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Abstract
This thesis addresses the coexistence problem of air surveillance radars and wind
farms. Wind power is a critical element of the renewable energy transition, for which
large wind farms are required to be constructed. However, wind farms cause adverse
effects on air surveillance radars and decrease the air surveillance quality. Proper siting
of radars and wind farms mitigates these effects and allows for wind farm development
while maintaining good air surveillance quality. Currently, limited research exists
on the placement optimization of radars and wind farms. Furthermore, the existing
methods rely on computationally heavy simulations, which limits the number of
placement options for radars and wind farms.

This thesis addresses this gap by developing a method for the joint placement
of radars and wind farms using mixed-integer linear programming. This method
incorporates models for radar performance and the adverse effects of wind farms.
These models are used to calculate system performance measures, which estimate
the air surveillance quality of placed radars and wind farms. Two alternative system
performance measures are developed, which form the basis for two mixed-integer
linear programming formulations. The alternative optimization formulations balance
the trade-off between computational complexity and the accuracy of the results, where
the less complex formulation converges faster but is not as accurate as the slower and
more complex formulation.

The efficiency of the optimization and the feasible scale of the placement problem
are analyzed through an example problem with over 10100 possible radar and wind
farm placement combinations. The example problem is solved with both optimization
formulations. The globally optimal solutions of these formulations are obtained in
minutes. In the existing literature, no other placement method has been shown to solve
the radar and wind farm placement problem at this scale while maintaining global
optimality and short runtime.

Keywords air surveillance, mixed-integer linear programming, radar and wind farm
coexistence, placement optimization, wind power
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Tiivistelmä
Tässä työssä tarkastellaan ilmavalvontatutkien ja tuulipuistojen yhteensovittamisen
ongelmaa. Tuulivoimalla on merkittävä rooli yhteiskunnan siirtymisessä uusiutuviin
energiamuotoihin. Tuulivoimaa tuotetaan tuulipuistoilla, jotka koostuvat yksittäisistä
tuulimyllyistä. Tuulimyllyt, ja siten myös tuulipuistot, aiheuttavat haittavaikutuksia
ilmavalvontatutkille ja heikentävät ilmavalvonnan laatua. Oikeanlaisella tutkien ja
tuulipuistojen sijoittamisella on mahdollista minimoida tuulipuistojen haittavaiku-
tuksia, mikä mahdollistaa tuulivoiman kehittämisen sekä korkean ilmavalvonnan
laadun ylläpidon. Tutkien ja tuulipuistojen yhteissijoittamista tarkastelevaa tutkimusta
on tehty vähän. Olemassa olevat menetelmät perustuvat laskennallisesti raskaisiin
simulaatioihin, mikä vähentää vertailtavien sijoittamisvaihtoehtojen lukumäärää.

Tässä työssä kehitetään menetelmä tutkien ja tuulipuistojen sijoittamiseen käyt-
täen lineaarista sekalukuohjelmointia, jonka avulla on mahdollista optimoida näiden
sijainnit, kun sijoitusvaihtoehtoja on paljon. Tämä menetelmä sisältää tutkien suo-
rituskykymallin sekä tuulipuistojen haittavaikutusmallin. Näitä malleja käytetään
arvioimaan systeemin, eli tutkien ja tuulipuistojen, suorituskykyä. Työssä esitellään
kaksi vaihtoehtoista systeemin suorituskykymittaria, joita käytetään kahdessa sekalu-
kuoptimointimallissa. Toinen optimointimalleista tuottaa tarkempia tuloksia, mutta
sen ratkaiseminen on laskennallisesti raskaampaa, kun taas toinen on laskennallisesti
vähemmän vaativa, mutta se on epätarkempi.

Kehitetyn menetelmän laskennallista tehokkuutta ja sijoittamisongelman käyttö-
kelpoista kokoluokkaa tarkastellaan esimerkkiongelman avulla. Esimerkkiongelma
sisältää yli 10100 vaihtoehtoista tutkien ja tuulipuistojen sijoituskombinaatiota. Esi-
merkki ratkaistaan käyttäen kumpaakin optimointimallia. Näiden mallien globaalisti
optimaaliset ratkaisut löydetään minuuteissa. Olemassa olevassa kirjallisuudessa ei ole
aiemmin esitelty tässä työssä kehitetyn kaltaista menetelmää, jolla voidaan määrittää
tutkien ja tuulipuistojen globaalisti optimaaliset sijainnit lyhyessä ajassa siten, että voi-
daan ylläpitää korkea ilmavalvonnan laatu ja minimoida tuulipuistoista ilmavalvontaan
aiheutuvat haittavaikutukset.
Avainsanat ilmavalvonta, lineaarinen sekalukuohjelmointi, tutkien ja tuulipuistojen

yhteiskäyttö, sijaintioptimointi, tuulivoima
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1 Introduction
Wind energy production plays a critical role in the transition to clean and sustainable
energy systems. In recent years, the global wind power capacity has increased rapidly
and is estimated to keep steadily increasing in the coming decades (Costanzo et al.,
2025). Wind power is emissions-free, and after installation, the generation of electricity
is practically free. However, despite these environmental and economic benefits,
wind power development comes with downsides caused by the wind farms. The local
communities living near wind farms are affected by their noise and perceived visual
degradation of the landscape (Saidur et al., 2011). Most of these problems can be
reduced or resolved with proper siting. However, the siting of wind farms is made
additionally difficult due to wind farms causing adverse effects on air surveillance.

Air surveillance is the systematic monitoring of airspace to detect and track flying
objects, e.g., aircraft and missiles (Merriam-Webster, n.d.). This monitoring is mainly
performed with air surveillance radars. Wind farms pose a significant challenge
to the air surveillance radars. The wind farms can obstruct a radar’s line of sight,
reducing the ability to detect and track targets in the affected area (Theil et al., 2010).
Moreover, the wind farms reflect radar signals back towards the radar, which causes
clutter, i.e., unwanted noise, in the radar image (Theil et al., 2010). The reflected
radar signal can be falsely interpreted as an aircraft, which can trigger unnecessary
operational responses by air surveillance authorities. These effects cause the wind
farms to decrease the overall air surveillance quality, meaning how well the radars are
able to detect and track targets in the surveillance area. The siting of both wind farms
and radars directly affects the air surveillance quality and the severity of the adverse
effects. The conflicting objectives of maintaining good air surveillance quality and
increasing wind power generation cause a coexistence problem between the objectives.

The urgency of resolving this issue is highlighted by the European Union’s (EU)
ambitious energy goals. The EU has committed to doubling the share of renewables in
its energy consumption and to quadrupling the annual wind power generation by 2030
(European Commission, 2023). Achieving these targets requires the rapid deployment
of new wind energy projects. However, the permitting process remains a significant
bottleneck, as it requires approval from multiple national authorities and is criticized
to be slow and complex (European Commission, 2023). One of these authorities is
the air surveillance authority, who are in charge of maintaining high air surveillance
quality. If a proposed wind farm decreases the surveillance quality significantly, the
plan must be rejected for national security reasons. Due to the detailed analysis of air
surveillance quality being classified information, there is limited transparency and
communication for specific wind farm rejection reasons. This limited transparency
and communication are deemed problematic by the wind farm developers (Joensuu
et al., 2021). For instance, the challenges in the permitting process and concerns over
air surveillance quality are among the reasons for limited wind power development in
Eastern Finland (see, e.g., Peiponen, 2022; Pelli, 2023).

To achieve the ambitious EU-level goals for wind power generation, the permission
process needs to be accelerated. One potential approach could be to let the wind
farm developers to determine possible locations for wind farms, and then letting the
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national permitting authorities to decide the most suitable sites for their development.
In this approach, the surveillance authorities would also determine a corresponding
set of viable radar sites. These predefined options could then be jointly analyzed to
determine the optimal placement of both radars and wind farms. This approach is
additionally reasonable as some radars are designed to be movable (Keränen, 2020).

Despite the importance and urgency of developing ways to accelerate the permission
process, limited research is available on the optimization of radar and wind farm
placements. The prior literature is mostly focused on optimizing the radar or wind farm
placement in isolation (see, e.g., Roy and Acharya, 2017; Cranmer et al., 2018). The
existing methods on the joint placement optimization of radars and wind farms (see,
e.g., Lahti, 2022; Hagnäs, 2025) are dependent on computationally heavy simulations,
and are thus limited to only consider a small number of placement options. These
existing methods for the radar and wind farm placements are discussed further in
Section 2.4. No literature exists on optimizing these placements from a large number
of placement options. This gap highlights the need for a method for efficient evaluation
of radar and wind farm placements and for placement optimization.

This thesis addresses the limitation of existing radar and wind farm placement
methods, which can only consider a small number of placement options, by developing
a new method for their joint placement. This method consists of a radar performance
model, which estimates the radar’s ability to detect and track targets, and a wind farm
adverse effect model, which estimates how the radar performance is degraded due to
wind farm interference. With these models, the air surveillance quality of placed radars
and wind farms is estimated with two alternative system performance measures. The
3D-system performance measure estimates the air surveillance quality in individual 3D-
locations, which is more accurate and computationally more complex. The 2D-system
performance measure estimates the altitude-wise aggregated air surveillance quality,
which decreases the computational complexity, with the cost of decreased accuracy of
the results. These system performance measures are used for two alternative mixed-
integer linear programming (MILP) formulations: 2D and 3D. These formulations
use the radar and wind farm placements as decision variables and their objective
function is to maximize the air surveillance quality in the whole area of interest.
Two formulations are constructed to address the trade-off between the computational
complexity of the optimization and the accuracy of the results. As the 3D-formulation
uses the more accurate 3D-system performance measure, it is computationally more
complex and the optimization takes longer to converge. The 2D-formulation uses the
simplified 2D-system performance measure, which makes the optimization faster but
decreases the accuracy of the performance models.

With the method developed in this thesis, the radar and wind farm placements,
which maximize the air surveillance quality, are able to be identified from large number
of placements options. The set of viable placement options is determined by their
corresponding planners and is out of scope for this thesis. The method enables the air
surveillance planners to identify the optimal locations for radars and wind farms and to
efficiently model the resulting adverse effects. The method also allows the surveillance
planners to consider the varying importance of different spatial areas and altitudes.
These importance differences are taken into consideration with weighting, where the
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high air surveillance quality can be prioritized in different spatial areas and altitudes.
This method is also modular, meaning the radar performance model, the adverse
effect model, and the optimization formulations can be modified without altering the
whole method. This modularity allows for easy modification of the underlying models,
allowing them to be updated or extended in later work.

The efficiency of the placement method and the feasible scale of placement problems
are analyzed with an example problem. The example considers the placement of radars
and wind farms with a large number of placement options. The impact of weighting is
demonstrated by applying both uniform and non-uniform weights across spatial areas
and altitudes. The example is solved with both optimization formulations to analyze
the differences in the optimal placements. The example problem is purely hypothetical
and is intended solely to analyze and demonstrate the placement method developed in
this thesis.

No other method has been shown to solve the radar and wind farm placement
problem with as many placement options while maintaining global optimality and short
runtime. The existing methods for radar and wind farm placement optimization rely on
computationally heavy simulations to estimate the air surveillance quality, which limits
the number of placement options they can evaluate. The method developed in this
thesis allows for the identification of good placement sites for radars and wind farms
from large number of placement options. However, as the method uses a simplified
measure of air surveillance quality, its accuracy is limited. Therefore, this method
is suitable for identifying good candidate sites, which can then be further evaluated
using more detailed and accurate simulation approaches.

Air surveillance systems and the adverse effects of wind farms on radars are
discussed in more detail in Section 2, detailing factors affecting the air surveillance
quality and its evaluation. The placement method is introduced in Section 3, outlining
the radar performance model, the wind farm adverse effect models, and the two system
performance measures. The two alternative optimization formulations are constructed
in Section 3.3 based on the system performance measures, and their differences are
discussed. The feasible problem scale and the results of the method are demonstrated
with an example problem in Section 4. Finally, the method and the example problem
solutions are discussed further in Section 5, and the thesis is summarized in Section 6.



2 Coexistence of air surveillance systems and
wind farms

This section provides an overview of air surveillance systems and methods used to
evaluate their performance. Then, the adverse effects of wind farms on a radar’s
operation and the overall air surveillance quality are discussed. Finally, the approaches
for placement planning of radar and wind farms are discussed, which aim to maintain
high air surveillance quality and minimize the adverse effects of the wind farms.

2.1 Air surveillance systems
Air surveillance is a critical component of defense and civil aviation safety, consisting
of monitoring the airspace with a variety of sensors. The primary objective of the
monitoring is to detect the use of the airspace, create situational awareness, and support
decision-making in areas such as air traffic control and military threat assessment
(Finnish Air Force, n.d.). In military applications, decision-making is guided by the
airspace operational picture, which forms the basis for all air operations (Finnish
Air Force, n.d.). This operational picture is formed from all the available airspace
information, which is mainly collected by an air surveillance system. The accuracy
and reliability of this picture depend on the performance of the air surveillance system.

An air surveillance system consists of a wide variety of sensors used to detect the
airspace, and a tracker used for estimating a target’s track. This track refers to the
continuous monitoring and updating of a target’s position, velocity, and flight direction
over time as it moves through airspace (Richards et al., 2010). The tracker forms a
track estimate by fusing data from various air surveillance sensors. The foundation
of these sensors are radars. A radar is an electronic system that emits a radio signal
towards the region of interest and detects the signals reflected from an object in that
region (Richards et al., 2010).

The ability of an air surveillance system to detect and track a target is greatly
affected by the strength of the reflected radar signal. The amount of radar signal
reflected back by the target is determined by its radar cross-section (RCS). The RCS
depends on a variety of factors, such as the position of the radar relative to the target,
the target’s shape and material composition, and its orientation relative to the radar
(Knott et al., 2004). An object with a larger RCS is more easily detected than one with
a smaller RCS. As the RCS directly affects how easily the target is detected, stealth
technology has emerged to minimize the RCS and to avoid radar detection (Richards
et al., 2010). The RSC is most effectively reduced by using radar-absorbent materials
and designing the target’s geometry to minimize direct reflections (Zohuri, 2020). Due
to the emergence of stealth technology, the performance of radars is made additionally
important.

The performance of the radar system is fundamentally determined by how effectively
the combination of the radars is able to detect and track objects within the set area
of interest. This capability depends on the types of radars used, their geographic
placement, and the performance capabilities of the individual radars.
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One of the most commonly used sensor is the monostatic radar, which is a radar
type where the signal transmitter and receiver are in the same location. This radar
type is prevalent for its simplicity and efficiency in deployment, as it can be deployed
and moved easily (Finnish Air Force, n.d.). However, these types of radars can
be vulnerable to electronic countermeasures, such as jamming, and have limited
effectiveness against stealth technology, which minimizes direct radar reflections
towards the emitter (Chemyak, 1998). To address these limitations, in bistatic radars,
the transmitter and receiver are in different locations. This radar type can be more
effective against stealth technology, as the reflected radar signal may still reach a
receiver positioned elsewhere. This design can be further improved by using multiple
spatially separated transmitters and receivers, or a collection of monostatic radars,
referred to as multistatic radar systems (Chemyak, 1998). The detection and tracking
capabilities of a multistatic radar system are improved due to cooperative performance
and interaction between the individual radars.

