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Abstract
Remote sensing using drones allows to analyze the state of a forest even at the
level of individual trees. Data in the resolution of centimeters in which trees can be
delineated can be used to design detailed harvest plans in Continuous Cover Forestry
as well as to measure tree growth, health and the effect of external factors such as
heat waves on the level of individual trees.

This thesis develops methods for Individual Tree Detection based on commonly used
local maxima filtering algorithm using high resolution Canopy Height Model (CHM)
derived from photos taken using a drone. The creation of CHM is presented by using
Structure from Motion -technique. With initial estimate from the local maxima
filtering, two further methods to remove incorrect tops are presented to improve the
detection quality. The methods are based on inspecting the neighborhood of each
top as well as comparing data sets collected before and after selection harvesting in
the study site. Challenges for the methods caused by the selection harvesting are
also examined.

Another novelty is the estimation of the distribution of undetected trees using a
statistical method. This is needed since the drone-based CHM does not separate
smaller trees under the topmost canopy layer. The parameters for the estimation
are derived from field measurements, which are also used for validating the remote
sensing results.

With the presented methods, a better estimation of the distribution of trees in the
study site is obtained as almost all incorrectly observed trees are removed while more
actual trees are detected. This distribution can be used to estimate the calculated
individual crown parameters for those trees that are not detected by remote sensing,
and detailed analysis on the forest ecosystem can be performed.

Keywords Drone Remote Sensing, UAV, Individual Tree Detection, Local Maxima
Filtering, Continuous Cover Forestry, Multitemporal Analysis
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Tiivistelmä
Kaukokartoitus käyttäen lennokkeja mahdollistaa metsän tilan tarkkailun jopa yksit-
täisten puiden tarkkuudella. Tämänkaltaisella, parhaimmillaan muutaman senttimet-
rin tarkkuuksisella aineistolla, voidaan luoda yksityiskohtaisia harvennussuunnitelmia
jatkuvapeitteisessä metsänhoidossa. Myös puiden kasvun, terveydentilan sekä ulkois-
ten tekijöiden kuten helleaaltojen vaikutuksen tutkiminen on mahdollista yksittäiset
puut erottelevassa aineistossa.

Tässä työssä parannetaan menetelmiä, joilla löydetään yksittäisten puiden sijainnit
lennokilla otettujen valokuvien pohjalta tuotetusta tarkasta latvusmallista. Tätä var-
ten esitellään latvusmallin tuottaminen käyttäen Structure from Motion -menetelmää.
Puiden sijaintien etsiminen pohjautuu paikallisten huippujen löytämiseen latvusmal-
lista, ja työssä esitellään useita menetelmiä virheellisten pisteiden tunnistamiseksi
käyttäen hyödyksi tietoa löydettyjen huippujen ympäristöstä sekä vertailua kahden
ajallisesti eri aikaan tuotetun aineiston välillä. Työssä tutkitaan myös minkälaisia
vaatimuksia aineistojen tallentamisen välillä tutkimusmetsässä suoritettu harvennus-
hakkuu asettaa menetelmille.

Koska valokuviin pohjautuva latvusmalli ei erottele korkeimpien puiden alle jääviä
puita, käytetään työssä kenttätutkimuksia hyödyntävää uutta tilastollista menetel-
mää puiden kokonaismäärän arvioimiseksi. Kenttätutkimuksia hyödynnetään myös
käytettyjen kaukokartoitusmenetelmien tulosten arvioimiseen.

Esitetyillä menetelmillä saadaan vertailutasoa tarkempi arvio puiden määrien jakau-
masta tutkimusalueella, sillä väärin puiksi merkittyjen pisteiden määrää vähenee
selvästi ja oikeiden havaintojen lukumäärä kasvaa. Tarkemman jakauman avulla
yksittäisille puille lasketut parametrit voidaan estimoida myös niille puille, joita ei
ole havaittu käyttäen kaukokartoitusmenetelmiä, ja koko metsäekosysteemin tilaa
voidaan analysoida aiempaa tarkemmin.

Avainsanat kaukokartoitus, yksittäisten puiden havaitseminen, latvusmalli,
jatkuvapeitteinen metsänkasvatus
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1 Introduction
As key sustainability issues, such as climate change, biodiversity loss and nutrient
loading, become increasingly severe, more detailed and recent data on ecosystem
status is needed to support policy making. Remote sensing — the usage of satellites,
planes, helicopters, and drones to capture information from distance — enables fast
and timely collection of data which is instrumental in addressing these issues.

Remote sensing data representing the state of vegetation and soil is valuable for
agricultural and forestry management planning. It extends traditional labor-intensive
field measurements with instantaneous spatial view of surface conditions and expands
the small study sites with larger areas. For some variables, it can be used to derive
useful proxies of various vegetation and soil traits measured in-situ (Dainelli et al.,
2021). In the context of forestry, forest inventories as well as the monitoring of
regeneration success and tree health are the main use cases of remote sensing (Surový
et al., 2019).

Besides decision making, remote sensing can be used for detailed research on forest
ecosystem modeling. Ecosystem modeling aims to model dynamics between various
physiological variables and understand the feedbacks between weather, climate,
vegetation, and soil. In a changing climate, the interconnected and complex systems
in nature may have unexpected reinforcing and balancing feedback-loops that can
speed up or down climate change effects (Sebestyén et al., 2021). For example,
extreme heatwaves caused by increased temperatures can result in reduction of gross
primary production leading to high releases of carbon dioxide (Friend et al., 2005)
that further accelerate climate change.

Using Unmanned Aerial Vehicles (UAVs), such as drones, highly detailed remote
sensing of nature is possible. Equipped with different types of cameras and laser
scanners, UAVs provide spectral and structural remote sensing data with such a
high resolution that individual trees can be detected and inspected. Previously, with
satellite or plane remote sensing, only forest-level details could be obtained (Dainelli
et al., 2021). UAVs equipped with traditional RGB cameras, as well as thermal,
multispectral, or hyperspectral sensors produce remote sensing data that can be used
to analyze tree health, reveal infectious diseases in plants and separate different tree
species (Surový et al., 2019). As an example, the response to extreme weather such
as droughts and heat weaves can be studied on individual tree level.

Information on the tree crown structure can be obtained from standard photos using
technique called Structure from Motion (SfM, Schonberger et al., 2016). While
airborne and terrestrial laser scanners have been popular due to their extremely high
resolution, similar 3D models can also be constructed using SfM. This can be done
with much lower equipment cost and easier processing than laser scanning whilst
retaining sufficient quality on output. In the case of forestry, it is possible to construct
a 3D model of the canopy with resolution more than 5 cm by taking overlapping
photos using a consumer-grade camera during a drone flight on a constant altitude
above forest.
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Precision forestry such as Continuous Cover Forestry (CCF) can benefit from the
details of individual tree parameters, such as tree height, stem volume and species,
to provide sustainable forest management strategies (Wulder et al., 2008). CCF
maintains continuous uneven-aged forest structure to provide more resilience to
varying conditions and stable economic output, although it requires more frequent
management interventions than traditional clear-cut approach (e.g. Gaulton, 2010).

