
(Aroussi, 2015).

• OpenAI: Machine-translation assistance for the English text was provided by
ChatGPT. All outputs were reviewed and edited by the author (2025).
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