While the performance of the radar system is improved with cooperative sensing,
the overall effectiveness of the radars is determined by their individual capabilities.
The capability of a radar is described by its parameters, such as range resolution,
scan rate. A radar’s contribution to the air surveillance quality, i.e., how well the
radar system can detect and track target objects, is dependent on these individual
parameters. The range refers to the maximum distance at which the radar can detect
an object with the specified RCS. The range is dependent on radar’s parameters,
such as the transmitter power and antenna gain, which describes how narrowly the
radar beam is focused in a particular direction, and the target’s RCS (Skolnik et al.,
1980). The radar range is further affected by the environmental conditions, such
as weather, humidity, and terrain, which can absorb, scatter, or block radar signals.
However, the emitted radar signal can continue further than the estimated range,
meaning some surveillance capability is possible outside the reported range. The
resolution describes the radar’s ability to distinguish between multiple closely spaced
objects. The resolution consists of range resolution, meaning the ability to distinguish
targets at the same direction but at different distances, and angular resolution, meaning
the ability to distinguish targets at similar distances but at different angles (Richards
et al., 2010). High resolution is important for accurate target tracking and enhances the
detail and clarity in the operational picture. According to Skolnik et al. (1980), with
sufficiently high resolution, the nature of a target’s size and shape can be discerned.
The size and shape estimations are additionally useful in trying to identify the detected
targets. A high resolution is typically achieved with a higher frequency radar signal,
which comes with a trade-off in radar range, as longer ranges are more easily achieved
with lower frequencies (Skolnik et al., 1980). The scan rate refers to how frequently a
radar completes a full sweep of the area of interest, and directly affects how frequently
the radar can detect and estimate target position.

In summary, the real-world air surveillance systems consist of a variety of sensors
to monitor the airspace. In this thesis, the air surveillance system is considered to
only consist of monostatic radars. The effectiveness of such a system is dependent on
the individual performance characteristics of the radars and their spatial placement.
The planning of air surveillance systems and the comparison between these different
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systems requires methods to systematically evaluate the performance against possible
targets.

2.2 Performance evaluation of air surveillance systems
To evaluate the performance of an air surveillance system and compare different
systems, analytical models are required to compute performance metrics, which
measure a system’s ability to detect and track targets. These models vary in complexity
and accuracy. The performance can be estimated using simplified calculations that
assume idealized conditions and static parameters, or with computationally complex
simulations, which can model target behavior, sensor fusion, and environmental
conditions and effects (Curry, 2004). However, higher complexity does not mean
better system representation. Curry (2004) further states that the performance measures
are required to be simple enough to allow for large-scale system simulations and to be
able to represent radars whose detailed design is not fully known.

A simplified approach to modeling radar performance is coverage analysis. The
coverage can be modeled as either all-or-nothing or gradual coverage. The all-or-
nothing model, also known as a boolean coverage model, considers coverage to be
binary, meaning a location can either be fully covered or not at all (Wang, 2010). This
type of coverage model has been used, e.g., in determining the locations a radar can see,
and this information is used in placing radars (see e.g., Baek et al., 2014). In contrast,
the gradual coverage model (Drezner et al., 2004) relaxes this binary representation
by allowing the amount coverage to vary continuously, i.e., a location can also be only
partially covered. In radar performance modeling, this partial coverage can be used to
describe the diminishing radar signal strength with increasing range. Therefore, the
radar coverage can be higher in some locations than others, indicating higher radar
performance. When multiple radars are involved, the coverage at a given location can
be defined as a function of the individual gradual coverage values, which can be used
to represent sensor fusion. Environmental constraints, such as terrain obstructing the
line of sight (LOS), can also be included in the coverage analysis to reflect real-world
limitations. An in-depth review on general coverage analysis can be found in Berman
et al. (2010), and detailed discussion on sensor coverage models is given in Wang
(2010).

The coverage analysis does not take into account the probabilistic nature of target
detection. To address this, a more refined metric, the probability of detection is used.
This metric quantifies the likelihood that a target is detected by taking into account
factors such as range, target RCS, clutter, and atmospheric attenuation (Richards
et al., 2010). The probability of detection is largely dependent on the strength of the
reflected signal compared to the background noise, referred to as the signal-to-noise
ratio (SNR). To detect the target with a reasonable probability, the reflected signal
must be greater than the noise (Richards et al., 2010). If the background noise is static,
a constant detection threshold level can be set, where SNR larger than the threshold is
interpreted as a detection. In modern radars, this threshold is adjusted automatically
based on the noise level due to, e.g., jamming or clutter. The threshold is adjusted
such that inferences result in a constant false alarm rate, which directly affects the
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probability of detection (Richards et al., 2010). Increasing the constant false alarm rate
will increase the probability of detecting a target, but also increases the probability
of false alarms, meaning detecting a target even though it does not exist (Richards
et al., 2010). The probability of detection is further improved when the coverage of
multiple radars overlaps. This improvement is achieved through sensor fusion, which
combines the reflected signals from multiple radars to produce a single and more
accurate detection probability (Olivier et al., 2009). The probability of detection is
additionally improved with a multistatic system design, where the emitted radar signal
from one radar can be detected in another (Chemyak, 1998).

After a target is detected, an air surveillance system needs to be able to track and
estimate its movements. The tracking performance is measured with the probability
of forming a track and the error between the estimated track and the true flight path
(Ruotsalainen & Jylhä, 2017). The track performance is affected by the target RCS,
the probability of detection, the accuracy of the target’s position estimation, and how
frequently the target position is updated. Hence, the track performance is dependent
on the individual radar characteristics, such as resolution and scan rate. The tracking
performance of an air surveillance system is typically calculated by simulating multiple
flight paths and estimating the track and determining its error, which is computationally
intensive (Ruotsalainen & Jylhä, 2017).

While each of the metrics discussed above provides insight into the radar system
performance, the metrics by themselves do not provide a complete picture of the
overall quality of air surveillance. In Virtanen (2024), a spatial multi-criteria decision
analysis framework is developed for the evaluation of air surveillance quality. In this
framework, the different objectives in the surveillance area, such as target detection
and tracking, are described by air surveillance tasks. These tasks are formalized into
air surveillance requirements (ASRs), which are defined by a 3D surveillance area, a
target type, quality statements of performance measures, and a priority. The target type
refers to the characteristics of a target aircraft, such as its speed and RCS. With the
ASRs, a decision maker can prioritize different performance measures or spatial areas
to reflect possible air surveillance needs and tasks. Different measures are developed to
measure the fulfillment of the ASRs. This fulfillment of ASRs can be used to evaluate
the performance of an air surveillance system and to compare different surveillance
systems.

The various performance measures discussed previously enable the assessment of
air surveillance systems in target detection and tracking. In addition to the evaluation
and comparison of different surveillance systems, these measures can also be used to
analyze how external factors, such as infrastructure, may degrade the air surveillance
quality. One of these factors is wind farms, which are known to cause adverse effects
on radars. Assessing the magnitude of these effects is essential when considering the
placement and development of new wind farms or the placement of radars.

2.3 Adverse effects of wind farms
A wind farm is a collection of wind turbines that are close to each other and are
used to produce electricity. The geographical placement of wind farms is critical
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to the financial success of the wind farm in terms of installation costs and future
profits. Wind farm sites are typically chosen based on wind conditions, terrain and
environmental conditions, as well as distance to electricity transmission lines and
infrastructure (Wimhurst et al., 2023).

In contrast to the wind farm’s financial success, wind farms can interfere with
radar and reduce their air surveillance quality. This interference is directly affected by
the geographical placement of the wind farms and radars. A wind farm placed within
a radar’s LOS reflects and disperses the radar signal, diminishing the radar’s capability
to detect targets. The wind farm can reflect the radio signal back to the radar, and this
radar echo causes clutter to appear near the wind farm. Typically, Doppler processing
is used to distinguish moving targets from clutter caused by static objects or terrain
(Capraro et al., 2006). However, the moving turbine blades in the wind farm provide a
significant Doppler profile, which means the clutter can not be removed with Doppler
processing (e.g., Theil et al., 2010; Norin and Haase, 2012). Theil et al. (2010)
also mentions that the Doppler profile of a single wind turbine echo resembles the
profile of a helicopter, meaning the wind farm causes false targets in its vicinity. This
increase in false targets means the target detection threshold is increased to maintain a
constant false alarm rate, which reduces target detection sensitivity around the wind
farm (Borely, 2014). For some radars, these clutter effects can be observed tens of
kilometers away from the wind farm (Norin & Haase, 2012).

In addition to the clutter, wind farms also cause shadowing effects, which result
from the obstruction and scattering of the radar signal. Unlike the clutter effect,
the shadowing primarily affects the area behind the wind farm from the radar’s
perspective (Lemmon et al., 2008). This is referred to as the shadowing area. Due
to the shadowing effects, the radar signal is weaker in the shadowing area, which
decreases the performance of the radar. Typically, the shadowing effect decreases as
the distance between the radar and the wind farm increases due to diffraction, which
bends the radar signal around the wind farm (Theil et al., 2010).

The severity of the clutter and the shadowing effect depends on the orientations
of the wind farm turbines, specifically the nacelle and blade orientations (Lemmon
et al., 2008). The effects are maximized when the RCS of the blades is maximized,
which occurs when the turbine blades face the radar directly, i.e., when their surface is
perpendicular to the radar’s LOS. As discussed in Lemmon et al. (2008), because all
the relevant wind farm parameters are not known, it reasonable to use conservative
assumptions in modeling the adverse effects to not underestimate the potential impacts
of the wind farms. In this thesis, the wind farms are conservatively assumed to always
be oriented towards a radar, such that the potential adverse effects are maximized.

The clutter and shadowing effects can also be observed even when the LOS of a
radar only passes near the wind farm and not through it. This occurrence is due to the
radar beamwidth and the Fresnel zone of radio signals (Pertilä et al., 2023). Radar
beams have both horizontal and vertical widths, meaning the transmitted energy is not
confined to only a narrow line but rather spreads out. As a result, objects located near
the LOS can reflect the radar energy, causing clutter. Therefore, clutter can occur even
when the radar LOS does not pass through the wind farm. Similarly, the shadowing
effect can also be observed in an area where the radar’s LOS does not pass through the
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wind farm. This phenomenon is due to the wind farm disrupting the Fresnel zone of
the radar signal, which can lead to destructive interference of the radar signal, reducing
the radar performance (Freeman, 2007). The magnitude of this effect is dependent on
how much of the Fresnel zone is obstructed, such that the effect decreases when the
distance between the LOS and the wind farm increases.

2.4 Placement planning of radar systems and wind farms
As explained in Section 2.1, the air surveillance quality is dependent on what type of
radars are being used. However, this quality is also highly dependent on the placement
of those radars. The radar placement directly affects the radar’s coverage as the
placement determines whether the LOS is obstructed by the terrain, e.g., by hills.
Elevated locations are typically preferred to minimize the effects of terrain and to
extend the radar’s horizon. However, determining the radar placements that maximize
the air surveillance quality is a complex problem. The placement problem can be
formulated into an optimization problem with integer programming, where the goal is
to identify the optimal radar placements with regard to some optimization criteria, such
as air surveillance quality. In this formulation, the radar placements are represented as
decision variables, which can have either value 1 if the placement is used or 0 if it is
not. This optimization problem is proven to be NP-hard (Godrich et al., 2011). The
NP-hardness means that the search for the optimal radar placement becomes rapidly
computationally demanding as the number of placement options increases. For more
detailed discussion on NP-hardness, see, e.g., Garey and Johnson (1979).

Because the integer programming formulation of the radar placement problem
is NP-hard, it has previously been solved with metaheuristic search methods. These
metaheuristic methods work by guiding the candidate solutions through the solution
space – i.e., the set of possible placement combinations – with a problem-specific
heuristic to find optimal or near-optimal solutions (Blum & Roli, 2003). One
metaheuristic search method is the evolutionary algorithm (Simon, 2013), which
evolves a candidate solution towards better solutions. Additionally, the evolutionary
algorithms can be used to optimize the radar placements while considering multiple
criteria. For example, Boudjemaa and Oliva (2019) optimized a weather radar network
placement, while considering criteria such as terrain, radar beam elevation, distance
between radars, and distance between power grids and roads. Similarly, Roy and
Acharya (2017) determined optimal weather radar locations with multiple criteria by
using another metaheuristic method, particle swarm optimization. In particle swarm
optimization, a swarm of particles – i.e., multiple candidate solutions – is initialized
in different positions within the solution space in parallel. These particles are then
guided towards better solutions based on their own previous best position as well as
the best positions of the other particles in the swarm (Kennedy & Eberhart, 1995).
These metaheuristic search methods are efficient in exploring large solution spaces and
providing good solutions in a reduced amount of time (Blum & Roli, 2003). However,
these methods have no guarantees of the optimality of the result.

To guarantee global optimality, the integer programming formulation of the
placement problem needs to be solved with an exact algorithm. While exact algorithms
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exist for non-linear formulations, they are more computationally demanding to optimize
than linear formulations (Hochbaum, 2007). Due to integer programming problems
being NP-hard, linear formulations are typically more practical and remain feasible
with a higher number of placement options. The placement problem can be formulated
with integer linear programming, where the decision variables are restricted to be
integers, and the objective function and the constraints are linear. This integer linear
programming problem can then be optimized using an exact algorithm, such as the
branch-and-bound (He et al., 2014) or the simplex method (e.g., Padberg, 2013). For
example, in Baek et al. (2014), the coverage of radars is described using the boolean
coverage model, and the radar placement problem is formulated using integer linear
programming. With this formulation, the radar placements, which globally maximize
the radar coverage, are able to be identified. However, the real-world performance of
radars is not binary, as radars can have varying performance levels, and the performance
can be improved with overlapping radar coverage. This varying performance can be
modeled with mixed-integer linear programming (MILP) by including non-discrete
decision variables. For example, Tanergüçlü et al. (2012) determines the optimal
placement of weapons systems, such that the possible flight route of enemy aircraft
has maximal expected coverage by the weapon system. The MILP formulation allows
for the coverage to have a non-discrete value representing the probability of target
detection. Using exact algorithms to solve these integer and mixed-integer linear
programming formulations ensures that the placements are globally optimal and the
coverage is maximized.

The optimal placement is not only important for radars but also a key consideration
for wind farms. As stated by Costanzo et al. (2025), the number of wind farms is
predicted to increase rapidly. The placement of these new wind farms requires a
careful balance between maximizing energy generation potential as well as other
technical, economic, and socio-economic factors (Rekik et al., 2025). From a technical
and economic perspective, several factors influence the site selection, such as the
wind speed and consistency of the site, as well as the construction costs. In terms of
socio-economic implications, local residential areas can be affected by potential noise
pollution and adverse visual effects on the landscape. Overall, these factors increase
the complexity of determining the optimal placement. Various methodologies have
been developed for determining wind farm locations, e.g., for maximizing investor
profits (Huang, 2007), optimizing for grid constraints, such as voltage loss (Borges
& Falcão, 2006), and methods for optimizing for both economic and environmental
objectives (e.g. Cranmer et al., 2018; Cetinay et al., 2017). Similarly to the radar
placement problem, evolutionary algorithms, MILP, and particle swarm optimization
are typically used for wind farm placement optimization (see, e.g., Cranmer et al.,
2018; Abdelsalam and El-Shorbagy, 2018; Brigada and Ryvkina, 2021).

As the placement of radars or wind farms is a complex issue in itself, the joint
placement of both of these increases the complexity even further. As discussed in
Section 2.3, the adverse effects of wind farms on radars are location-dependent.
Therefore, optimizing the placement of radars and wind farms simultaneously can
provide better results than optimizing the placements individually. However, as the
number of placement options for radars and wind farms increases, the number of
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placement combinations grows combinatorially, i.e., the complexity grows rapidly.
Due to the complexity of joint placement, and because air surveillance is prioritized

over wind farm development, wind farms are typically sited around existing radar
placements (see, e.g., Brigada and Ryvkina, 2021). The impact of a proposed wind
farm on air surveillance quality is assess by the air surveillance authorities, who
evaluate the suitability of the site (Joensuu et al., 2021). The simplest siting technique
would be to place the wind farms such that they are outside the LOS of the radar
system. However, this technique is typically not feasible as the wind farm siting options
are within the air surveillance area of interest. Therefore, more refined methods are
required to evaluate both the adverse effects and the joint placement of radars and
wind farms.