Especially in the context of drained peatlands forests, optimizing the harvesting in
CCF and thus the growth of new trees by selecting trees by their size, health and age
can have significant effects on the soil emissions. In managed peatlands, the water
table depth in the ground is managed using ditches and by retaining a proportion of
larger trees. Lowering water table level boosts tree growth but allows the peat to
decay as CO2. On the contrary, rising water level increases the production of CH4,
which is much stronger greenhouse gas than carbon dioxide. The peatland forests
are responsible for approximately 3% of the global anthropogenic emissions (Evans
et al., 2021).

To be aware of these types of systemic effects, knowing the consequences of manage-
ment decisions by having a good understanding of the forest ecosystems is important.
For Continuous Cover Forestry, remote sensing data can be used to both analyze
the effects of harvesting as well as to generate detailed harvesting plans that sustain
environmental and economic value.

This thesis has three main goals: 1) present an end-to-end process for drone remote
sensing for decision making and ecosystem modeling purposes 2) develop two methods
for Individual Tree Detection (ITD) by extending the commonly used local maxima
filtering (lmf) algorithm so that incorrectly detected trees are removed 3) estimate
the distribution of all trees from the proportion of trees that has been detected by
the remote sensing.

As an example of modern remote sensing, workflow for capturing and processing
drone imagery using Structure from Motion into photogrammetric 3D point cloud
and Canopy Height Model (CHM) is presented. As final product, each individual
tree crown is delineated from the data. With multi-band information from the RGB,
multispectral and thermal sensors, statistics are calculated for each crown. The drone
flights are performed before and after selection harvesting in September 2020 and
July 2021 at Ränskälänkorpi study site located in Asikkala, Finland. This dataset
allows a wide range of analyses of the effects of selection harvesting (sometimes
referred as partial harvesting).

For developing Individual Tree Detection, two methods to remove incorrectly detected
trees are presented. ITD is initially based on local maxima filtering, which finds
apex points (tree tops) that correspond to the tree trunk locations in the Canopy
Height Model. As we also want to correctly find trees with smaller crown size, a small
search window needs to be used. This results in an increase of incorrect tree tops,
detected for example in branches. Here “Branch Top Removal” is used to remove
incorrect tops by inspecting the neighborhood of each top. However, this method is
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not suitable for the smallest crowns and areas affected by noise. With “Temporal
Clustering”, ITD data from the previous year can be used to cluster the incorrect
tops as points corresponding to the same tree. When these two methods are used
to remove incorrect tops, the number of false positives decreases significantly while
more correct tops are detected.

As only the tallest trees are visible in the drone images, smaller trees are left unde-
tected. Statistical modeling based on field measurements can be used to supplement
the remote sensing data. For estimating the total number of tops in the study area,
novel Horvitz-Thompson -like estimator developed by Kansanen et al. (2016) is used.
This estimates the distribution of all trees in the forest.

With the availability of multiple spectral data types from two different dates and by
using the methods presented in this thesis, more detailed analysis on the forest state
can be performed than previously using remote sensing data. This work is part of
research that studies tree response to a severe drought period.

This thesis starts with an overall look into remote sensing and decision making
in forestry in Chapter 2 with the focus being on the climate change context. In
Chapter 3, data capturing and the used methods for Individual Tree Detection and
Segmentation are presented. It also presents the developed methods to improve the
tree detection and segmentation results, and the statistical model used to estimate
the number of undetected trees.

Chapter 4 includes the results and quality assessment for the individual tree detection
and tree number estimation, and the calculation of the individual tree parameters.
Chapter 5 discusses possible improvements and alternative methods, as well as the
application possibilities for the results. Chapter 6 summarizes the contents.
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2 Background
In this section, literature related to the work in this thesis is presented. First,
a general look into decision making in forestry is taken focusing on utilization of
optimization methods especially in the context of climate change. After that, example
use cases of remote sensing and possible methods to process the data are examined,
as well as background on using remote sensing data in Continuous Cover Forestry.
Finally, the motivation for this research is presented.

2.1 Optimization in forest management
The idea of sustainable forest management is to maintain the income of forestry
products and preserving the aesthetics, biodiversity, and nature systems over time.
Understanding the ecosystem dynamics — how the forest behaves over time with
the planned actions — is crucial since the decisions such as harvesting affect the
forest system state for decades. With current rapidly changing climate system, the
need for understanding and predicting the behavior of ecosystems under different
decisions is crucial (Surový et al., 2019).

To make decisions in forestry, having detailed current data through field measure-
ments or remote sensing is crucial. Forest managers have mentioned the following
information needs for decision making: mapping of geometrical borders of homoge-
neous areas (e.g. plots under different harvesting regimes), monitoring the growth of
saplings, assessing height of the trees, evaluating other inventory parameters (e.g.
stem volume or diameter at breast height), species classification and determining
the tree health status and mortality (Surový et al., 2019). These parameters can be
evaluated either at stand or individual tree level.

The review by Kaya et al. (2016) presents different attempts to optimize forest
management by making decisions on, for example, whether to harvest a tree or a stand
or let it grow, what kind of treatment is being applied and when the management
activities should be performed. Production capacity, social aspects and environmental
outcomes are assessed on a larger scale. Most of the optimization problems focus
on maximizing the perceived benefit using Net Present Value (NPV) commonly
using linear, mixed integer or dynamic optimization in addition to genetic algorithms
and heuristic models. In the optimization models, the objectives and constraints
are defined by modeling decisions’ effects to the tree growth and the reactions of
economic, social, and environmental systems to the actions. Optimization can be
performed on either tree-, stand-, forest- or landscape-level, where the landscape
refers to e.g. county on which the forests have multiple owners. Different time
scales are also considered, ranging from short-term operational planning including
e.g. worker allocations to longer tactical planning which includes realizations of
goals set at the longest strategic planning level. The future improvement of these
optimization models focuses on inclusion of non-commodity outcomes, such as water
quality, wildlife habitat and ecological health, into the models.

In operational planning, practical decision problems are most commonly related to
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deciding which areas to harvest and how to cut the stems, how to build roads in
the forest to carry the stems using skidders or tractors and how to route the trucks
carrying the stems into the desired destinations. In addition to profit, objectives can
also focus on preserving nature: selecting reserved areas for each protected species,
constraining harvest so that no adjacent areas are harvested at once and analyzing
the movement of wildlife species over time. To assess uncertainty caused by e.g.
varying prices, stochastic models such as Markov decision models, scenario analysis
and stochastic dynamic programming can be applied (Weintraub et al., 2006).