In Lahti (2022), an approach to identifying and assessing adverse effects on air
surveillance systems was developed in order to compare different radar and wind
farm site options. However, this approach requires evaluating the performance of all
possible placement combinations using computationally intensive simulations, which
becomes infeasible with an increasing number of placement options. Hagnäs (2025)
expands on this approach by developing an algorithm for optimizing the radar and
wind farm placements without exhaustive evaluation of all placement combinations.
However, this approach still requires complex simulations for the radar performance
evaluation, which is computationally demanding and limits the number of possible
placement options for radars and wind farms.

While methods, such as Lahti (2022) and Hagnäs (2025), exist for the joint
optimization of radars and wind farm placements, no studies exist in the literature that
address this joint optimization when a large number of placement options is considered.
In order to optimize the placements, the placement problem needs to be formulated
into an optimization problem, with an objective function, decision variables, and
constraints. Based on the approaches used for siting radars and wind farms separately,
their joint placement can be described with integer programming, where the selection
of radar and wind farm sites are binary decision variables. The objective function
is to maximize the air surveillance quality. The existing methods use simulations to
determine the adverse effects of wind farms and the air surveillance quality. However,
simulations are computationally heavy, meaning this approach becomes infeasible
when a large number of placement options is considered. Therefore, approximate
models are required for the radar performance, wind farm adverse effects, and the
air surveillance quality. Based on the problem structure of the integer programming
formulation, it can be solved using metaheuristic methods or an exact algorithm.

The benefit of using metaheuristic methods is that they impose few requirements on
how the objective function and constraints in the placement problem are formulated.
In particular, properties such as linearity, differentiability or convexity with regard to
the decision variables are not necessary (Bandaru & Deb, 2016). Typically, algorithms
such as evolutionary algorithms or particle swarm optimization may be used, as they
can efficiently explore large solution spaces and handle multiple criteria. However,
resulting solutions have no guarantee of being optimal (Blum & Roli, 2003). In
addition, these solutions can vary every time the algorithm is executed due to its
stochastic nature. This stochasticity also causes a lack of transparency in the exploration
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of the solution space, which can make understanding and prediction of the algorithm’s
behavior difficult.

To guarantee that the radar and wind farm placements are globally optimal, the
placement problem needs to be solved with an exact algorithm. However, using
an exact algorithm poses limitations on the problem formulation. Exact algorithms
are computationally more demanding than metaheuristic methods. Therefore, the
placement problem needs to be formulated such that it can be solved with an exact
algorithm even when the problem size grows. As non-linear optimization problems are
generally more complex than linear problems (Hochbaum, 2007), linear formulations
of the placement problem are likely to remain feasible as the problem scale increases.
Therefore, in this thesis, the placement problem is formulated as a MILP problem,
where the objective function and constraints are linear with regards to the decision
variables. This MILP model, including the decision variables, constraints, and the
objective function, is introduced in the following Section 3. This model can then
be solved using existing mathematical programming solvers, which have specifically
been developed for solving these types of large-scale MILP problems efficiently. This
approach is more restrictive compared to the metaheuristic methods, as the objective
function and constraints must be linear with regard to the decision variables. However,
it offers reproducibility, guarantees of optimality, and enables a clear understanding of
the factors affecting the optimal solution.

20



3 Optimization of radar and wind farm placement
This section considers the joint placement optimization of radars and wind farms
with the objective of enabling wind energy development while maintaining high
air surveillance capability. To address this optimization task, performance models
are developed both for radars and the adverse effects of wind farms in Section 3.1.
These models are used to evaluate the resulting air surveillance quality produced by a
combination of radars and wind farms. The evaluation is conducted with performance
measures presented in Section 3.2. Using these measures, mixed-integer linear
programming (MILP) problems are formulated to determine the optimal placement of
radars and wind farms in Section 3.3. These optimal placements are selected from a
large set of feasible radar and wind farm placement options, which are provided by the
respective planners. The identification of viable placement options is outside the scope
of this thesis. All the placement options for wind farms are assumed to be reasonable.
Therefore, evaluating and comparing the suitability of wind farm placement sites is
not explicitly required for determining the placements. Thus, the only objective is to
identify radar and wind farm placements, which result in high air surveillance quality.

3.1 Performance models
In the following, radar performance modeling assumptions, as well as the construction
and parameterization of the wind farm adverse effect model, are based solely on
an understanding of the physical principles and phenomena underlying the systems’
operation, together with expert opinions from radar technology specialists. The
validation of these models using data produced by more detailed sensor models or
data obtained from real-world surveillance systems is beyond the scope of this thesis.

3.1.1 Radar model

In this thesis, the radar performance at a 3D location in the airspace is assumed to
depend solely on the planar distance to the radar. This metric, referred to as the radar
performance measure (RaPM), is a unitless value normalized between 0 and 1, where 0
represents the lowest possible performance and 1 the best possible radar performance.
RaPM metric is 1 when the distance to the radar is 0 and then decreases linearly with
increasing distance. The maximum distance at which a radar can see is determined by
its range 𝑅. The RaPM is parametrized such that the linear decrease reaches a value
of 0 at 1.5 times the maximum range of the radar. This parametrization reflects the
real-life radar behavior, where the radar’s performance decreases with distance and
retains some capability even beyond the radar range. In reality, the range of a radar is
dependent on multiple factors, such as a target’s RCS and atmospheric conditions,
as explained in Section 2.1. However, using a static range value is deemed sufficient
for this thesis. While alternative performance models could be considered, the linear
model offers a straightforward performance approximation. RaPM is visualized in
Figure 1, which illustrates the gradual decrease of the performance while preserving
meaningful capability within the range and limited capability beyond the range.
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The radar performance is only dependent on the planar distance to the radar,
i.e., vertical distance does not affect the performance. This choice is justified due
to amplification of radar signals, which compensates for the increased distance and
resulting radar degradation (Chen, 2004). In addition to the signal amplification,
typical radars have a limited vertical coverage and cannot detect objects directly above
the radar. This behavior arises from the design and orientation of the radar antenna,
which is optimized to provide maximal detection range towards the horizon. However,
this additional vertical effect is considered to be minor and is not taken into account
by the RaPM model.

Figure 1: Radar performance measure as a function of planar distance from the radar.

The combined performance of multiple radars is calculated as the sum of all the
individual radars’ performance values at the evaluation location. The combined per-
formance values are also constrained to be in [0, 1], even if the computed performance
values exceed 1.

3.1.2 Wind farm effect model

As discussed in Section 2.3, wind farms cause adverse effects on radar performance.
To evaluate the impact of different radar-wind farm placements, an adverse effect
model is first constructed. The main adverse effects considered in this thesis are the
clutter effect and the shadowing effect.

The clutter effect is caused by the radar signal being scattered by the wind farm
and reflected back to the radar, creating false targets and unwanted clutter in the radar
image (Theil et al., 2010). This effect is localized in an area close to the wind farm,
referred to as the clutter area. The clutter decreases the overall performance of the
radar by increasing the false alarm rate and decreasing target detection sensitivity.
Additionally, the false alarms may hinder the formation and maintenance of the target
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track. The wind farm is represented as a vertical wall to describe its physical size,
with height ℎ 𝑓 and width 𝑤 𝑓 , and orientation. To describe the clutter effect, a separate
vertical surface called the clutter wall is used. The clutter wall is a straight vertical
plane with width 𝑤𝑐 and height ℎ𝑐. This clutter wall shares the same width and
orientation as the wind farm wall, but its height can differ. The clutter area is defined
as the region where a radar’s LOS intersects the clutter wall and is a short distance
away from the wall. Here, this distance is assumed to be 30 km, measured along the
LOS. This clutter area is visualized in Figure 2 as the red dotted region.

Figure 2: Top and side view of the clutter area caused by the wind farm. The red
dotted area represents the region where clutter effects degrade the radar’s performance.
The symbols ℎ 𝑓 and ℎ𝑐 represent the heights of the wind farm and the clutter wall,
respectively, and 𝑤𝑐 represents the width of the clutter wall, which is equal to the
width of the wind farm 𝑤 𝑓 . The image is not to scale.

The shadowing effect is caused by the wind farm’s physical obstruction of the
radar beam (Leijnse et al., 2022). Therefore, the shadowing effect can be observed
behind the wind farm from the radar’s perspective. Similarly to the clutter effect, the
shadowing effect is described by introducing a vertical surface called the shadowing
wall. Its width is denoted by 𝑤𝑠 and the height by ℎ𝑠. The shadowing wall shares
the same orientation and width as the wind farm wall, but the height can differ. The
shadowing area is the region behind the wind farm where the radar’s line of sight
passes through the shadowing wall, and continues until the radar range 𝑅 is reached.
The shadowing area is visualized with red dots in the Figure 3, which shows the area’s
top and side views.
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Figure 3: Top and side view of the shadowing area caused by the wind farm, where
the performance of the radar is degraded due to the shadowing effect. The symbol 𝑅
is used for radar range, 𝑤𝑠 for the width of the shadowing wall, 𝑤 𝑓 for the width of the
wind farm, and ℎ 𝑓 and ℎ𝑠 for the heights of the wind farm and the shadowing wall,
respectively. The image is not to scale.

The wind farm’s location is defined in the geographic coordinate system (GCS)
with coordinates (𝑋 𝑓 , 𝑌 𝑓 ) for latitude and longitude. The terrain elevation of point
(𝑋 𝑓 , 𝑌 𝑓 ) is denoted with 𝑍 𝑓 and is in units of meters above mean sea level. For both
the clutter and the shadowing wall, the wind farm’s location (𝑋 𝑓 , 𝑌 𝑓 , 𝑍 𝑓 ) defines the
center point for the wall width and the base for the wall height. The walls are perfectly
vertical, rising straight upwards from the terrain. The orientation in the horizontal
plane is defined to be perpendicular to the radar’s LOS toward the wind farm’s position,
meaning the walls are facing the radar. The orientation of the walls is determined
separately for every radar. This orientation represents the worst-case scenario where,
for every radar, the radar beam crosses through the maximum cross-sectional area of
the turbines. Analyzing the worst-case orientations yields a conservative estimate for
the clutter and the shadowing areas, capturing the full potential impact of the wind
farm. This approach is further supported by the fact that the orientation of individual
wind turbines can change depending on the direction of the wind (Kim & Dalhoff,
2014).

The degradation of radar performance due to the adverse effects is measured with
a damping factor 𝛼𝑡𝑜𝑡𝑎𝑙 . This factor indicates the percentage of how much RaPM is
reduced by the wind farm. The damping factor is dependent on the magnitudes of the
clutter and shadowing effects.

The magnitude of the clutter effect is expressed with a clutter factor 𝛼𝑐 and is
dependent on the distance to the wind farm. The distances are measured along the
radar’s LOS from where the line intersects the clutter wall. The clutter factor has
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values in [0.3, 0.5], where the highest factor value is at the intersection point, and the
value decreases linearly with regard to the distance to the clutter wall, denoted by 𝑑𝑐.
Therefore, the clutter factor is calculated as

𝛼𝑐 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝑑𝑐 > 30 km

0.5 − 𝑑𝑐

150 km
, if 𝑑𝑐 ≤ 30 km

. (1)

Similarly, the reduction of radar performance due to the shadowing effect is
estimated with a shadowing factor 𝛼𝑠. The shadowing factor is dependent on the height
ℎ𝐿𝑂𝑆 at which the radar’s LOS intersects the shadowing wall, measured from the base.
When the LOS intersects the wind farm at its base, the radar signal experiences more
obstruction than when it intersects at the turbine tips. Thus, the shadowing factor is of
the form

𝛼𝑠 =

{︄
0, if ℎ𝐿𝑂𝑆 > ℎ𝑠
0.3 · (1 − ℎ𝐿𝑂𝑆

ℎ𝑠
), if ℎ𝐿𝑂𝑆 ≤ ℎ𝑠

, (2)

where ℎ𝑠 is the height of the shadowing wall.
In the area closely behind the radar, the radar performance is reduced by both the

shadowing and clutter effects. Assuming the reductions are independent of each other,
they are combined as

𝛼𝑡𝑜𝑡𝑎𝑙 = 1 − (1 − 𝛼𝑐) (1 − 𝛼𝑠). (3)

Given that the clutter factor 𝛼𝑐 ∈ [0.3, 0.5] and the shadowing factor 𝛼𝑠 ∈ [0, 0.3],
the resulting damping factor 𝛼total is in the range [0, 0.65]. This range means the
adverse effects can reduce the radar performance by up to 65%.

3.2 Performance evaluation
To evaluate the radar performance within the area of interest, the area is discretized
into a grid with 𝐺𝑥 horizontal and 𝐺𝑦 vertical grid cells. Each grid cell represents
a distinct geographical region of size 𝑆𝑥 × 𝑆𝑦, where 𝑆𝑥 and 𝑆𝑦 represent the size of
the grid cell in 𝑥 and 𝑦 directions, respectively, in units of kilometers. The center of
each grid cell is referred to as a grid point. These grid points are used as measurement
points where RaPM and 𝛼𝑡𝑜𝑡𝑎𝑙 are evaluated. This grid is applied at every examination
altitude ℎ, where ℎ ∈ 𝐻, and 𝐻 is the set of chosen examination altitudes.

The discretization allows the structured assessment of a radar’s performance
while maintaining computational efficiency. The grid resolution is chosen to balance
accuracy and computational cost. A finer grid provides a more detailed representation
of the performance, but increases the computational complexity.

The performance of individual radars and resulting radar formation is evaluated
at every measurement point 𝑖, where 𝑖 ∈ {1, ..., 𝐼} and 𝐼 is the total number of
measurement points. This number is determined by the number of grid cells and
the number of examination altitudes, as 𝐼 = 𝐺𝑥 · 𝐺𝑦 · |𝐻 |. Each measurement point
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𝑖 can also be presented in grid coordinates as (𝑔𝑖𝑥 , 𝑔𝑖𝑦, 𝑔𝑖ℎ), where 𝑔𝑖𝑥 ∈ {1, ..., 𝐺𝑥},
𝑔𝑖𝑦 ∈ {1, ..., 𝐺𝑦}, and 𝑔𝑖

ℎ
∈ {1, ..., |𝐻 |}.

3.2.1 Radar performance

For each radar placement 𝑚 ∈ {1, ..., 𝑀}, where 𝑀 is the number of possible radar
positions, the performance of a radar located at 𝑚 is calculated in all measurement
points 𝑖. The performance in point 𝑖 is computed by using the performance model
presented in Section 3.1.1. In this model, the performance depends only on the planar
distance between the measurement point and the radar. To determine these distances,
the radar position 𝑚 is first transformed from the GSC format into the grid coordinate
system. The GCS coordinates (𝑋𝑚, 𝑌𝑚) for latitude and longitude, respectively, are
mapped into (𝑥𝑚, 𝑦𝑚), where 𝑥𝑚 ∈ [1, 𝐺𝑥] and 𝑦𝑚 ∈ [1, 𝐺𝑦], meaning the radar
position is somewhere between the discrete measurement points (𝑔𝑖𝑥 , 𝑔𝑖𝑦). The altitude
of the radar’s position and the measurement points can be ignored in the performance
evaluation as only the planar distance is considered.