As an example, Pukkala et al. (2012) utilize stochastic adaptive optimization to
find optimal adaptive harvesting strategies when wood price and forest growth are
stochastic. Here the word adaptive optimization is used for rules that react to the
current state of the nature and markets, while anticipatory optimization provides
pre-defined plan with e.g. fixed harvesting intervals. The adaptive rules were found
to provide clearly higher NPV values than the anticipatory plans. However, it was
found that the timber price is a more important factor than the forest growth rate
when deciding the harvest time. Additionally, having a wide variety of different tree
species provides more flexibility for varying prices per species and changing climate
conditions, especially if risk is averted.

Bettinger et al. (2015) generates near-optimal tree level harvesting plans using
heuristic method to maximize the species diversity enabling better ecological stability
over time. This significantly increases the species mingling index compared to
randomly selected trees. To construct this type of detailed harvesting plan in
practice, tree level information on species and stem volume is needed. Remote
sensing, similar to what is used in this research, can be used to estimate the tree
species and volume (Jucker et al., 2017).

2.2 Climate change affecting decision making
The rate of climate change is so rapid that the adaptive capacity of ecosystems is
likely not enough to respond to the change leading to local extinction of species and
loss of ecosystem services. This introduces novel problems for decision making, as it
is not possible to rely solely on historic data for predicting future outcomes. Instead,
more stochastic approach should be taken (Bettinger et al., 2013). In addition, it is
expected that it may not be entirely possible to control the state and outputs of a
forest or other ecosystem through decision making to keep them at current output
level (Keenan, 2015).

Keenan (2015) reviews forest management from climate change point of view. He
finds that research has focused on predicting the response of species and ecosystems
to the climate change, adaptation strategies in forest management and new methods
for decision making under uncertainty.

To implement climate change adaptation strategies, clear objectives are needed. For
example, possible adaptation methods could be changing either forest structure,
species composition or management strategies (Julius et al., 2008). Steenberg et al.
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(2011) found that to increase the resistance to the climate change, varying the species
composition of harvested trees so that forest age increases, and more resilient species
are promoted is the most effective treatment without decreasing the timber supply
too much. Different strategies were tested using simulation on different scenarios
using the LANDIS-II model. In other study by Wintle et al. (2011), the selection of
available budget when choosing the adaptation strategy affected the results in a non-
linear fashion: with low budget the best strategy is to focus only on reducing forest
fires. With a higher budget a mixed strategy to invest also in habitat protection
increased the species persistence, since the marginal benefit solely from the fire
management was not significant. With even larger budget, spending money on fire
management was recommended again. This highlights the need of multiple actions
and the need of cost-efficiency analysis when choosing from the set of possible actions.

While it has been popular to assess impacts and risks of the climate change on
the ecosystems, it alone does not lead to better management decisions to support
adaptation (Keenan, 2015). To better implement adaptation strategies, more focus
should be applied to understating social and community attitudes and values that
motivate the management of forests. The personal experiences, attitudes and reg-
ulation affecting the decision makers should be in line with the climate research.
Thus, it is important how the scientific results are presented to decision makers and
how they are received. Keenan (2015) emphasizes the importance of collaboration
of researchers of different fields, including merging the knowledge of climate and
ecosystem sciences with local management needs and indigenous knowledge. In
case the decision makers’ information and capability of change is lacking, the rising
expectations and pressure from the other actors in the society might be developing
faster and cause future shock for the forest decision makers. This can lead to external
and possibly disturbing control of decisions that should be made locally (Kimmins,
2002).

For climate studies, one important aspect is to analyze the amount of carbon stored
in a forest. Pukkala (2011) developed a model simulating the carbon cycle in tree
growth, decomposition, and harvest products, which allows decision makers to analyze
the effects of carbon pricing and distribution of end products. According to the
model, the long-term carbon balance of a managed forest is negative (carbon is
released) without significant proportion of trees being used in wood products such as
planks (long term carbon storage) or as biofuel (which is considered to have zero
emissions in legislation, although this assumption has been criticized as too simple,
Muench et al., 2013). With improved management where forest sequesters more
carbon, the steady state of carbon balance is zero, as the amount of biomass will
not grow anymore and the carbon decomposing from the products equals the carbon
stored in the new products.
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2.2.1 Continuous Cover Forestry

Continuous Cover Forestry maintains continuous uneven-aged forest structure to
provide more resilience to varying conditions and stable economic output, although it
requires more frequent management interventions than traditional clear-cut approach
(e.g. Gaulton, 2010). Especially during the transformation from clear-cut approach,
up-to-date inventory data is required (Bennett et al., 2020) to create suitable openings
for seedlings to grow (Gaulton, 2010). However, traditional stand-level measures such
as average tree height are not suitable anymore (Keefe et al., 2022) as more detailed
data is needed. In general, the use of detailed data to make site-specific tactical and
operational decisions that consider sustainability is called precision forestry (Dash
et al., 2016).

Individual tree level data can be used to generate detailed harvesting plans, where
decisions are based on tree level inventory that takes variability within a stand
and possibly even local climatic and topographic factors into account instead of
stand-level averages. In this way, the growth of certain species can be supported
by giving more space for them, for example (Keefe et al., 2022). Utilizing tree level
information can also notably improve the expected economic value of harvesting
(West et al., 2021).

Many silvicultural treatment plans can be complex, have multiple objectives and
may require analysis on large spatial areas. With ITD data, decision processes that
are usually done in the field during harvesting can be automated so that goals such
as tree growth and nature regeneration can be optimized by considering individual
tree and geographical values from large area (Keefe et al., 2022).

As another example, knowing the stem spatial pattern allows to optimize the harvester
trails to account for preferences in species to be harvested, trees to be harvested for
trails and preferring unproductive soil for trails. In addition, as many sustainability
certification programs require chain-of-custody documentation, verifiable individual
tree level data about the origins of the stems may be desired (Keefe et al., 2022).

However, the usage of individual tree level data has not yet been used as much in
operational forestry than it is in research purposes. The usage is still in experimental
stage although commercial LiDAR and ITD datasets have become available (Keefe
et al., 2022). More research on utilizing ITD data on silvicultural treatments is
needed, for example to support autonomous harvesting in the future.

In Finland, major focus has been applied to the managed peatland forests, as they
release significant amount of carbon into the atmosphere and nutrients in the water
courses. As another example of ecosystem modeling, the SUSI model has been
created for detailed analysis of drained peatland forests (Laurén et al., 2021). It
models hydrology, biogeochemical processes and tree stand growth in two-dimensional
cross-section between two parallel ditches. It can be used to analyze the effects of
controlling water table level by managing ditches, effects of different fertilization
schemes and to simulate effects of continuous-cover forestry on peatland forests, as
there currently is lack of experimental data on those.
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2.3 The utilization of remote sensing data
Using satellites, airplanes, and UAVs such as drones, usage of remote sensing for
ecological analysis has become more advanced as the spatial resolution has increased in
all of the three sensor carrier types. Sensors capturing RGB, multi- and hyperspectral
data as well as radars and laser scanners provide data for various ecological analysis.