The real-world distance between the radar and a measurement point 𝑖 = (𝑔𝑖𝑥 , 𝑔𝑖𝑦, 𝑔𝑖ℎ)
is

𝐷 (𝑚, 𝑖) =
√︃
(𝑔𝑖𝑥 − 𝑥𝑚)2 · 𝑆2

𝑥 + (𝑔𝑖𝑦 − 𝑦𝑚)2 · 𝑆2
𝑦, (4)

which is used to calculate the raw radar performance metric. This measure is referred
to as a raw RaPM as it does not take into account the terrain and other obstructions in
the radar’s LOS. This measure is calculated as

RaPM𝑟𝑎𝑤 (𝑚, 𝑖) =
{︃ −1

1.5·𝑅 · 𝐷 (𝑚, 𝑖) + 1, if 𝐷 (𝑚, 𝑖) ≤ 1.5 · 𝑅
0, otherwise , (5)

where R is the radar range in kilometers. For RaPM, the obstructions in the LOS are
taken into account with a binary terrain mask 𝑇 (𝑚, 𝑖), which is determined for every
radar location 𝑚 at every measurement point 𝑖. The 𝑇 (𝑚, 𝑖) value is 1 if a radar at
position 𝑚 is able to see point 𝑖, and 0 if the LOS is obstructed and point 𝑖 cannot be
seen. RaPM is then computed as the product of the terrain mask and the raw RaPM
value, i.e.,

RaPM(𝑚, 𝑖) = 𝑇 (𝑚, 𝑖) · RaPM𝑟𝑎𝑤 (𝑚, 𝑖). (6)

An example of this calculation is shown in Figure 4, where RaPM values are evaluated
at some altitude ℎ. The subplot for RaPM𝑟𝑎𝑤 shows a linear decline in performance
values with distance. The terrain mask expresses which measurement points at altitude
ℎ the radar can see. The terrain mask is applied at every point as presented in
Equation 6, yielding the RaPM values.
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Figure 4: Illustration of RaPM before and after the terrain mask has been taken into
account at some examination altitude ℎ. The radar location is marked with a blue
triangle. The left-most image visualizes the raw RaPM values, i.e., the performance of
the radar if its LOS is not obstructed. The middle image visualizes the binary terrain
mask, which indicates where the radar can see. The right-most image shows the RaPM
values of the radar, which is the aggregation of the raw RaPM values and the terrain
mask.

3.2.2 Wind farm effect

A finite set of possible wind farm locations is considered, indexed by 𝑙 ∈ {1, ..., 𝐿},
where 𝐿 denotes the number of wind farm placement options. For every radar
placement option 𝑚, the subset of wind farm positions within the range 𝑅 is identified.
This subset contains the wind farm locations 𝑙 that can cause adverse effects on the
radar at the position 𝑚. Each of these radar-wind farm combinations defines an adverse
effect pair (𝑚𝑘 , 𝑙𝑘 ). These combinations are indexed by 𝑘 ∈ {1, ..., 𝐾}, where 𝐾 is the
total number of the adverse effect pairs.

The adverse effects caused by the wind farm are estimated with the damping factor
𝛼𝑡𝑜𝑡𝑎𝑙 . This factor is calculated for every pair 𝑘 and at every measurement point 𝑖 as
described in Section 3.1.2. At measurement point 𝑖, the reduction in the RaPM value
for the radar at position 𝑚𝑘 due to the wind farm at position 𝑙𝑘 is computed as

𝐴3𝐷 [𝑘, 𝑖] = 𝛼𝑡𝑜𝑡𝑎𝑙 (𝑘, 𝑖) · RaPM(𝑚𝑘 , 𝑖). (7)

Here, 𝐴3𝐷 is the 3D-adverse effect matrix, which contains possible adverse effect
values. These values are computed into a matrix in order to efficiently evaluate the
adverse effects between different adverse effect pairs. The size of the 3D-adverse
effect matrix is 𝐾 × 𝐼. For increased memory efficiency, 𝐴3𝐷 is stored as a sparse
matrix, meaning only elements with nonzero values require memory (Gilbert et al.,
1992). The use of sparse matrices is additionally reasonable, as the adverse effects are
only localized near the wind farm, meaning most of the adverse effect values are zero.

3.2.3 Spatial and altitude weighting

In air surveillance, certain geographical locations may require higher surveillance
quality than others due to factors such as strategic significance or population density.
Similarly, some altitudes may have higher importance, which can reflect the flying
altitudes of different targets. For example, drones and helicopters typically fly at low
altitudes, and fighter jets at high altitudes. These importance differences in spatial
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areas and altitudes are described with weights that are used in the evaluation of the air
surveillance quality.

The horizontal area of interest is divided into 𝑁𝐴 non-overlapping 2D regions, each
assigned a priority reflecting its relative importance for achieving high air surveillance
quality. These priorities are used to determine spatial weights 𝑤𝑥𝑦. The weight 𝑤𝑥𝑦 (𝑎)
for an area 𝑎 ∈ {1, ..., 𝑁𝐴} is computed with the centroid-weighting method (see,
e.g., Ahn, 2011). In this method, the priorities are first sorted in ascending order,
resulting in an importance rank 𝑞 for each region. Then, the weight of the area 𝑎 with
importance rank 𝑞 is calculated with

𝑤𝑥𝑦 (𝑎) =
1
𝑁𝐴

𝑁𝐴∑︁
𝑡=𝑞

1
𝑡
. (8)

In cases where multiple areas have the same priority, the weights of these areas
are normalized with their average value. This normalization ensures that all areas
with the same priority receive the same weight, areas with higher priority receive
higher weights, and the sum of all weights equals one. To assign a spatial weight
for measurement points, the weight of each area is evenly divided among all the
measurement points located within that area. This ensures that the spatial weights
assigned to the measurement points sum to one.

Similarly, priorities are defined for a set of altitude ranges. These altitude priorities
can differ for each spatial area 𝑎. The altitude weight for an altitude range 𝛿ℎ in area
𝑎 is denoted by 𝑤𝑧 (𝑎, 𝛿ℎ), which is computed similarly to the spatial weights 𝑤𝑥𝑦,
and has the same properties. Similarly to the spatial weights, the weight of an altitude
range is evenly divided among the examination altitudes belonging to that range.
Thereby, the sum of altitude weights across all the examination altitudes sums to one.

3.2.4 3D-system performance measure

Here, a system refers to a specific subset of radar and wind farms chosen from the set
of all possible placement options. A placement is considered selected if it is included
in this system. To evaluate the air surveillance quality of such a system at different
3D-locations, a performance measure that takes into account the radar performance
and wind farm adverse effects is needed. For this purpose, the 3D-system performance
measure is developed. This measure is determined by aggregating the performances
of the radars, as described in Section 3.1.1, and subtracting the adverse effects of
the wind farms, described in Section 3.2.2. The resulting 3D-system performance
measure enables comparison of systems consisting of different radar and wind farm
placements.

For efficient comparison between different radar placements, the radar performances
are precomputed in every 3D-measurement point into a matrix for all the placement
options. The RaPM values at 𝑖 for different radar placements 𝑚 are stored in the
performance matrix 𝑃3𝐷

𝑃3𝐷 [𝑚, 𝑖] = RaPM(𝑚, 𝑖). (9)
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In the resulting performance matrix 𝑃3𝐷 , the rows correspond to the radar placement
𝑚 and the columns to the measurement point. Therefore, the size of the matrix is
𝑀 × 𝐼. 𝑃3𝐷 is stored as a sparse matrix in order to increase the memory efficiency.

The radar placement is described as a binary decision whether a placement option
is selected or not. Therefore, the selection of a radar placement site in the system is
represented by an indicator function

𝑟𝑚 =

{︃
1, if radar location 𝑚 is selected,
0, otherwise. . (10)

Similarly, the selection of a wind farm placement site in the system is represented with
an indicator function 𝑓𝑙

𝑓𝑙 =

{︃
1, if wind farm location 𝑙 is selected,
0, otherwise. . (11)

To calculate the adverse effects of the selected wind farms on the radars, an indicator
function 𝑧𝑘 is constructed to denote which adverse effect pairs exist in the system. The
function is of the form

𝑧𝑘 = 𝑟𝑚𝑘
· 𝑓𝑙𝑘 , (12)

where 𝑚𝑘 and 𝑙𝑘 are the radar and wind farm associated with the 𝑘th adverse effect
pair. The indicator function 𝑧𝑘 is active – that is, it takes the value 1 – if both the
corresponding radar and wind farm are selected in the system; otherwise, it is 0. The
use of indicator functions to represent the selected radar placements and the active
adverse effect pairs is useful here, as the inclusion of radar performances and wind
farm adverse effects in the 3D-system performance measure can be carried out with
multiplication.

The 3D-system performance measure at measurement point 𝑖 is obtained by
summing RaPM of selected radars and subtracting the adverse effects caused by the
selected wind farms. However, the resulting value of this calculation may exceed the
valid range for performance measures of [0, 1], explained in Section 3.1.1. As the
value is not constrained, when multiple radars provide high performance values in a
measurement point, the sum exceeds 1. This unconstrained performance measure is
referred to as a raw 3D-system performance measure. The raw 3D-system performance
measure 𝑠𝑟𝑎𝑤 is

𝑠𝑟𝑎𝑤𝑖 =

𝑀∑︁
𝑚=1

𝑃3𝐷 [𝑚, 𝑖] · 𝑟𝑚 −
𝐾∑︁
𝑘=1

𝐴3𝐷 [𝑘, 𝑖] · 𝑧𝑘 . (13)

This raw measure is used to calculate the 3D-system performance measure by
constraining the values to within the valid interval of [0, 1]. This formula is of the
form

𝑠𝑖 = min(1,max(0, 𝑠𝑟𝑎𝑤𝑖 )). (14)
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To evaluate the air surveillance quality across an area of interest, the importance
of different spatial areas and altitudes must be considered. The relative importance
of these areas and altitude ranges is described by their weights. The spatial and
altitude weights are determined as explained in Section 3.2.3. These weights are
aggregated to assign a weight for an individual measurement point. The total weight
of a measurement point 𝑖 is

𝑤𝑖 =
𝑤𝑥𝑦 (𝑎𝑖)
𝐼𝑎𝑖

· 𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖)|𝐻𝛿ℎ𝑖 |
, (15)

where 𝑤𝑥𝑦 (𝑎𝑖) denotes the spatial weight assigned to the area 𝑎𝑖 containing the
measurement point 𝑖, and 𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖) denotes the weight corresponding to the altitude
range 𝛿ℎ𝑖 of point 𝑖 within the same area. The spatial weight is divided by the number
of measurement points within an area, denoted by 𝐼𝑎𝑖 . The weight of an altitude
range is divided by the number of examination altitudes within that range, denoted
by |𝐻𝛿ℎ𝑖 |. The total air surveillance quality of the whole area of interest is calculated
as the weighted sum of weights 𝑤𝑖, presented in Equation 15, and the 3D-system
performance measure, presented in Equation 14.

3.2.5 2D-system performance measure

The system performance measures are used as a basis for optimization formulations of
the placement problem. Optimizing the placements while considering the performance
in every possible 3D-measurement point is complex. If the number of 3D-measurement
points is high, the placement optimization can become infeasible, meaning it cannot
be solved with the available computational resources in a feasible amount of time. The
optimization formulations and their complexity are discussed more in Section 3.3. In
addition to computational complexity, the performance and adverse effect values are
precomputed and stored in memory. With a large number of examination altitudes,
the required memory can exceed the available capacity. The 2D-system performance
measure is constructed to address these issues. This measure uses altitude-wise
aggregated values for evaluating the performance of the selected radars and wind
farms in the system, which allows the evaluation of the air surveillance quality even
when the 3D-system performance measure cannot be used.

The 2D-measurement points are indexed by 𝑗 ∈ {1, ..., 𝐽}, which corresponds to a
specific horizontal grid coordinate (𝑔 𝑗𝑥 , 𝑔 𝑗𝑦). For each point 𝑗 , a set J ( 𝑗) is defined,
such that the set includes all the 3D-measurement point indices 𝑖 that share the same
(𝑔𝑥 , 𝑔𝑦) coordinates but vary across the altitude levels 𝐻. Formally, this set is

J ( 𝑗) = {𝑖 ∈ {1, ..., 𝐼}|(𝑔𝑖𝑥 , 𝑔𝑖𝑦) = (𝑔 𝑗𝑥 , 𝑔 𝑗𝑦)}, (16)

where (𝑔𝑖𝑥 , 𝑔𝑖𝑦) refers to the x- and y-grid coordinates of 3D-measurement point
𝑖, and (𝑔 𝑗𝑥 , 𝑔 𝑗𝑦) refers to the grid coordinates of point 𝑗 . In total, the number of
2D-measurement points is 𝐽 = 𝐺𝑥 · 𝐺𝑦.

The radar performance values are stored in a 2D-radar performance matrix 𝑃2𝐷 .
These values are obtained by aggregating the RaPM values in the 3D-measurement

30



points altitude-wise. To account for the varying importance of different altitudes in
different spatial areas, the altitude weights 𝑤𝑧 are used in the aggregation. Thus, the
2D-radar performance matrix values are calculated as the altitude weighted sum of the
RaPM values, i.e.,

𝑃2𝐷 [𝑚, 𝑗] =
∑︁

𝑖∈J ( 𝑗)

𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖)
|𝐻𝛿ℎ𝑖 |

· RaPM(𝑚, 𝑖), (17)

where 𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖) is the altitude weight interval 𝛿ℎ𝑖 to which 𝑖 belongs. This weight
is divided by the number of examination altitudes within this altitude interval |𝐻𝛿ℎ𝑖 |.
Similar to the 3D-performance matrix, 𝑃2𝐷 is also stored as a sparse matrix for
increased memory efficiency.

The adverse effect values from wind farm interference are stored in a 2D-adverse
effect matrix 𝐴2𝐷 . These values are computed in a similar manner to 𝐴3𝐷 defined in
Equation 7, but are aggregated altitude-wise with the corresponding weights, i.e.,

𝐴2𝐷 [𝑘, 𝑗] =
∑︁

𝑖∈J ( 𝑗)

𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖)
|𝐻𝛿ℎ𝑖 |

· 𝛼𝑡𝑜𝑡𝑎𝑙 (𝑘, 𝑖) · RaPM(𝑚𝑘 , 𝑖). (18)

The 2D-system performance measure is obtained by adding the radar performances
and subtracting the adverse effects of wind farms. Similarly to the 3D-version, these
values can exceed the valid interval of [0, 1]. Therefore, these values are referred to as
the raw 2D-system performance measure. This value is obtained with

𝑠𝑟𝑎𝑤𝑗 =

𝑀∑︁
𝑚=1

𝑃2𝐷 [𝑚, 𝑗] · 𝑟𝑚 −
𝐾∑︁
𝑘=1

𝐴2𝐷 [𝑘, 𝑗] · 𝑧𝑘 . (19)

The 2D-system performance measure value is obtained by constraining the raw values
to the valid interval, i.e.,

𝑠 𝑗 = min(1,max(0, 𝑠𝑟𝑎𝑤𝑗 )). (20)

Similarly to the 3D-system performance measure, the air surveillance quality for the
whole area of interest is estimated by the weighted sum of the 2D-system performance
measure values. The altitude weights are already included in the 2D-system perfor-
mance measure when computing the radar performance and adverse effect matrices in
Equations 17 and 18. Thus, the weight of measurement point 𝑗 is determined only by
its spatial weight, i.e.,

𝑤 𝑗 =
𝑤𝑥𝑦 (𝑎 𝑗 )
𝐽𝑎 𝑗

, (21)

where 𝑤𝑥𝑦 (𝑎 𝑗 ) is the spatial weight of the area containing 𝑗 , and 𝐽𝑎 𝑗
is the number of

2D-measurement points within area 𝑎 𝑗 .
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3.3 Optimization formulations
The overall objective of this thesis is to introduce a way to identify radar and wind
farm placements such that the resulting air surveillance quality is maximized. This
placement problem is formulated as an optimization problem, where the placements of
radars and wind farms are used as decision variables, and the objective is to maximize
the total air surveillance quality. A MILP formulation is selected for its ability to tackle
binary decision-making within a linear optimization framework (see, e.g., Vanderbei,
2020). This approach remains effective even as the problem size increases, e.g.,
through more decision variables or constraints, due to the efficiency of modern MILP
solvers (Koch et al., 2022). It provides an efficient and scalable solution procedure,
balancing model complexity and computational feasibility. The MILP formulation is
constructed separately for the 3D- and 2D-system performance measures presented in
Sections 3.2.4 and 3.2.5, respectively.