One major aspect in UAV remote sensing is Structure from Motion (SfM, Schonberger
et al., 2016) which is a technique for automatic generation of 3D models and digital
aerial photogrammetric (DAP) point clouds from overlapping images without prior
altitude information. For forestry, this allows the estimation of vegetation height and
thus segmentation of individual trees, when the resolution is sufficient (Surový et al.,
2019). However, in practice some level of ground altitude information is needed for
georeferencing the data.

In addition to SfM, another popular method for acquiring structural data is aerial
laser scanning (ALS). ALS results in point clouds, and as laser pulses have better
penetration capability through leaves, it provides more detailed structural information
on trees especially below canopy. Better estimations of topography, stem volume
and biomass can thus be generated with ALS. However, SfM can generate equally
good estimates on height and crown diameter, and the data acquisition is generally
cheaper with SfM than ALS (Laurén et al., 2021). In addition, as standard RGB,
multispectral and hyperspectral sensors are used to generate DAP point clouds, the
spectral data can be used for assessing tree health or to identify the species (Surový
et al., 2019). Multispectral data contains multiple narrow bands, e.g. red, green,
blue, red-edge and near-infrared, whereas hyperspectral has more contiguous bands
over large spectral range (Veys et al., 2017).

The main output of these DAP point clouds is the Canopy Height Model (CHM). It
can be used to assess tree height or growth when run regularly. With ground truth
data from field surveys, it can be used in regression models to develop estimates for
different tree inventory variables, such as diameter at breast height (Goodbody et al.,
2017).

Analysis on remote sensing data can be performed on different levels. On individual
tree level, analysis is often called object-based analysis. The objects, here tree crown
segments, have features consisting for example height, diameter, and spectral features
such as mean NDVI value or RGB intensity. Object-based analysis can be used
for example in classifying individual tree species. This is contrary to pixel-based
approach, which is more sufficient for analyzing rougher data, such as segmenting
satellite images to different land cover types (Blaschke, 2010). In addition, the term
area-based analysis is used when estimations are made for certain homogeneous area,
e.g. biomass volume per hectare in certain forest type (Næsset, 2002).
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2.3.1 Object-based analysis

To perform analysis on individual tree level, tree crowns must be segmented be-
forehand. There exist numerous different methods for detecting tree locations and
segmenting crowns. In the case of dense conifer forest, local maxima filtering is a
popular choice (see Chapter 3.3 for more details) for detecting the locations. To
delineate crowns, the watershed (Vincent et al., 1991) algorithm has traditionally
been popular.

As an example of segmentation methods, Luca et al. (2019) has used Large Scale
Mean Shift (LSMS) algorithm (Michel et al., 2015) for segmenting individual tree
crowns. LSMS is a non-parametric iterative clustering method. It can use spectral
separability in various layers, like RGB and different Vegetation Index rasters such
as NDVI, in addition to Digital Elevation Model layer containing height information.
In the study, Random Forest and Support Vector Machine are used for species
classification in cork oak woodlands to identify trees, shrubs, grass, soil, and shadow
areas from the segmented data. The best features for classification are NDVI and
DEM layers.

2.3.2 Species classification

While it generally has been found problematic to separate species due to their large
variation in features within species as well as due to changing external conditions
(weather, season), it is possible to classify species into a few classes. For example,
it is possible to distinct between conifer and deciduous trees as well as healthy and
unhealthy trees. Although difficult, species classification needs to be run very rarely
after successful survey as forest composition changes slowly (Surový et al., 2019).

Instead of using a specified feature set, deep learning models that find the most
important features unsupervised show potential in species classification. Instead of
using only spectral averages, deep learning models rely more on spatial structure
such as branching pattern and foliage shape of the crowns. For example, Onishi
et al. (2021) use four different convolutional neural networks available in PyTorch
and compared their performance to Support Vector Machine (SVM) classification
for two UAV datasets only in RGB channels. For training deep learning models,
each crown segment image is augmented eight times by rotating and mirroring the
image. For image set taken in autumn where different species have distinct colors,
both neural networks and the SVM performed well with slight advantage to the
networks. The differences between the four deep learning methods were minor. For
image set taken in summer, where leaf colors were more similar to each other, the
neural networks performed considerably better than the SVM. When classifying
seven species, the convolutional networks at best have an accuracy over 90% whereas
the SVM performed only with an accuracy of 70-80 %. These results can be thought
as good especially since only segmented RGB images are used without any height
data, as usually multi- or hyperspectral data is beneficial for species classification
(see for example Nevalainen et al., 2017).
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2.3.3 Thermal analysis

There exist some studies also on thermal remote sensing for the purposes of tree
health assessment. During an infection, invasion of insects or a drought, one way how
trees show stress is stomatal closure. Stomata controls the transpiration of water and
intake of CO2 (Agurla et al., 2018). Stomatal closure causes the leaf temperature
to increase, which can be detected using remote sensing (Lindenthal et al., 2005).
For example, Smigaj et al. (2015) use a thermal camera sensor equipped on a
drone to measure average canopy temperature on trees affected by Red-Band Needle
Blight infection. Moderate positive correlation with sub-degree change in canopy
temperature was found. With this precision, effort needs to be taken in calibrating
the sensor as the recorded values change over time. Along with transpiration rates,
environmental factors such as air temperature, wind speed and sun radiation affect
canopy temperature (Lindenthal et al., 2005).

2.4 The purposes of this research
To analyze possible future scenarios and the potential range of future conditions,
detailed understanding of ecosystem responses to climate change is needed. This
research develops methods to perform temporal analysis on individual tree level
on boreal forest. It combines data from RGB, multispectral and thermal sensors
supporting wide range of analysis. This work is part of research in studying the
response of individual trees to long drought conditions.

Here the focus in methods is to develop as accurate as possible detection of individual
trees by improving widely used local maxima filtering by using height heuristics and
the possibility of using two temporally different data sets. In addition, a new method
for statistically estimating the total distribution of trees in the study area is used for
the first time in practice.

From the remote sensing point of view, the availability of such a wide range of data
on individual tree level, especially when the analysis between the two years is possible
for each single tree, is rather unique. Especially the availability of forest-scale thermal
orthomosaics provides novel possibilities for research.
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3 Materials and Methods
This section presents the used methods. First, briefly the pre-processing steps to
obtain orthomosaic and Canopy Height Model are presented. The pre-processing
is based on Agisoft Metashape commercial software and tools available in lidR
R-package.

After that, detection of individual tree locations and segmentation of tree crowns
are presented. These are based on algorithms published in literature. In addition,
novel methods are presented to both filter incorrect trees and to connect tree crowns
between two studies performed year apart using the two datasets. Finally, the total
number of trees in the study area is estimated using a recently published statistical
method by Kansanen et al. (2022).

To present the full workflow, the complete processing and analysis workflow in this
thesis is presented in Figure 2 including the used inputs and outputs for each step.

3.1 Data obtaining and the study site
The data used is collected using drone flights at Ränskälänkorpi study site located
in Asikkala, Finland. The image acquisition is performed in September 2020 and
June 2021 to study the effects of selection harvesting performed in spring 2021.

The site is used to study the effects of continuous cover forestry in boreal peatland
forests. At the site, various biological and meteorological variables are measured,
such as soil temperature, water level and gas exchange between the ecosystem and
the atmosphere using field measurements and two Eddy-covariance towers. The area
of interest is around 500 x 500 meters in size and includes three sections: selection
harvest, control (old-growth, unmanaged) and clearcut areas which can be clearly
seen in the post-harvest images from 2021 (see the orthomosaic in Figure 1).

Figure 1: The Ränskälänkorpi study site in July 2021, after the selection harvesting
and clearcutting.
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Images were captured using DJI Matrice 210 V2 drone equipped with Zenmuse XT2
for thermal and RGB imaging and Micasense Altum for multispectral images. During
a flight, the drone is moving steadily at a constant altitude (typically 100 m) and
images are captured at close interval (once per second) to achieve approximately
90% overlap between the images (Leberl et al., 2010).

Ideal weather conditions improve the quality of the resulting point cloud and surface
elevation model. To minimize shadows of objects and brightness differences between
the images, it is recommended to capture the images during mid-day either with
completely clear sky or with thin even layer of clouds. Wind should be avoided so
that for example the branches of the trees do not move between the images. For
thermal images, the clear sky produces the largest temperature differences between
the moist and dry objects as well as objects with different albedo and emissivity.

3.2 Point cloud pre-processing
After a flight, the images captured using a UAV need to be merged. Through
pre-processing, a dense 3D point cloud of the forest and an orthomosaic are obtained.
Orthomosaic is a satellite-like view of the study area where all objects look as if
they are being viewed from straight above. Using the dense cloud, height value can
be assigned to each pixel in the orthomosaic resulting in Digital Elevation Model
(DEM).

The pre-processing steps are presented briefly as following.

Agisoft Metashape Professional 1.7.3 is used to perform the pre-processing steps
1-8 (Agisoft LLC, 2021). Metashape was run on Ubuntu Virtual Machine in CSC
cPouta computing environment with 14 CPU cores, 112GB of RAM and 1 NVIDIA
Tesla P100 GPGPU. Processing steps 9-15 are performed using lidR for R language
(Jean-Romain et al., 2021) as batch jobs in CSC Puhti supercomputer.

1. Align photos Using aerial triangulation and bundle block adjustment, tie points
are found between the images and images are matched. Using camera position
from drone (location, altitude, camera angle etc.) and camera parameters (focal
length, sensor size etc.), sparse cloud is generated, which is a rough 3D model
of the area.

2. Register Ground Control Points Iteratively georeference the images to real
coordinates using Ground Control Points (GCPs) visible in the images, as
the GPS location measured in drone is not accurate enough to solely produce
accurate projection for the point cloud. The GCP locations are measured using
GPS device in the field. After registration, camera alignment is optimized in
Metashape.

3. Clean cloud Remove obvious outlier points, like noise below ground, both
manually and using values of Reprojection Error and Reprojection Uncertainty.

4. Dense Point Cloud Generates a detailed 3D model of the study area using
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photogrammetry, see the result in Figure 3.

5. Digital Elevation Model Using dense point cloud, the heights of all objects
are determined.

6. Spectral correction For multispectral images, calibrate the reflectance using
panels with known reflectance.

7. Orthomosaic The images are projected to the Digital Elevation Model surface.

8. Export cloud Save cloud as .las files in 100 x 100 m chunks.

9. Spatial indexing To speed up the processing of the point clouds, create adaptive
quadtree over x and y coordinates where cells represent point index intervals
within that region. This is done using LASindex from lasTools (rapidlasso
GmbH, 2021) and saved in .lax format

Further pre-processing is performed using lidR package for R.

10. Re-scale point offsets Set distance between points to 0.001 meters and re-
move duplicate points on that scale.

11. Clip area Select the region of interest for analysis.

12. Denoise Remove below-ground points by removing points estimated to be
below the percentile corresponding to ground.

13. Classify ground points Using Cloth Simulation Filter, classify points as
ground. The point cloud is turned upside down and “cloth” is dropped on
top of the ground. Points under selected distance to the simulated cloth are
classified as ground.

14. Normalize heights To generate Digital Terrain Model (DTM), which repre-
sents the ground surface, triangular irregular network interpolation based on
Delaunay triangulation is used for areas where there are no points (e.g. under
a tree or other object). The height of all points in the dense cloud are then
normalized according to the heights in the DTM raster. Due to discrete nature
of DTM, all points ending up below height 0 are removed from the cloud.

15. Canopy Height Model With the normalized point cloud, the heights of the
trees can be acquired. By removing the ground points by setting their height
value as 0 we now get Canopy Height Model. To remove small openings in
the canopy, pit-free algorithm is used to interpolate the CHM. To remove
additional irregularities, smoothing is applied by representing points as a circle
with radius of 2 cm.

After the pre-processing, the obtained height models can be used for detection and
segmentation of individual trees.
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Figure 3: Dense cloud derived from the July 2021 UAV flight. The image on the
right is the view from the clearcut site to the edge of the forest in the east of the
study area.

3.3 Finding tree locations
The locations of individual trees are identified from the Canopy Height Model using
local maxima filtering (lmf), which detects unique apex point (tree top) for each tree.
Here its used implementation is the lmf() function in the lidR-package, which is
based on definition by Popescu et al. (2004).

In short, local maxima filtering finds tree tops in locations that have the highest
height within a search window. It goes through every pixel in the CHM raster, and
if the pixel is the highest within the search window, it is marked as top. Thus, the
choice of the search window is important. Popescu et al. (2004) assign different
search windows for deciduous and conifer trees according to species classification
based on RGB and two infrared channels from the ATLAS satellite. The search
windows are modelled based on field measured values of tree crown width and are
quadratic models with tree height as the explaining variable. Their resulting search
windows vary between 1.5 and 15.5 meters depending on the tree height.

In general, the method suits the best for trees with a single clear apex, like conifer
trees. The circle search window was found to perform better than square for deciduous
trees, and vice versa. In addition, minimum height threshold is used to not find tops
in objects smaller than trees, such as understory vegetation and rocks.