Since MILP relies on linear programming principles, both the objective function
and the constraints must be linear with respect to the decision variables. Therefore,
nonlinear expressions are converted into linear ones. The indicator functions 𝑟𝑚 and
𝑓𝑙 , presented in Equations 10 and 11, fit within the MILP formulation as is. However,
the indicator function for the active adverse effect pairs 𝑧𝑘 in Equation 12 is nonlinear.
This function is linearized as

𝑧𝑘 ≤ 𝑟𝑚𝑘
,∀𝑘 ∈ {1, ..., 𝐾}, (22)

𝑧𝑘 ≤ 𝑓𝑙𝑘 ,∀𝑘 ∈ {1, ..., 𝐾}, (23)
𝑧𝑘 ≥ 𝑟𝑚𝑘

+ 𝑓𝑙𝑘 − 1,∀𝑘 ∈ {1, ..., 𝐾}, (24)

where 𝑧𝑘 is limited to {0, 1}. This linear formulation of 𝑧𝑘 behaves the same way as in
the previous product-based formulation, i.e., 𝑧𝑘 is 1 if 𝑟𝑚𝑘

and 𝑓𝑙𝑘 are 1, and otherwise
it is 0.

The 3D- (Equation 14) and 2D- (Equation 20) system performance measures are
also nonlinear with regard to the decision variables 𝑟𝑚 and 𝑧𝑘 , as the raw system
performance measures are clipped to be within the set [0, 1]. Expression 14 is
linearized by setting 𝑠𝑖 as a decision variable. The nonlinear clipping is replaced by
limiting the decision variable value to be in [0, 1], and setting the raw measure as
an upper bound 𝑠𝑖 ≤ 𝑠𝑟𝑎𝑤

𝑖
. As the objective is to maximize the sum of the 𝑠𝑖 values,

this decision variable will be appointed the maximum value it can have, i.e., 𝑠𝑖 is
either 𝑠𝑟𝑎𝑤

𝑖
or 1. Therefore, setting 𝑠𝑖 as a decision variable with the listed constraints

behaves the same as clipping the raw value. Equation 20 for 𝑠 𝑗 is linearized in a similar
manner.

As there are two alternative system performance measures, 2D and 3D, two
alternative formulations for the optimization are presented. The 3D-formulation is
presented in Section 3.3.1, which is based on the 3D-system performance measure
introduced in Section 3.2.4. Similarly, the 2D-formulation is presented in Section 3.3.2,
which is based on the 2D-system performance measure introduced in Section 3.2.5.
The differences in these formulations are discussed in more detail in Section 3.3.3
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3.3.1 3D-formulation

When formulating a MILP problem, the objective function, decision variables and
constraints are determined. The objective is to maximize the air surveillance quality
in the whole area of interest. The air surveillance quality in a 3D-measurement point
is measured by the 3D-system performance measure 14. To account for the varying
importance levels of different spatial areas and altitudes, the system performance
measure values are weighted with 𝑤𝑖, given by Equation 15. The objective is then to
maximize the sum of the weighted 3D-system performance measure values.

The binary indicator functions 10 and 11 for radar and wind farm placements
are implemented as binary decision variables in the optimization model. This
means the selection of radars and wind farms in the system, which maximize air
surveillance quality, is determined by an optimization solver. This optimization solver
is a computational tool, which uses some optimization algorithm to explore feasible
solutions and determine the solution, which maximizes the objective function. In
addition to the radar and wind farm placements, the indicator function for adverse
effect pairs 𝑧𝑘 and the 3D-system performance measure 𝑠𝑖 are also treated as decision
variables. These variables are implemented as decision variables for linearity. However,
their value is dependent on the radar and wind farm placements 𝑟𝑚 and 𝑓𝑙 , as the
placements determine the active adverse effect pairs and the air surveillance quality.
This dependency is achieved in the optimization formulation through constraints.

The active adverse effect pairs, i.e., 𝑧𝑘 values, are dependent on which radars 𝑟𝑚
and wind farms 𝑓𝑙 are selected in the system. This dependency is formulated linearly
by using Equations 22 - 24 as constraints. Similarly, the 3D-system performance
measure 𝑠𝑖 is dependent on the radar and wind farm placements. The 𝑠𝑖 value is
constrained to be less than or equal to the raw 3D-system performance measure, which
is presented in Equation 13. Lastly, the numbers of selected radars and wind farms are
set to be 𝑛𝑟 and 𝑛 𝑓 , respectively.

Using the objective function, decision variables and constraints introduced above,
the resulting 3D-formulation of the radar and wind farm placement optimization
problem is
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max𝑠,𝑟, 𝑓 ,𝑧
𝐼∑︁
𝑖=1

𝑤𝑖 · 𝑠𝑖 (25)

subject to

𝑠𝑖 ≤
𝑀∑︁
𝑚=1

𝑃3𝐷 [𝑚, 𝑖] · 𝑟𝑚 −
𝐾∑︁
𝑘=1

𝐴3𝐷 [𝑘, 𝑖] · 𝑧𝑘 ,∀𝑖 ∈ {1, ..., 𝐼} (26)

𝑀∑︁
𝑚=1

𝑟𝑚 = 𝑛𝑟 (27)

𝐿∑︁
𝑙=1

𝑓𝑙 = 𝑛 𝑓 (28)

𝑧𝑘 ≤ 𝑟𝑚𝑘
,∀𝑘 ∈ {1, ..., 𝐾} (29)

𝑧𝑘 ≤ 𝑓𝑙𝑘 ,∀𝑘 ∈ {1, ..., 𝐾} (30)
𝑧𝑘 ≥ 𝑟𝑚𝑘

+ 𝑓𝑙𝑘 − 1,∀𝑘 ∈ {1, ..., 𝐾} (31)

𝑠𝑖 ∈ [0, 1],∀𝑖 ∈ {1, ..., 𝐼} (32)
𝑟𝑚 ∈ {0, 1},∀𝑚 ∈ {1, ..., 𝑀} (33)
𝑓𝑙 ∈ {0, 1},∀𝑙 ∈ {1, ..., 𝐿} (34)
𝑧𝑘 ∈ {0, 1},∀𝑘 ∈ {1, ..., 𝐾} (35)
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Decision variables
𝑠𝑖 : 3D-system performance measure value at measurement point 𝑖
𝑟𝑚 : Indicator function whether radar at position 𝑚 is selected
𝑓𝑙 : Indicator function whether wind farm at position 𝑙 is selected
𝑧𝑘 : Indicator function whether both radar 𝑟𝑚𝑘

and wind farm 𝑓𝑙𝑘 are selected
Auxiliary variables

𝑖 : 3D-measurement point
𝑃3𝐷 : Performance of radar 𝑚 at point 𝑖
𝐴3𝐷 : Adverse effects of wind farm 𝑙𝑘 on radar 𝑚𝑘 at point 𝑖
𝑤𝑖 : Total weight of point 𝑖

Parameters
𝑛𝑟 : Number of radars to place
𝑛 𝑓 : Number of wind farms to place
𝑀 : Number of radar placement options
𝐿 : Number of wind farm placement options
𝐾 : Number of possible adverse effect pairs
𝐼 : Number of 3D-measurement points

In the 3D MILP formulation, the objective function in Equation 25 is defined as the
maximization of the weighted sum of the 3D-system performance measure values 𝑠𝑖.
The 𝑠𝑖 values are used as decision variables in Equation 32, which can have values in
[0, 1], but is then constrained to be less than the raw 3D-system performance measure
values in Equation 26. The radar and wind farm placements are also used as decision
variables in Equations 33 and 34. The numbers of radar and wind farm placements
must be equal to the given parameters 𝑛𝑟 and 𝑛 𝑓 , which is stated by Equations 27
and 28. The radar and wind farm placements selected in the system determine the
active adverse effect pairs 𝑘 , i.e., the values of the indicator function 𝑧𝑘 . For linearity,
the indicator function 𝑧𝑘 is used as a decision variable in Equation 35. Then, the
constraints 29 - 31 are used to restrict its value based on the selected radar and wind
farm placements.

In total, the number of decision variables is 𝐼 + 𝑀 + 𝐿 + 𝐾. For the number of
constraints, Equation 26 defines 𝐼 constraints, Equations 29-31 define 𝐾 constraints
each, and Equations 27 and 28 account for one constraint each. Therefore, the total
number of constraints is 3𝐾 + 𝐼 + 2.

3.3.2 2D-formulation

The 2D-formulation of the radar and wind farm placement optimization problem is
constructed similarly to the 3D-formulation, except that it is based on the 2D-system
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performance measure presented in Section 3.2.5. The objective function of the
resulting MILP problem is to maximize the sum of spatially weighted 2D-system
performance measure values 𝑠 𝑗 . With the 2D-formulation, the system performance
measure values are already weighted altitude-wise, thus only spatial weights 𝑤𝑥𝑦 are
required.

Decision variables in the 2D-formulation are the indicator functions for radar and
wind farm placements 𝑟𝑚 and 𝑓𝑙 , respectively. As discussed previously, the 2D-system
performance measure values 𝑠 𝑗 and the indicator function for adverse effect pairs 𝑧𝑘
are also used as decision variables.

The indicator function 𝑧𝑘 is constrained with Equations 22 - 24 to determine its
value based on radars and wind farms selected in the system. The decision variable 𝑠 𝑗
is constrained to be less or equal to the raw 2D-system performance measure, presented
in Equation 19. This constraint ensures the value of the variable 𝑠 𝑗 is determined by
the radars and the wind farms selected in the system. The numbers of the selected
radars and wind farms are constrained to be 𝑛𝑟 and 𝑛 𝑓 , respectively.

The 2D-formulation is of form

max𝑠,𝑟, 𝑓 ,𝑧
𝐽∑︁
𝑗=1
𝑤 𝑗 · 𝑠 𝑗 (36)

subject to

𝑠 𝑗 ≤
𝑀∑︁
𝑚=1

𝑃2𝐷 [𝑚, 𝑗] · 𝑟𝑚 −
𝐾∑︁
𝑘=1

𝐴2𝐷 [𝑘, 𝑗] · 𝑧𝑘 ,∀ 𝑗 ∈ {1, ..., 𝐽} (37)

𝑀∑︁
𝑚=1

𝑟𝑚 = 𝑛𝑟 (38)

𝐿∑︁
𝑙=1

𝑓𝑙 = 𝑛 𝑓 (39)

𝑧𝑘 ≤ 𝑟𝑚𝑘
,∀𝑘 ∈ {1, ..., 𝐾} (40)

𝑧𝑘 ≤ 𝑓𝑙𝑘 ,∀𝑘 ∈ {1, ..., 𝐾} (41)
𝑧𝑘 ≥ 𝑟𝑚𝑘

+ 𝑓𝑙𝑘 − 1,∀𝑘 ∈ {1, ..., 𝐾} (42)

𝑠 𝑗 ∈ [0, 1],∀ 𝑗 ∈ {1, ..., 𝐽} (43)
𝑟𝑚 ∈ {0, 1},∀𝑚 ∈ {1, ..., 𝑀} (44)
𝑓𝑙 ∈ {0, 1},∀𝑙 ∈ {1, ..., 𝐿} (45)
𝑧𝑘 ∈ {0, 1},∀𝑘 ∈ {1, ..., 𝐾} (46)
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Decision variables
𝑠 𝑗 : 2D-system performance measure value at measurement point 𝑗
𝑟𝑚 : Indicator function whether radar at position 𝑚 is chosen
𝑓𝑙 : Indicator function whether wind farm at position 𝑙 is chosen
𝑧𝑘 : Indicator function whether both radar 𝑟𝑚𝑘

and wind farm 𝑓𝑙𝑘 are chosen
Auxiliary variables

𝑗 : 2D-measurement point
𝑃2𝐷 : Performance of radar 𝑚 at point 𝑗
𝐴2𝐷 : Adverse effects of wind farm 𝑙𝑘 on radar 𝑚𝑘 at point 𝑗
𝑤 𝑗 : Spatial weight for point j

Parameters
𝑛𝑟 : Number of radars to place
𝑛 𝑓 : Number of wind farms to place
𝑀 : Number of possible radar placement options
𝐿 : Number of possible wind farm placement options
𝐾 : Number of possible adverse effect pairs
𝐽 : Number of measurement points

The objective function, defined in Equation 36, is to maximize the weighted 2D-system
performance measure values 𝑠 𝑗 . The weight 𝑤 𝑗 is defined in Equation 21, and
contains only the spatial weight, as the altitude weights are already considered in the
altitude-wise aggregation. The 𝑠 𝑗 values are used as decision variables in Equation 43.
They are constrained by Equation 37 to be less than the raw 2D-system performance
performance measure values. The raw performance value is determined by which
radar and wind farm placements are selected in the system. These selections are used
as decision variables in Equations 44 and 45. The total number of radars is set to
be 𝑛𝑟 in Equation 38, and total number of wind farms to be 𝑛 𝑓 in Equation 39. The
radar and wind farm placements determine the active adverse effect pairs. The active
adverse effect pairs 𝑘 are expressed linearly by setting 𝑧𝑘 as a decision variable, and
constraining it to be dependent on the radar and wind farm placements 𝑟𝑚 and 𝑓𝑙 .
These constraints are expressed in Equations 40 - 42.

In total, the number of decision variables is 𝐽 + 𝑀 + 𝐿 + 𝐾. The constraint for
𝑠 𝑗 in Equation 37 accounts for 𝐽 constraints. The number of radars and wind farms,
corresponding to Equations 38 and 39, account for one constraint each. Equations 40
- 42 define the constraints for the decision variable 𝑧𝑘 , each encompassing 𝐾 individual
constraints. Thus, the total amount of constraints is 3𝐾 + 𝐽 + 2.
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3.3.3 Comparison of 2D- and 3D-formulations

The radar and wind farm placement optimization is formulated as a MILP problem
using two formulations: 2D and 3D. These formulations differ primarily in how
they represent the radar spatial performance and balance performance accuracy with
computational complexity. Both formulations have strengths and weaknesses, and the
appropriate choice depends on the available computational resources and the intended
use of results.

The 3D-formulation offers more accurate assessment of radar performance and
wind farm effects than the 2D-formulation, as the performance is evaluated at individual
3D-measurement points. However, the accuracy of the problem formulation entails a
trade-off involving greater computational complexity and higher memory demands.
As discussed in Section 3.3.1, the number of decision variables and constraints
increases linearly with the number of measurement points |𝐼 |. This number influences
the computational feasibility of the MILP problem, determining whether it can be
solved within a reasonable time frame given the available computational resources.
In addition, the size of the 3D-performance matrix 𝑃3𝐷 and the 3D-adverse effect
matrix 𝐴3𝐷 also grow linearly with the number of measurement points 𝐼. This number
increases with a larger area of interest, a greater number of examination altitudes |𝐻 |,
or with higher spatial resolution, which defines the number of grid cells used to cover
the area of interest. As 𝐼 increases, the MILP problem can exceed available memory
capacity or become computationally infeasible.