3.4 Branch top removal
An easily occurring problem with the local maxima filtering is that multiple tops
are found in the same tree crown, especially when a small search window is used.
For example, large conifer crowns typically have tops detected in the end of long
branches in addition to the correct apex. This causes problem when estimating the
number of stems in the area and also causes incorrectly many tree crown segments
as algorithms typically start region-growing from each found top.
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To remove these obviously incorrect tops, method that is here called Branch Top
Removal is used. It examines the neighborhood of each top in the Canopy Height
Model. As tree crowns are usually symmetrical, correct tops should lie in the center
of the crown with no ground pixels close by. The top is kept if the height difference
between the top and the lowest point in its neighborhood is less than a selected
threshold. To minimize the disturbing effect of small holes with height value 0 present
in the canopy, the CHM is smoothed. The process is presented also in Algorithm 1
and an example of the results can be seen in Figure 4.

Local Maxima Filtering

Branch Top Removal

Figure 4: Branch Top Removal filters out erroneous tops found using the local
maxima filtering algorithm by examining the height differences in the neighborhood
of each top.

Algorithm 1 Branch top removal
A ← set of found tree tops
accepted ← list()
CHM ← smooth CHM with e.g. 5x5 pixel average

for each found tree top a in A do
Crop circle c with radius r and center point a from the CHM raster
Get the lowest height in the circle, hmin = min(c)
if aheight −min(c) < hdiff and aheight > hlb then

accepted ← a
end if

end for

The method works well especially with conifer trees. For some deciduous trees it
leaves multiple tops that visually seem to be in a single crown, but as discussed in
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Chapter 4.3, it is difficult to tell solely from the orthomosaic how many individual
trunks there actually are.

3.5 Clustering and filtering tops using temporal data
The trees left after the selection harvesting are generally younger and narrower.
Notably smaller crowns cause problems for the Branch Top Removal, as the detected
apex of a tree is often near the crown edge. As there might be multiple tops detected
also for the smaller crowns, some kind of method should be used to remove the
incorrect ones. To make matters worse, noise issues in the CHM increase the number
of incorrectly detected tops significantly in all areas affected by the noise. Noise
points have high height value and are often detected as a top by the local maxima
filtering algorithm. Areas in Figure 3 with less points have decreased CHM quality.

As in this study the top detection process is done for the two following years,
information from the other year can be utilized to fix the other if it is assumed
to be correct. Top locations from the other year can’t be used as such, since the
orthomosaics have location inaccuracies between them (as discussed in Chapter 4.1)
and the selection harvesting done between the surveys has removed large number of
trees.

In this case the location inaccuracy, although not entirely uniform, is measured to be
less than the average crown diameter. This should allow to match the tops within
the two data sets with relatively high accuracy. Particularly, the same process can
be used to remove incorrect tops from the 2021 data. Tops in 2021 that are close to
single top in the 2020 data are clustered and only one top is left as result. Here the
process is called Temporal Clustering.

3.5.1 Temporal Clustering

First, for each tree top in the 2021 data, the closest top within a search radius from
the 2020 data is assigned. After that, the tops in 2021 with the same closest top are
found and the closest one is assigned to be the actual top corresponding the tree.
Small enough search radius should be used to prevent wrong tree from distance to
be assigned. The detailed method for finding the corresponding tops from the other
data set is presented in Algorithm 2.

For selectionally harvested forest, however, the trees visible in the pictures taken
after the harvest might be not visible in the earlier data since those trees have
been beneath the taller canopy. In other words, finding the exact corresponding
post-harvest tree in pre-harvest data is not always possible. However, as the trees
in the post-harvest forest are sparse and practically close to some harvested tree, it
is still possible to use this method to cluster tops even though not using the actual
same tree in pre-harvest data. When generating the actual top pairs in Chapter 3.6,
the height difference is considered.
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Algorithm 2 Find closest top from the other dataset
A← Set of tops with more incorrect tops, here 2021
B ← Set of tops which is is assumed to be correct, here 2020
closestToA← list()
closestToA.distance← list()
closestToB ← list()
closestToB.distance← list()

for each found tree top a in the set A do
Crop circle c with radius r and center point a of tops from the set B
if c is not empty then

for each top bc in circle c ⊂ B do
bc ← distance(a,bc)

end for
closestToA[a]← closest top bc in the set c ⊂ B
closestToA.distance[a]← distance(a, bclosest)
if closesT toB[b] == 0 or closestToB.distance[b] > bclosestDistance then

▷ Update the closest top for b only if a is the closest to b
closestToB[b]← a
closestToB.distance[b]← distance(a, bclosest)

end if
else

▷ No tops were found from B in c
closestToA[a]← −1
closestToA.distance[a]← −1

end if
end for

3.5.2 Filtering tops using clustering

Now incorrect tops can be removed using Algorithm 3 by checking if multiple tops
have the same closest top from the earlier year. While removing incorrect tops, it is
to be noted that the locations of the remaining top may not correspond to actual
tallest point of a tree. Instead, the aim here is to get only single top per one tree
crown, so that the segmentation algorithm does not cut the crown into multiple
segments. An example of the method is seen Figure 5.

3.6 Generating temporal top pairs
To produce accurate tree-pairs between the pre- and post-harvest datasets, clustering
by distance is not enough. As mentioned, the thinning reveals smaller trees under
the harvested trees. Thus, the height difference of top pairs should also be taken
into account.

Using the Temporal Clustering, Algorithm 3 can simply be extended by adding
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2020

2021 Local Maxima Filtering

2021 Temporal Clustering (1.5 m)

Figure 5: Temporal Clustering filters out erroneous tops using temporal data from
the previous measurement. This is especially useful in areas of the CHM affected by
noise.

Algorithm 3 Filter tops with temporal information
A← Set of tops with more incorrect tops, here 2021
B ← Set of tops which is is assumed to be correct, here 2020
filteredTops()← list()
for each found tree top a from the set A do

bclosest ← the closest top for a in B
otherTops()← all tops in A with the same closest top bclosest

amain ← the top in otherTops() with the smallest distance(amain,bclosest)
filteredTops()← amain if not already in the list

end for

check for the height difference of trees. If the CHM has no noise or other significant
inaccuracies and the time interval between the surveys is not multiple years for forest
to grow significantly, only top pairs with the height difference within a small range
(e.g. [−1, 1] meters) should be considered as correct.

An alternative way is to use the crown segmentation obtained in Chapter 3.7. If the
two orthomosaics can be georeferenced so that the error in spatial overlap is less
than the crown diameters, the crown pairs corresponding to the same tree should
have the largest intersection area. So, by calculating the intersection between the
crowns from different years and checking for the tree height difference to be minor, a
connection can be made. See Algorithm 4.