When the 3D-formulation becomes infeasible to solve, the problem may still be
addressed using the 2D-formulation. In this formulation, the performance measure
and adverse effect values are aggregated altitude-wise, and the resulting values are
represented in 2D-measurement points 𝑗 . Similarly to the 3D-formulation, the
number of decision variables and constraints is linearly dependent on the number
of 2D-measurement points 𝐽. However, as the performance values are aggregated
altitude-wise, the number of 2D-measurement points is 𝐽 = 𝐼

|𝐻 | , i.e., |𝐻 | times less
than the number of 3D-measurement points. By reducing the number of measurement
points, the 2D-formulation remains computationally and memory feasible even when
the 3D-formulation cannot. However, aggregating the measurement points involves a
trade-off in the accuracy of optimization results. The 2D-formulation is accurate for
individual radar performances, but the combined performance of multiple radars can be
distorted. In the 2D-formulation, the combined performance is obtained by summing
the aggregated 2D-performance measure values from each radar. This aggregation
means that the radar performance is only determined by the aggregated value and
not by the performances at different altitude levels. Thus, this approach can lead to a
situation where at some horizontal location (𝑥, 𝑦), the combined radar performance
can have value 1, i.e., the maximum value, even though no radar provides coverage
at lower altitudes. Even if the individual radar performances are poor, given enough
overlapping coverage, the sum of the aggregated values can be 1. Therefore, in areas
covered by multiple radars, the 2D-system performance measure values are typically
higher than those obtained using the 3D-formulation. Despite these limitations, the
2D-formulation provides a good approximate solution and should be used when the
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3D-formulation becomes computationally infeasible or only an approximate solution
is needed.

The differences in the formulations are highlighted in Section 4 through an example
problem. This section compares the formulations in terms of optimal placements,
memory requirements, and the time taken by the solution of the example problem.
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4 Example problem
To demonstrate the effectiveness and utility of the placement method developed in this
thesis, an example problem is considered in which radars are placed across Finland, and
wind farms are placed in Eastern Finland. Additionally, a large number of placement
options are considered to test and demonstrate the feasible scale of the placement
problem. These placement options for radars and wind farms are purely fictitious
and do not reflect any actual sites or development intentions. This problem setup is
motivated by the lack of wind farm development in Eastern Finland (Peiponen, 2022).

The example problem is solved with both the 3D- and 2D-formulations, presented in
Sections 3.3.1 and 3.3.2, respectively. This example is used to examine the differences
in the optimal radar and wind farm placements and the resulting air surveillance
qualities with alternative formulations.

Additionally, spatial and altitude weights are used to take into account the relative
importance of good air surveillance for different areas and altitudes. As the wind
farms are placed in Eastern Finland, higher importance is given to the eastern areas
for good air surveillance. To analyze the effect of the weighting, the optimal radar and
wind farm placements are also calculated with uniform weights.

4.1 Problem setup
In the example, air surveillance in Finland is considered. However, the example
problem is fully fictitious, and the problem setup, meaning the area of interest, the
area division, weights, and the radar and wind farm placement options are fictitious
and are made up only to demonstrate the developed placement method.

The objective is to place 20 radars and 60 wind farms such that the overall air
surveillance quality in the whole area of interest is maximized. The area of interest is
limited to approximately 300 km from the Finnish border. This region is divided into
13 areas for which spatial and altitude weights are determined. The area division is
presented in Figure 5, where areas 1-9 represent Finland’s inland area, and the North,
East, South, and West represent the outer surrounding areas.
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Figure 5: Division of the area of interest to which spatial and altitude weights are
given.

The altitude weights are determined by the priorities of different altitude ranges. In
this example, two types of altitude priority classes are considered: low-altitude priority
and equal altitude priority. The low-altitude priority class gives higher priority to the
lower altitude range, meaning low-altitude ranges have higher importance on good air
surveillance quality than the higher altitude ranges. In the equal altitude priority class,
equal priority is set for every altitude range. The examination altitudes considered are
between 0 and 15 kilometers, and priorities are given for every 1-kilometer interval.
The priorities for the altitude classes are given in Table 1.
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Table 1: Altitude ranges and priorities.

Altitude range Low-altitude
priority class

Equal altitude
priority class

(0 km, 1 km] 1 1
(1 km, 2 km] 2 1
(2 km, 3 km] 2 1
(3 km, 4 km] 2 1
(4 km, 5 km] 2 1
(5 km, 6 km] 3 1
(6 km, 7 km] 3 1
(7 km, 8 km] 3 1
(8 km, 9 km] 3 1
(9 km, 10 km] 3 1
(10 km, 11 km] 4 1
(11 km, 12 km] 4 1
(12 km, 13 km] 4 1
(13 km, 14 km] 4 1
(14 km, 15 km] 4 1

Priorities on air surveillance quality are determined for the 13 different spatial
areas presented in Figure 5. As this example problem is motivated to enable wind
farm development in Eastern Finland while maintaining high air surveillance quality,
higher priority is given to the eastern areas. The low-altitude priority class is used
for inland areas, i.e., areas 1-9. This class is chosen due to the need to be able to
detect low-flying objects, such as drones. Drones have a limited range, meaning they
are typically launched near targets. Therefore, their detection far outside the Finnish
border is not as important as their range does not reach the border. For outer areas,
i.e., North, East, South, and West, the equal altitude priority class is used due to the
varying flying objects that need to be detected. For example, fighter jets and bombers
fly at high altitudes, helicopters at medium altitudes, and drones at low altitudes.

Spatial priorities, resulting spatial weights, and altitude priority classes for all
areas are given in Table 2. The spatial weight column presents the total weight of the
spatial area, and the spatial weight per point column presents the spatial weight of a
measurement point within an area. The spatial weight per point is dependent on the
number of measurement points within an area, i.e., its size. As pointed out by Table 2,
the area with the highest priority does not mean it has the highest weight per point.
As the surrounding areas are large, they contain more measurement points than the
spatial areas 1-9. Therefore, the weight of an individual measurement point is smaller
but the total weight of the area is larger.
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Table 2: The spatial priority, the spatial weight of the area, the spatial weight per
point, and the altitude priority class for all areas are presented. The spatial weight per
point is scaled with a factor 10−3 for clarity.

Area Spatial
priority Spatial weight Spatial weight

per point (·10−3)
Altitude

priority class
1 6 0.0125 0.07 Low-altitude
2 6 0.0125 0.07 Low-altitude
3 6 0.0125 0.07 Low-altitude
4 4 0.0456 0.24 Low-altitude
5 4 0.0456 0.24 Low-altitude
6 5 0.0270 0.14 Low-altitude
7 2 0.1212 0.64 Low-altitude
8 2 0.1212 0.64 Low-altitude
9 2 0.1212 0.64 Low-altitude

North 3 0.0690 0.13 Equal
East 1 0.2446 0.27 Equal

South 2 0.1212 0.21 Equal
West 4 0.0456 0.05 Equal

To evaluate how the spatial and altitude weights given in Table 2 affect the optimal
radar and wind farm placements, the example problem is also solved with uniform
weighting. With the uniform weighting, all areas have the equal altitude priority
class, which is defined for the altitude intervals presented in Table 1. The uniform
altitude priorities are assigned to altitude ranges rather than individual examination
altitudes in order to not overemphasize the lower altitudes. In contrast, the spatial
weights are determined for the individual measurement points and not the spatial areas.
This point-wise weighting ensures that every measurement point has the same spatial
weight, and the size of the spatial area does not affect the weight of the measurement
points it contains.

4.2 Placement options
4.2.1 Radar sites

As discussed in Section 2.1, the placement of radars affects the resulting air surveillance
quality. A possible placement option should provide a radar with a clear LOS, without
obstructions from the terrain. This unobstructed LOS is typically achieved by placing
the radars on locally elevated terrain, such as hills. In this example, these elevated
terrain locations are used as placement options for the radars.

The elevated terrain locations are found by analyzing the topographic map of
Finland. A rectangle is drawn around the area of Finland to define the region where
the possible radar locations are searched. To analyze the local areas more deeply, this
rectangle is divided into 15 parts both vertically and horizontally, resulting in 225
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smaller windows. The rectangle and the window division are presented in Figure 6.
Each of the windows covers an area approximately 80 × 40 km2. From each window,
the five most elevated locations are selected, such that the distances between these
locations are at least 10 kilometers, and higher elevation is prioritized. This constraint
prevents the potential radar sites from being placed on the same hilltop. Once the
potential radar sites are obtained for all the windows, the sites again filtered, such that
the distance between these sites is at least 10 kilometers. This distance constraint
is applied again because the elevated terrain features, i.e., hills, can get divided into
multiple windows.

The windows also partly cover the neighboring countries and the sea. However,
only the potential radar sites within the Finnish border are considered. Additionally,
the radars are not allowed to be placed right on the border. Therefore, the remaining
placement options are filtered such that only the sites that are inside Finland and more
than 40 km away from the border remain.

Figure 6: Grid division used for local elevated terrain search. Potential radar sites
are identified by determining elevated terrain locations from each window.

With the discussed approach, 315 potential radar placement options are found,
which are presented in Figure 7 in blue. The placement options are not realistic for
real air defense use as this leaves out the north-west region without radar placement
options. However, these locations are sufficient in demonstrating the capability of
the placement method, as the number of possible air surveillance systems – i.e., the
number of feasible solutions – with 20 radars is

(︁315
20
)︁
≈ 2 · 1031.
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Figure 7: Possible radar placement options for 20 radars used for the example
problem. The number of placement options is 315. These placement options for radars
are purely fictitious and do not reflect any actual sites or plans.

4.2.2 Wind farm sites

The siting of wind farms is discussed in Section 2.4. However, finding suitable
placement options for wind farms is out of scope for this thesis. Therefore, the large
number of wind farm placement options is determined by randomly selecting 468
placement options from Eastern Finland. The placement options are visualized with
red dots in Figure 8. Similarly to the radar placement options, some of the possible
wind farm sites can be unrealistic, but these options are sufficient in demonstrating the
potential number of wind farm placement options and the size of the example problem.
The number of ways to choose 60 wind farms from the 468 placement options is(︁468

60
)︁
≈ 4 · 1080.
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Figure 8: Possible wind farm placement options for 60 wind farms used for the
example problem. The number of placement options is 468. These placement options
for wind farms are purely fictitious and do not reflect any actual sites or development
intentions.

As the placement options for wind farms are randomly generated, two or more sites
may be located closer to each other than the size of one wind farm. To prevent this, a
distance constraint is added to the placement of wind farms, such that the distance
between any two wind farms must be at least 20 kilometers. This distance limit is
reasonable due to the large size of the placed wind farms.

Additionally, the wind farms should be placed all over the eastern region. Therefore,
an additional regional constraint is added. The placement options are divided into
three location categories: North, Middle, and South. The wind farm placement options
and their placement categories are visualized in Figure 9. In the figure, the placement
options belonging to the category North is presented in red, Middle with yellow, and
South with purple. The placement of wind farms is constrained such that 20 wind
farms must be placed in each of these location categories.
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Figure 9: Location categories of the possible wind farm placement options. The
North category placements are depicted with red dots, the Middle category with yellow
dots, and the South category with purple dots. These placement options for wind
farms are purely fictive and do not reflect any actual sites or development intentions.

4.3 Model parametrization
In this example, the number of radars to be placed is 𝑛𝑟 = 20, which have a range of
𝑅 = 300 km. The number of radar placement options is 𝑀 = 315. The number of
wind farm placement options is 𝐿 = 468, from which 𝑛 𝑓 = 60 wind farms are placed.
The wind farms are considered to be 5 km wide and 300 meters high. The size of the
clutter wall is set to be 𝑤𝑐 = 5 km wide, i.e., same as the width of the wind farm, and
the height is ℎ𝑐 = 600 m, i.e., two times the height of the wind farm. The clutter wall
is higher than the wind farm to account for beam width of the radar, as clutter can
occur even when the wind farm does not interrupt the LOS directly. The shadowing
wall is set to be 𝑤𝑠 = 5 km wide, same as the wind farm, and ℎ𝑠 = 450 m high, i.e.,
1.5 times the height of the wind farm. ℎ𝑠 is higher than the wind farm to account for
the shadowing effects caused by the wind farm being within the Fresnel zone of the
radar signal.

The calculations are performed with a resolution of 𝑆𝑥 × 𝑆𝑦 = 20 × 20 km2,
meaning the measurement points are spaced 20 kilometers apart. The measurements
are performed in a 1720 × 2020 km2 size area, corresponding 𝐺𝑥 = 101 and 𝐺𝑦 = 86
grid points. In computation, 19 examination altitudes are used: four below 1 km
(200 m, 400 m, 600 m, and 800 m) and fifteen from 1 km to 15 km at 1 km
intervals (i.e., 1 km, 2 km, ..., 15 km). As five examination altitudes are within the
(0 km, 1 km] interval, the altitude weight of this interval is divided equally between
these examination altitudes.
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4.4 Optimal solutions
The optimal placements and the resulting system performance measures are determined
with both the 2D- and 3D-formulations. The problem is solved with the non-uniform
weighting, presented in Table 2, as well as with the uniform weighting. The differences
in the optimal solutions calculated with the 2D- and 3D-formulations are discussed
in Section 4.4.3. In addition, this section discusses the effect of the weighting to the
optimal placements by comparing the optimal solutions.

The optimization is performed with Gurobi Optimizer v12.0.1 via the Matlab
interface, using the dual simplex algorithm (e.g., Padberg, 2013). The computations
are carried out on a laptop with AMD Ryzen 7 5800U with Radeon Graphics CPU
1.90 GHz and 16 GB RAM, running Windows 11.

4.4.1 3D-formulation

The example problem is solved with non-uniform and uniform weights with the
3D-formulation, presented in Section 3.3.1. With this formulation, there are 𝐽 = 8686
2D-grid points and |𝐻 | = 19 examination altitudes. Therefore, the number of 3D-grid
points is 𝐼 = 𝐽 · |𝐻 | = 165034. With the 315 radar placement options visualized
in Figure 7 and 468 wind farm placement options visualized in Figure 8, there are
𝐾 = 71339 adverse effect pairs.

In order to visualize the 3D-system performance measure values, the 3D-values
are aggregated with an altitude-wise weighted sum. The aggregation is conducted for
every 2D-grid point 𝑗 as ∑︁

𝑖∈J ( 𝑗)

𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖)
|𝐻𝛿ℎ𝑖 |

· 𝑠𝑖, (47)

where J ( 𝑗) is defined in Equation 16, and 𝑤𝑧 (𝑎𝑖, 𝛿ℎ𝑖)/|𝐻𝛿ℎ𝑖 | is the weight of the
examination altitude. Even though this aggregation is similar to the one performed
for the 2D-formulation, the optimal solution and the aggregated 𝑠𝑖 values will differ
from the 2D-version, as the aggregation is performed after calculating the 3D-system
performance values.

The optimal placement options and the resulting 3D-system performance measure
obtained with the non-uniform weighting are visualized in Figure 10. The radar
placements are presented with blue triangles, and the wind farm placements with
black crosses. The resulting 3D-system performance measure values are aggregated
altitude-wise. The aggregated values are visualized with a color gradient, where red
signifies low values and green high values. Based on the figure, the radars are spread
out across Finland and can be seen to be placed near the border. The radars are fairly
evenly placed, meaning no large gaps can be seen in the radar placements. While
the wind farms are fairly evenly distributed across the eastern region, their overall
placement is more concentrated towards the center of Finland. The performance
measure values can overall be considered good as almost the entire area within Finland
is colored green, corresponding to values over 0.8. The performance of the radars
appears to drop near the border of the inland areas, meaning areas 1-9 in Figure 5,
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which is especially visible in the northwest corner. This performance drop is due to
the distance to the radars and the altitude weighting. As the border of the inland area
is in some parts far away from the radars, no radar coverage can be provided in the
lower altitudes. This limited low altitude coverage is due to the measurement points
being farther away than the radar horizon, meaning the Earth’s curvature prevents the
radar from covering the lower altitudes. This decreased performance at low altitudes
is additionally highlighted in the performance value visualization by the higher weight
set for the low altitudes. As the 3D-system performance measure values are aggregated
altitude-wise for visualization, the higher weight of low altitudes causes their value to
affect the aggregated value more than the higher altitude performance values. As the
surrounding area has uniform altitude weighting, the lack of coverage in the lower
altitudes is not highlighted. Therefore, the aggregated performance values is higher in
the surrounding area. This difference in the altitude weighting causes the border of the
inland areas to be visible in the aggregated results in the Figure 10. The performance
measure values in the surrounding areas decrease with distance to the radars. The
system performance measure values can be seen to be zero in some parts of the
surrounding areas, which is due to the distance being over 450 km to the nearest
radar. Overall, the optimal placement of the radars and the wind farms result in good
performance measure values across the area of interest with the adverse effects of the
wind farms being minimized.
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Figure 10: Optimal placement of radars and wind farms and the resulting system
performance measure calculated with the non-uniformly weighted 3D-formulation.
The 3D-system performance values are aggregated altitude-wise for visualization
using Equation 47. The inland area, corresponding to areas 1-9, appear to have lower
performance values at its borders, which is due to the different altitude weighting class
used in the surrounding areas. The placements of radars and wind farms are purely
fictitious and do not reflect any actual sites or development intentions.

The optimal placements and the resulting 3D-system performance measure, when
uniform weighting is used, is visualized in Figure 11. Similar to using non-uniform
weights, the radars are placed fairly evenly across Finland. The wind farms are also
placed fairly evenly across the placement options. The resulting aggregated system
performance value is good as the whole inland area as well as the surrounding areas
are mostly green. In contrast to Figure 10, no boundary between the inland and the
surrounding areas can be seen due to every spatial area having the same uniform
altitude weighting. The 3D-system performance values within the borders of Finland
can be considered very good due to the bright green color. The placed wind farms
cause no visible blind spots to the radars or deficiencies in the air surveillance quality.
The radar performance measure values diminish with distance, and the aggregated
system performance measure values can be seen to gradually diminish farther away in
the surrounding areas.
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Figure 11: Optimal placement of radars and wind farms and the resulting system
performance measure calculated using the 3D-formulation with the uniform weighting.
The results are aggregated altitude-wise for visualization using Equation 47. The
placements of radars and wind farms are purely fictitious and do not reflect any actual
sites or development intentions.

Visualization of the adverse effects of the wind farms on the radars is presented in
Figure 12. The values are calculated with

∑︁𝐾
𝑘=1 𝐴3𝐷 [𝑘, 𝑖] ·𝑧𝑘 for every 3D-measurement

point 𝑖. Similarly to the 3D-system performance measure, the 3D-adverse effect values
are aggregated altitude-wise with the altitude weights. In Figure 12, the adverse effects
to the radars from the optimally placed wind farms is visualized on the left using
non-uniform weighting and on the right with uniform weighting. The adverse effect
values are colored for range [0, 0.15] for increased clarity, even though the values
belong to the range [0, 0.65]. In Figure 12, the adverse effect values appear to be
significantly higher with the non-uniform weighting than with the uniform weighting,
as can be seen from the red and orange colors. This difference is likely due to the
altitude weighting used in the non-uniform weighting, where the lower altitudes have
a higher weight. As discussed in Section 3.1.2, the severity of the shadowing effect is
determined by the height at which the radar LOS intersects the shadowing wall. As the
LOS for measurement points at low altitude is more likely to intersect the wind farm
at low height, the shadowing effect is greater at lower altitudes. Therefore, the low
altitudes are likely to have higher adverse effect values than the high altitudes, and the
higher weight on the low altitudes highlights this difference. However, even with the
non-uniform weighting, the adverse effect values are not as large as the visual suggests,
as the color grading being limited to the range [0, 0.15] to better present the adverse
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effects. On the other hand, even with this limited color grading, the adverse effects
with the uniform weights are barely visible. Minimal color differences can be seen
in the right image of Figure 12, which correspond to values less than 0.1. However,
even though these visualizations highlight the differences in the adverse effect values,
the objective of the optimization is to maximize the 3D-system performance measure
values. It is possible that a different placement of the wind farms could have produced
less severe adverse effects. However, the coverage of the radars overlap in the areas with
adverse effects, resulting in high 3D-system performance measure values. Therefore,
although the adverse effect values appear high with the non-uniform weights, the
placement of both radars and wind farms result in a good air surveillance quality in
the area of interest, as pointed out in Figure 10.

Figure 12: Visualization of the adverse effects caused by the optimally placed
wind farms on the radars. The adverse effect values are aggregated altitude-wise for
visualization, and the colorbar is constrained to [0, 0.15] for increased clarity.

4.4.2 2D-formulation

The optimal radar and wind farm placements are also solved with the 2D-formulation
presented in Section 3.3.2, with using both the uniform and non-uniform weighting.
The number of 2D-measurement points is 𝐽 = 8686. Otherwise, the number of model
variables is similar to the 3D-formulation, i.e., 𝑀 = 315, 𝐿 = 468, |𝐻 | = 19, and 𝐾 =

71339.
As the 2D-system performance measure values are already aggregatedaltitude-wise,

the performance values 𝑠 𝑗 can be visualized without modification. The visualizations
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are similarly presented with a color gradient where red corresponds to low performance
measure values and green to high values.

The optimal placement for the radars and the wind farms calculated with non-
uniform weighting and with the 2D-formulation is presented in Figure 13. The radars
are placed near the borders fairly evenly. The wind farms are placed across the
placement options with slightly more wind farms in the center region of Finland.
The resulting 2D-system performance measure values are high in the inland and
surrounding areas, reaching the maximum possible value of 1 in large portions of
both regions. Compared to the aggregated 3D-system performance measure values
presented in Figure 10, the 2D-system performance measure values are higher. This
difference is due to the effect described in Section 3.3.3, where measurement points
with overlapping coverage receive a higher value with the 2D-formulation than it
would with the 3D-formulation. The outline of the inland area, corresponding to areas
1-9 in Figure 5, can be detected in the 2D-values due to the higher weight given to
lower altitudes. Similarly to the 3D-formulation, the northwest region of the inland
area shows a poorer performance as no radars are able to cover the lower altitudes. In
the surrounding area, the performance values decrease with regards to the increasing
distance from the radars and reach zero when the distance is over 450 km. Overall,
the placement of both radars and wind farms leads to high 2D-system performance
measure values, corresponding to high air surveillance quality.
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Figure 13: Optimal placement of radars and wind farms and the resulting 2D-system
performance measure calculated with non-uniform weighting. The performance
values are obtained with Equation 20, and are visualized without modification. The
placements of radars and wind farms are purely fictitious and do not reflect any actual
sites or development intentions.

The example problem is also solved with the 2D-formulation using uniform
weighting, and the optimal placements and the 2D-system performance measure values
are presented in Figure 14. Similar to the previous results, the radars are placed near
the borders, and the wind farms are placed fairly evenly across the eastern region. The
optimal radar system achieves high 2D-system performance measure values inland
and in the surrounding area. In contrast to using the non-uniform weighting, there is
no visible difference in the 2D-performance measure values between the inland and
the surrounding areas, due to the uniform weighting. The value of the performance
measure is at its maximum, value 1, in the entire inland area and near the borders. As
discussed in Section 3.3.3, the overlapping coverage from multiple radars results in
high 2D-system performance measure values for these areas.
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Figure 14: Optimal placement of radars and wind farms and the resulting 2D-system
performance measure calculated with the uniform weighting. The performance
values are obtained with Equation 20, and are visualized without modification. The
placements of radars and wind farms are purely fictitious and do not reflect any actual
sites or development intentions.

The adverse effect values resulting from the optimally placed wind farms are
visualized in Figure 15 using both uniform and non-uniform weighting. The adverse
effects using the non-uniform weighting are visualized on the left image, and using the
uniform weighting in the right image. The color grading is constrained to the range
[0, 0.15], even though the adverse effect values can have values in the range [0, 0.65].
Similarly to the adverse effects with the 3D-formulation, the adverse effect values are
higher with the non-uniform weighting, which is likely due to the higher weight given
to the lower altitudes. With the uniform weighting, all the measurement points seem
to have values less than 0.1. As discussed in Section 4.4.1, the values of the adverse
effects are useful in comparing the wind farm placements. However, the objective
is to maximize the 2D-system performance values, not minimize the adverse effect
values. As the placements of the radar and the wind farms result in high 2D-system
performance values with both weightings, i.e., to high air surveillance quality, the
placements are good.
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Figure 15: Adverse effects caused by the optimally placed wind farm on the radars.

4.4.3 Comparison

The 2D- and 3D-formulations differ in their computational complexity, which affects
the amount of memory required and the solution time. In Table 3, the number of
variables and constraints are presented, where a higher value corresponds to a higher
complexity. Additionally, the solution time and required memory of the formulations
and weightings are presented. The required memory is only for the performance
matrix 𝑃 and the adverse effect matrix 𝐴, and other variables used are not taken into
consideration here.

The 3D-formulation was computationally more complex, with about 3 times as
many variables and 1.7 times the number of constraints than the 2D-formulation,
see Table 3. The optimization lasted on average 9 times longer than with the 2D-
formulation, and required almost 10 times the memory. However, the example problem
was solved in less than 6 minutes even with the 3D-formulation, which is reasonable
for an optimization problem of this level of complexity. The solution time of the
optimization varied between weightings.

The 3D-formulation with uniform weighting took around 1.3 times longer to solve
than with the non-uniform weighting. With the 2D-formulation, the optimization took
around 1.5 times longer with the non-uniform weighting. As the weighting directly
affects the objective function, it also affects how the used optimization algorithm
explores the solution space and thus the solution time. However, in this example, the
difference in solution time was not significant in practical terms as the time differences
with different weightings was less than two minutes.

In terms of memory requirements, the 3D-formulations required 10 times more
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memory than the 2D-formulation. However, the matrices 𝑃3𝐷 and 𝐴3𝐷 were 19 times
larger than the 𝑃2𝐷 and 𝐴2𝐷 . The size of the matrices did not linearly correspond to
the amount of required memory due to sparse matrices being used. Such matrices
only require memory for entries with nonzero values, which decreases the amount of
memory used significantly. The use of sparse matrices was crucial, as the matrix 𝐴3𝐷
had dimensions 71339×165034. If stored as a full dense matrix with double precision,
i.e., 8 bytes per entry, it would require over 94 GB of memory, which is infeasible
for the available computational resources. With the sparse matrices, the combined
memory usage of 𝑃3𝐷 and 𝐴3𝐷 is only 75.8 MB, which is less than one-thousandth
the size of 94 GB.

Table 3: Comparison of optimization formulations and weightings in terms of number
of variables and constraints, amount of memory required, and the solution time

Formulation Weighting Number of
variables

Number of
constraints Memory Solution

time
3D Non-uniform 237 156 379 053 75.8 MB 355 s
3D Uniform 237 156 379 053 75.8 MB 272 s
2D Non-uniform 80 808 222 705 7.8 MB 42 s
2D Uniform 80 808 222 705 7.8 MB 28 s

In Figure 16, the optimal placement of the radars obtained with different weightings
is presented. The red triangles indicate radar placements that are optimal with both the
uniform and non-uniform weightings. The yellow triangle indicates radar sites, which
are only optimal using the non-uniform weighting, and the purple triangles indicate
radar sites, which are optimal using the uniform weighting. In Figure 16, the left
image presents the differences with the 3D-formulations, and the right image shows
the differences with the 2D-formulations. The optimal solutions with the 2D- and
3D-formulations contain radar sites, which are optimal with both of the weightings. In
the 3D-formulation, the radar sites in the southwestern side in spatial area 1 are all the
same, as well as some sites in areas 5, 6, and 8. The 2D-formulation contains fewer
shared radar sites, as more sites are slightly different between the weightings. This
slight difference is evident in the spatial areas 1 and 7 of the 2D-formulation, where the
sites are close to each other but not the same. These slight differences are also present
in the 3D-formulation. The radar placements differ due to the non-uniform weighting
placing higher weight on the eastern areas. This weight difference causes the radars
to be placed such that the focus of the air surveillance is more to the east. Thus, the
radars are placed further east. The shift in focus is implied in Figure 16, where the
yellow triangles are placed slightly more to the east than the purple triangles. This
shift is increasingly evident in the northern region, area 6, where the optimal radar
site is placed significantly more east with non-uniform weighting. This larger shift is
present in both the 2D- and 3D-formulations.
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Figure 16: Comparison of the non-uniform and uniform weightings on the optimal
radar placement, solved with the 3D- and 2D-formulations. Red triangles indicate radar
sites selected with both non-uniform and uniform weightings. Yellow triangles are
radar sites that are only optimal with the non-uniform weighting, and purple triangles
are sites that are only optimal with uniform weighting. The placement of radars are
purely fictitious and do not reflect any actual sites or plans.

The differences in the optimal radar placements between the optimization formula-
tions is presented in Figure 17. The differences in the optimal placements with the 2D-
and 3D-formulation and the non-uniform weighting is presented in the left image, and
the differences with the uniform weighting in the right image. The radar placements
which are optimal with both formulations are visualized with red triangles, the radar
sites optimal only with the 3D-formulation are visualized with yellow triangles, and the
radar sites optimal only with the 2D-formulation are visualized with purple triangles.
With both weightings, multiple radar sites are shared by the optimal solution of both
formulations, which can be seen by the number of red triangles. For example in
the Lapland region, all but one radar site are optimal with both formulations with
the non-uniform weighting. With the uniform weighting, even greater number of
radar sites are shared between the formulations. With this weighting, all the radars
sites on the western side, corresponding to areas 1,2, and 5, are optimal with both
formulations. The optimal radar sites are more affected by the used formulation when
the non-uniform weighting is used, as it has significantly less shared optimal radar sites
compared to using uniform weighting. The difference in the optimal radar placements
between formulations is likely caused by the effect of measurement points covered
by multiple radars having higher performance values with the 2D-formulation than
with the 3D-formulation. Due to this effect, radars can be placed more sparsely in
areas with overlapping coverage. This effect can be observed in the example, as the
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radars with the 2D-formulation leave larger gaps in the inland areas and still receive
the highest possible 2D-system performance measure values. With both weightings, in
area 4, the optimal radar sites with the 3D-formulation are closer to the center region
of Finland than with the 2D-formulation. Aside from this difference, the radars are
placed fairly similarly regardless of the formulation, and the radar sites, which were
only optimal with the 2D-formulation, are typically close to the radars sites, which
were only optimal with the 3D-formulation, and vice versa.

Figure 17: Comparison of the 2D- and 3D-formulations on the optimal radar
placement, solved with the non-uniform and uniform weighting. Red triangles indicate
radar sites selected in both the 2D- and the 3D-formulations. Yellow triangles refer to
the radar sites which are only optimal with the 3D-formulation, and purple triangles
to sites which are only optimal with the 2D-formulation. The placement of radars are
purely fictitious and do not reflect any actual sites or plans.
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5 Discussion
This section provides a discussion of the method developed for the joint placement of
radars and wind farms. The key findings and limitations of the method are examined,
and directions for future work are outlined. In addition, the results of the example
problem are analyzed in more depth, discussing their interpretation and implications
for practical application.