This Intersection Method yields higher accuracy than using the Temporal Clustering
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method, as it might incorrectly make false connections when two different trees have
a distance smaller than the search radius. The Temporal Clustering method, however,
could be partly improved by checking the height difference for all trees within search
radius and choosing the nearest sufficient. With Intersection Method, the selection
of the search radius is not important.

Algorithm 4 Connect tops by maximal intersection
X ← A set of crown segments, here 2021
Y ← Another set of crown segments, here 2020
for each found crown x ∈ R2 from the set X do

Crop circle c with radius r and center point x of crowns from the set Y
if c is not empty then

for each crown yc ∈ R2 in circle c ⊂ Y do
if max(height(x)) - max(height(yc)) ∈ [−1, 1] then

yc ← x ∩ yc

end if
end for
xclosest ← max(yc)

else
xclosest ← −1

end if
end for

3.7 Crown segmentation
The canopy needs to be segmented to individual tree crowns so that all spectral
data layers can be delineated as crowns for analysis on individual tree level. The
separation of tree crowns is based on found tree tops that should represent the
location of apex point of each tree. Here an algorithm working on the Canopy Height
Model by Silva et al. (2016) is used for the segmentation.

For each detected tree top, the algorithm first applies a buffer area relative to the
tree height that should cover the crown in the CHM. These buffers form a merged
polygon, which is split to individual tree crowns using centroidal Voronoi tessellation
approach (Sack et al., 1999). Finally, the values of the CHM are filtered by threshold
depending on the height of each tree top (Silva et al., 2016). As all ground pixels are
marked as 0 in the CHM, the segmentation produces detailed borders around the
canopy.

In the silva2016() implementation in the lidR package, the algorithm uses nearest
neighbor clustering for the Voronoi tessellation. An example of the result is seen in
Figure 6.
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Tree Tops

silva2016() segmentation

Figure 6: An example of segmentation using the algorithm by Silva et al. (2016).

3.8 Estimating the total number of trees
When using photogrammetric point clouds, trees beneath the crowns of the tallest
trees remain unseen. Thus, the number of trees detected corresponds only to the
tallest trees and the UAV data needs to be extended in order to perform accurate
forest-level analysis with the calculated crown parameters.

One algorithm for estimating the total number of trees in an area is developed by
Kansanen et al. (2016). It estimates the total number of trees for those height
categories that have been detected using remote sensing. It is based on germ-grain
model, which is a marked point process model. Here the germs are the locations of all
objects which are from a random point process. Each object has a attribute, which
are referred to as grains. In our case, the germs represent locations of the trees and
are realizations of homogenous Poisson process with mean λ. The grains represent
the crown area as random compact sets with independent, identically distributed
areas with random radius R.

Detectability is the probability that uniformly distributed randomly located tree
would not be hidden by a larger tree. The parameter α ∈ [−1, 1] represents the
proportion of radius covered by a larger tree where a smaller tree cannot be detected.
If positive, the tree is hidden if its center point is located in a set inside the crown of
a larger tree. If negative, the set extends the crown and the center point of a hidden
tree can be outside of the crown of the larger tree. Detectability can be written for
categorized crown radii values ri = 1, .., n as
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dα(ri) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− |W ∩[Ξ̂R>r⊖B(0,αr)]|

|W | α > 0

1− |W ∩Ξ̂R>r|
|W | α = 0

1− |W ∩[Ξ̂R>r⊕B(0,|α|r)]|
|W | α < 0

, (1)

where W ∈ R2 is the whole study area, Ξ̂R>r is the subset of crowns with radius
larger than r in the germ-grain model and B(0, r) is the origin-centered closed disc
of radius r which models the actual crown. ⊖ is morphological erosion for removing
a buffer and ⊕ is dilation for adding a buffer to the crown (Kansanen et al., 2022).
Unlike the original method, here the trees are ordered by the height and not the
crown area. The tallest tree in W gets the detectability 1.

When crown radius r is divided into categories, detectability can be thought as
sampling probability. The number of trees can be now estimated using Horvitz-
Thompson (HT) estimator (Horvitz et al., 1952)

N̂HT =
n∑︂

i=1

1
dα(ri)

. (2)

Unlike classical HT-estimators, HT-like estimators are model-based. The probabilities
d(ri) are estimations and cause bias to the estimate (Kansanen et al., 2022).

The parameter α can be estimated using functional K-nearest neighbors method.
With this method, α is optimized using training and validation data. In the case
of multiple study areas, first the closest training area i in terms of the similarity
of the cumulative size distribution is found for each validation plot j. This is done
using Kolmogorov-Smirnov statistic (L∞) as distance metric. k ∈ K neighbors with
smallest distance dij are selected for each validation plot j (Kansanen et al., 2022).

Now with the set K, the estimate αj is obtained as

α̂j = min
α∈[−1,1]

⌜⃓⃓⎷∑︂
i∈K

(Ni(α)−Ni
ˆ (α))2

k
, (3)

where Ni(α) is the estimated stand density and Ni
ˆ (α) is the observed stand density

in plot i.

Alternatively, α can be estimated for all plots by taking a median of the plot-level
values. This is found to be effective strategy by Kansanen et al. (2022). As presented,
the number of trees in each height category can now be estimated using Equation
(2).
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4 Results
In this section, the Individual Tree Detection and Segmentation as well as the
estimation of total number of trees and the temporal connection between the two
surveys are performed. The goal is to produce statistics for each individual tree
crown with the estimated distribution to support further research on the effects of
selection harvesting.

This is done by first performing the point cloud pre-processing and analyzing the
quality of the results in the Chapter 4.1. Second, the tree top locations that can be
assumed to correspond to tree trunk locations are detected, and top pairs between
the two temporal data sets are made in Chapter 4.2. The results are compared to
field measurements in Chapter 4.3, and the number of total trees is estimated using
the HT-like estimator in Chapter 4.4. Third, the crowns are delimited from each
other, and the tree level statistics are calculated in Chapter 4.5.

4.1 Point cloud processing
Dense point clouds are generated from the RGB, multispectral and thermal images
captured using the drone. The processing workflow using Agisoft Metashape software
and lidR R-package is presented in the Chapter 3.2. The output resolutions of the
orthomosaics are 2.5 cm/px for the RGB and 12.6 cm/px for the thermal.

Although we obtain a high resolution orthomosaics, the projection of images on the
Digital Surface Model suffers from slightly bad quality. RGB orthomosaics suffer
from stretching in 2020 and blurriness and noise in 2021, which also affects the
CHM, see Figure 8 for examples. While these do not significantly affect the crown
segmentation quality in the end, the bad quality projection of images affects the
spectral analysis.