5.1 Findings
The example problem, presented in Section 4, demonstrated the capabilities of the
placement method of radars and wind farms developed in this thesis. In the example,
the number of placement options for radars is around 2 · 1031 and the number of
wind farm placement options 4 · 1080. Therefore, the total number of radar-wind
farm placement combinations is over 10100. The additional constraints set on the
placements, i.e., the distances between the radars and the wind farms, as well as the
regional demand of wind farms in the North, Middle, and South regions, decrease
the number of viable placement combinations. However, even with these additional
constraints, the number of combinations is extremely large, which demonstrates
the feasible size of the placement problem and the complexity of the optimization
formulations. The optimization converged to a global optimum in minutes with both
2D- and 3D-formulations and weightings. The solution times additionally highlight
the efficiency of the method, as the fastest solution was found in around 30 seconds,
and the slowest in less than 6 minutes. The optimal placements in the example can be
seen to be sensible in terms of air surveillance, as the radars are placed evenly all over
the area of interest and the placements result in good air surveillance quality in the
inland and outer areas.

In this thesis, two optimization formulations are derived. With the 3D-formulation,
the air surveillance quality is evaluated at individual 3D-measurement points, which
cover the area of interest. This evaluation at individual measurement points provides an
accurate estimation of the air surveillance quality. However, the numberof measurement
points affects the computational complexity of the optimization. When the number
of 3D-measurement points grows too large, the placement optimization with the
3D-formulation can become infeasible, meaning the optimization does not converge
in a feasible amount of time. The 2D-formulation uses an aggregated performance
measure, which decreases the number of measurement points and computational
complexity. This aggregation reduces the accuracy of the air surveillance quality
model, which affects the optimal placements of radars and wind farms. The example
problem demonstrated that both formulations remain feasible even with a large number
of placement options and measurement points. As mentioned above, the example
problem converged to a global optimum in less than 6 minutes with the 3D-formulation
and in less than 1 minute with the 2D-formulation. With both formulations, optimal
placements for radars and wind farms are found, such that their respective system
performance measures are maximized. The radar and wind farm placements result in
high air surveillance quality, where the wind farms do not cause a visible reduction
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in the air surveillance quality. The radars and wind farms are placed such that the
adverse effects to the radars are minimal and the areas with adverse effects have
overlapping coverage from multiple radars. The 2D- and 3D-formulations produce
different optimal placements, which can be observed in Figure 17. However, the
optimal radar placements are similar with both formulations. The radars are placed
evenly near the border encircling the inland area, with some radars placed in the
central regions of this area. Additionally, multiple radar sites are optimal with both
formulations. The sites chosen only with the 2D-formulation are generally located
very close to those chosen with the 3D-formulation. These similarities imply that the
2D-formulation provides a good approximation for the more accurate 3D-formulation.
Moreover, because the optimal radar sites with the 2D-formulation are near the sites
with the 3D-formulation, the radar coverages from these sites overlap extensively.
Therefore, in practical terms, it may make little difference which formulation is used.

The modularity of the method allows for the individual components – such as the
radar performance model, a wind farm effect model, or optimization formulations –
to be modified without altering the remaining components. Therefore, the method
provides a foundation for a large-scale joint placement optimization of radars and
wind farms, which can be modified and expanded upon in future work.

5.2 Limitations
The method has its limitations, which affect its usability and the accuracy of solutions.
These limitations originate partly from the scope of this thesis and partly due to the
nature of the topic.

The radar performance model and the wind farm adverse effect model developed
in this thesis are constructed purely based on fundamental physical principles and
expert opinions from radar technology specialists. These models were appropriate
for the scope of this thesis and for demonstrating the use of the placement method.
However, these models have not been validated through comparison with real-world
or simulated data to confirm their accuracy. Without validation, the usability of the
method for real-world placement planning is limited.

The performance of radars is modeled with a gradual coverage model, which is
a considerable simplification of air surveillance quality metrics, such as probability
of detection and track performance. The use of these more developed metrics would
improve modeling accuracy. However, they are computationally more demanding,
which makes them impractical for large-scale placement optimization. The air
surveillance quality is calculated as the sum of the radar performances. This summation
does not account for effects such as diminishing returns from overlapping coverage,
which can result in overestimating the surveillance quality. Additionally, the air
surveillance quality is represented as a value between 0 and 1, and is solely based
on distance to radars and wind farm interference. In reality, the air surveillance
quality is dependent on a wide variety of factors and surveillance objectives. These
objectives and factors could be formalized into air surveillance requirements, which
indicate how accurately different target objects are required to be detected and tracked.
The fulfillment of these air surveillance requirements determines the air surveillance
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quality. However, this sort of surveillance objective formalization is not addressed in
this thesis.

In the method, only one type of radar is used. This is unrealistic for real air
surveillance systems, which consist of multiple types of radars, such as passive or
multistatic radars. The radars typically vary in performance characteristics such as
range, resolution, and update rate. Therefore, the method requires further development
in placing different types of radars before it can be applied for supporting the planning
of actual air surveillance systems.

In the example problem, the optimal placements of radars and wind farms are
obtained with both formulations and with both weightings. These optimal placements
maximize the total air surveillance quality in the area of interest. However, these
placements are only optimal with respect to a specific problem, i.e., with the specific
weighting and the number of wind farms and radars. Therefore, if the relative
importance of some spatial areas or altitude ranges change – and thus the weighting –
the optimal placements are likely to change as well. Such a placement change is not an
issue for some radars, as they are designed to be movable. However, once wind farms
are constructed, they cannot be relocated. Therefore, when planning the real-world
wind farm placements, it is important to account for potential changes in the relative
importance of spatial areas and altitude ranges. Similarly, the number of wind farms
affects their optimal placements. As a result, placing wind farms sequentially – i.e.,
one at a time – is likely to generate less optimal solutions than determining locations
for multiple new wind farms simultaneously. Therefore, the method is most suitable
for long-term planning of multiple wind farm sites, rather than for individual projects.

5.3 Future work
The method developed in this thesis provides a foundation for the joint placement
optimization of radars and wind farms. Relative to the example problem presented in
Section 4, this method is capable of addressing larger-scale problems, encompassing
larger geographic areas, a greater number of radars and wind farms, or finer spatial
resolution, without requiring modification.

To confirm that the radar performance and adverse effect models presented in
this thesis reliably represent real-world radar behavior and wind farm interference,
validation of these models is required. Field testing could involve collecting data on
how the performance of real-world radars decreases with distance and comparing it to
predictions from the radar performance model. Similarly, the adverse effects of wind
farms can be assessed by measuring the actual impact of existing wind farms on air
surveillance quality and comparing these observations to the effects predicted by the
adverse effect model. In a similar manner, computational validation can be carried out
by comparing the radar performance and wind farm adverse effect estimates obtained
from computational tools with the corresponding predictions of the models developed
in this thesis. Such validation serves to confirm the accuracy of the models, increase
confidence in their predictions, or adjust the models to enhance their fidelity. As the
performances of the radars and the adverse effects of the wind farms are precomputed
before the optimization, possible modifications to the performance models motivated
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by validation results should not affect the efficiency of the optimization.
In the method, only monostatic radars are used, with a fixed range of 300 km.

Typically, real-world air surveillance systems consist of different types of radars with
different performance characteristics, such as range and resolution. Different radar
types, such as passive radars or active electrically scanned array (AESA) radars
(Richards et al., 2010), could also be considered in addition to the current monostatic
ones. The different radar performance capabilities, such as varying ranges and time
between observations, could also be taken into account. Similarly, only one type of
wind farm is considered in this thesis. Wind farms can differ in size, orientation, and
layout. These differences could be further addressed in the placement optimization.
Additionally, the wind farms, which are already in operation or being constructed,
should be taken into consideration in the placement optimization as these can affect
the placement of the new wind farms.

In this thesis, the radar performance is described as a gradual coverage, where the
air surveillance quality is the sum of the radar performance values. Both the radar
performance and air surveillance quality metrics can be refined for greater accuracy.
In the radar performance model, the probability of detection and the track accuracy
could be explicitly estimated. The probability of detection can be modeled with a
gradual coverage model of values between 0 and 1. This value can be combined from
multiple radars to create a single detection probability at every measurement point.
Track accuracy is typically estimated with simulation-based models (e.g., Brookner,
1998), which are infeasible for large-scale optimization. Therefore, an approximate
model needs to be developed for the track accuracy. This approximate model could be
used to make an estimate of the track accuracy at every measurement point, and this
estimate would depend on the number of radars covering the point, their probability
of detection, and the angles between the point and the radars. The angles between
the measurement point and the radars affects how well a target’s position can be
triangulated. The track accuracy is reduced when the radars’ LOSs are parallel, and
improved as the LOSs become more perpendicular. In the future, the air surveillance
quality could be determined as a combination of the detection probability and the
track accuracy.

The overall goal in this thesis was to identify the radar and wind farm placement
options that maximize the total air surveillance quality in the area of interest. These
placement options have been determined by their respective planner, i.e., air surveillance
planners or wind farm developers. The viability of a placement is dependent on multiple
factors, such as distance to infrastructure and the cost of installation. Even though
every placement option is viable, the placements can still differ in suitability or cost,
making some placements more preferable to the planners. Currently, this preference
information over the placement options is not considered in the placement method.
In future work, the placement optimization could be formulated as a multi-criteria
optimization problem, which would also consider criteria concerning the placement
options, such as costs, in addition to air surveillance quality.

Developing the placement method to consider multiple criteria, use multiple
radar types, or use more refined performance models increase the complexity of the
optimization. As the complexity increases, the optimization can become infeasible to
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solve. However, the example problem was solved in a fairly short time with only a
commercial laptop. This demonstrates that the complexity can be increased even further
while maintaining feasibility with the currently available computational resources.
Furthermore, the used optimization software, Gurobi, allows for high-performance
computing, meaning supercomputers that have significantly more computing power
to be used. Increasing the computational resources allows for increasing the model
complexity while maintaining feasibility of the optimization problem. Therefore, the
proposed developments are unlikely to make the placement problem computationally
infeasible.

The method developed in this thesis is able to consider differences in the importance
of spatial areas and altitude ranges with weighting. The effect of the weighting is
demonstrated by comparing two different weightings in the example problem. However,
a more detailed analysis is needed to assess how sensitive the optimal placements are
to changes in the weighting. In addition to a better understanding of the effects of
weighting, this analysis can be used to determine robust placements for radars and wind
farms, which remain optimal even with different weightings. Such robust placements
are important to identify as the weighting can change over time. The weighting may
change when the relative importance of spatial areas or altitude ranges shifts, e.g., due
to new infrastructure developments or the introduction of new targets, such as drones.
Especially with wind farms, which cannot be relocated once constructed, their robust
placement can ensure that the site remains optimal even when the air surveillance
priorities shift.

In this thesis, weights of spatial areas and altitude ranges are elicited with the
centroid-weights method. The centroid-weights method only considers the ordinal
importance information, meaning that only the rank order of the importance matters
and not the actual importance differences. However, alternative weighting methods,
such as SMART (Edwards & Barron, 1994) and Swing (Von Winterfeldt & Edwards,
1986), that use cardinal importance information could also be used. These methods
consider the magnitude of the importance in addition to the rank order. With the
SMART method, the importance of each spatial area and altitude range is rated, and
these ratings are normalized to produce the weights. In the Swing method, spatial areas
and altitudes are first ranked from worst to best, after which the relative additional
value of improving air surveillance quality in the next-ranked area or altitude range is
assessed sequentially. These weighting methods would likely produce different weights
compared to the current weighting method, which affects the optimal solutions. In
future work, the use of alternative weight elicitation methods could help verify that
the chosen weights accurately reflect the relative importance of the spatial areas and
altitude ranges. Additionally, instead of determining exact weights, a potential direction
for future research could involve incorporating incomplete preference information
(e.g., Harju et al., 2019; Mattila and Virtanen, 2015; Kokkala et al., 2019) into the
placement method.

In this thesis, the spatial weight of an area is converted into a point-wise weight by
dividing the area weight by the number of measurement points it contains. Therefore,
the size of the spatial area affects the resulting weight of its measurement points. As
discussed in Section 4.1, the spatial areas in the example problem vary significantly in
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size. This difference in size means that higher spatial priority does not necessarily
imply that the weight of a measurement point is higher. Differences in the area sizes
can cause vagueness and confusion in determining the priorities and in interpreting
the weights. To avoid such confusion, the spatial areas should be made roughly similar
sizes. However, the areas in the example problem were sufficient in demonstrating the
weighting and its effects.

The placement method developed in this thesis is able to identify good placements
from a large set of placement options. However, the accuracy of this method is limited
as the method uses simplified surveillance quality measures. The existing methods
for comparing radar and wind farm placements (e.g., Lahti, 2022 and Hagnäs, 2025)
are based on more accurate simulation-based modeling, but such modeling limits the
number of placement options considered. In the future, the placement method could
be used first to identify a set of good radar and wind farm sites from a large set of
placement options. Then, these sites could be further analyzed with the more accurate
simulation-based air surveillance evaluation methods, as the number of placement
options to be considered has been decreased significantly.
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6 Conclusions
This thesis considered the coexistence of radars and wind farms. The wind farms
cause adverse effects on radars and decrease the air surveillance quality in the affected
region. Both the severity of the adverse effects and the air surveillance quality are
directly affected by the placement of the radars and the wind farms. The optimization
of these placements enables the development of new wind farms while maintaining
high air surveillance quality. Although some studies address the joint placement of
radars and wind farms, existing methods are limited by computationally intensive
simulations and cannot handle a large number of placement options. This thesis
addressed this gap by developing a computationally efficient method for evaluating the
performance of radars, estimating the adverse effects of wind farms, and optimizing
their placements to maximize the air surveillance quality.

The optimization method for the placement of radars and wind farms was de-
veloped using mixed-integer linear programming. This method incorporates a radar
performance model, which estimates the radar’s capability to detect and track targets,
and a wind farm adverse effect model, which describes how the performance of a radar
is decreased by its interference with a wind farm. Based on these models, two system
performance measures were developed to evaluate the resulting air surveillance quality
from a combination of placed radars and wind farms. These measures differ on how
accurately they can represent the air surveillance quality and in their computational
complexity. The measures were used as a basis 2D and 3D optimization formulations.
Similarly to the performance measures, these formulations differ in their computational
complexity and accuracy. The 2D-formulation is computationally less complex than
the 3D-formulation. However, the 2D-formulation uses an aggregated 2D-performance
measure, producing less accurate results compared to the non-aggregated 3D-measure.
The 3D-formulation uses this 3D-measure, which enables more accurate represen-
tation of the air surveillance quality. By using the non-aggregated measure, the
computational complexity of the optimization problem is higher and takes longer
to solve. However, even with the higher complexity, the 3D-formulation remains
feasible even for large-scale problems with large number of placement options. The
placement method is modular, meaning the individual components can be modified or
replaced without changes to the entire method. The modular design allows for future
enhancements, such as incorporating more sophisticated performance models or using
alternative planning objectives.

The efficiency of the placement method introduced in this thesis and the feasible
scale of placement problems were analyzed with an example problem involving over
10100 possible combinations of radar and wind farm placements. The solutions of the
example problem converged to global optimum within minutes with both optimization
formulations, demonstrating the computational efficiency. In the existing literature, no
other method has demonstrated the ability to solve the joint placement of radars and
wind farms at this scale while achieving both global optimality and a short runtime. The
existing methods for this problem allow for more accurate modeling, but they cannot
handle a large number of placement options because they are based on computationally
heavy simulations. The new placement method enables the identification of radar and
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wind farm sites that result in high-quality air surveillance when a large number of
placement options is used. These sites could then be examined in more detail with the
simulation-based models for increased air surveillance and adverse effect modeling
accuracy.

The results of this thesis have clear practical implications. The placement method
allows air surveillance planners and decision makers to make informed siting decisions
by systematically exploring a large number of placement options and optimizing the
radar and wind farm locations. The method can accelerate the planning of wind
energy projects while maintaining high air surveillance quality, which supports both
renewable energy and surveillance goals.
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