For 2021 RGB image set, there are less photos captured and thus less overlap between
the pictures in the southern section of the area. This results the dense cloud having
a high amount of noise above treetops (see Leberl et al., 2010 and Figure 7). To
make the Digital Elevation Model usable, moderate noise filtering level is applied
in the Metashape when generating the dense cloud (Agisoft LLC, 2021). This,
while removing the unwanted noise, reduces the quality and size of the tree crowns
especially in the selection harvest area, where the trees are smaller. To overcome
the lower quality, mild noise removal is used for the selection harvest area. The
tree segmentation later in processing is now done twice with CHMs generated from
both mild and moderate filtering clouds. This separation in processing for selection
harvest and other areas improves the quality of the final segmentation, which is
merged from the two.

Another notable source of error lies in GPS accuracy between the measurements
done in 2020 and 2021. As it is known that the drone GPS location is not accurate
enough itself, Ground Control Points are used to georeference the images and the
resulting point clouds. Although GPS accuracy can be significantly improved by
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 Height

Figure 7: Noise present in the Canopy Height Model due to low image overlap. In
this figure, mild noise filtering in the Agisoft Metashape is used.

(a) Stretching issues in 2020 ortho-
mosaic

(b) Blurriness and noise in 2021 or-
thomosaic

Figure 8: Example of orthomosaic quality issues in the same sample area

using a RTK GPS device on a drone, GCPs are still commonly used to ensure the
correct shape of the ground (Stott et al., 2020).

As some of the GCPs were physically destroyed during the selection cutting in early
2021, new ones had to be built and the location of all GCPs were re-measured in
summer 2021. This caused unexpected issues: the GPS locations of those GCPs that
remained unchanged differed approximately 2-3 meters in latitude and longitude
between the 2020 and 2021 measurements. For altitude the difference was up to
20 meters. It is known that the altitude in GPS might be uncertain and that the
accuracy may be affected due to trees or other obstacles (Bastos et al., 2013), but
higher accuracy was expected. When comparing the 2020 and 2021 orthomosaics,
issues with both warping of the CHM and scaling of distances can be seen in the
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whole area. In other words, for example the location of distinctly the same tree are
different in the two datasets. This causes issues for doing temporal analysis, as the
georeferencing is incorrect. With for example QGIS Freehand Raster Georeferencer
tool, orthomosaics can be aligned, but only locally, as the level of error varies spatially.

The error in location between the two orthomosaics is in the scale of 1 meter. This
removes the possibility to do straightforward pixel-level comparison. However, for
object-based analysis, like comparing the tree crown objects, the issue can be averted
if the crowns can be matched in the different datasets.

4.2 Tree top locations
Tree top detection is based on local maxima filtering, presented in more detail in
Chapter 3.3.

The trees in the study site are mostly narrow, but some variation exists in crown
size. It can be seen from the RGB orthomosaic that smaller conifer trees have the
crown diameter of 2-3 meters while largest deciduous trees have the diameter of 5-7
meters. To find most of the trees, small search window should be used for the local
maxima filtering. This, however, generates artificial tops as search diameter smaller
than average crown diameter finds tops incorrectly in local maxima, for example in
long branches that curve upwards. Small search window can still be used if incorrect
tops are removed, as is done in the next sections.

Deciduous trees are often problem for local maxima filtering as, unlike conifer trees,
they do not have single apex point but multiple ball-shaped crowns. The use of larger
search window for deciduous trees was examined, and for example search window
with constant diameter 4 meters could provide better result for some of the deciduous
trees. However, it is difficult to interpret which should be the correct number of
tops by just using the UAV images without any field measurements, as discussed
in Chapter 4.3. In addition, using a different search window for deciduous trees
would in practice require identifying the species using some automatic process. As
the following methods already remove clear errors from the set of tops reducing the
number of total errors, species identification at this stage and species-specific search
window was not implemented.

The local maxima filtering is applied using find_trees() algorithm from the lidR
package. To overcome noise in the CHM, values with height more than 30 meters are
maxed at that height, which is approximately the maximum tree height in the site
(Figure 11). Minimum tree height is set to be 2 meters, as crowns of saplings are too
narrow to be analyzed. Commonly a search window as function of tree height is used
(Popescu et al., 2004), but it was noticed that using a constant search window is
enough in this case, as the window size is required to be rather small anyway. Using
narrower search window at lower heights would detect more objects as tree tops that
are not well identifiable as tree crowns in the RGB orthomosaic.

Here constant radius of 1.92 meters is used for normal-sized trees. This finds almost
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all of even the smallest trees visible, but highly overestimates the number of trees
due to incorrect detections. For the trees left after the selection harvest in the 2021
data, radius 2.2 meters is used, since the crowns are more separated from each other
and no Branch Top Removal could be applied due to the detected tops being often
close to the crown edges. See Figure 9 for an example of the selection harvest area.

Tree Tops

Figure 9: Selection harvest area has narrower trees left after the thinning.

4.2.1 Branch Top Removal

Incorrect tops found due to the small search window in the local maxima filtering
algorithm can now be removed by examining the neighborhood of each top using
the Branch Top Removal presented in Chapter 3.4. The most suitable parameters
were found to be search radius r = 0.65 m, tree height lower bound hlb = 10 m and
minimum difference hdiff = 9 m for 2020. The radius needs to be chosen carefully
based on the width of the trees in the site. For 2021 r = 0.45 m was found to be
more suitable due to the quality issues. The Branch Top Removal is applied only to
other areas than the selection harvest area, since the tops detected in the selection
cutting area are often very near the edges of the tree crowns. To overcome this,
temporal filtering is used in the next section.

The effect of this method can be seen in Figure 4, where incorrect tops are filtered out.
For the whole study site, most of the incorrect tops are removed in the areas where
this method is applicable. On the other hand, remaining areas still have incorrect
tops.

To simplify the choice of parameters, the height condition can in this case be simplified
to min(c) > 1 as the trees have more cylinder than pyramid shape. In other words,
simply all tops near ground pixels can be removed.
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4.2.2 Temporal Clustering and top pairs

To remove the rest of the incorrect tops, the methods in Chapters 3.5 and 3.6 are
used. Here radius of 1.5 meters is used as search window for the top pairs, as the
average georeferencing error between the two datasets is approximately less than
that. The effect of the method can be seen in Figure 5.

After filtering the 2021 tops by using the 2020 tops only by distance, it is seen in
Figure 10b that most of the trees are connected correctly in terms of height difference
as 70% of the pairs have difference within -1 to 1 meters. The error is calculated
as hdiff = h2021 − h2020, meaning all connections with significant negative error can
be considered incorrect, as trees should not shrink. These cases are mostly in the
selection harvesting area (Figure 10a) and correspond to smaller trees revealed below
the harvested larger trees. On the contrary, the large number of connections with
positive error is not accountable for tree growth either, as annual growth should be
within a meter. By visual inspection it can be seen that here those cases are mostly
correct connections, and the large difference is caused by the 2021 CHM having
incorrectly high noise points.

As a conclusion, only top pairs with height difference within hdiff = [−1, 6] are allowed.
The resulting number of total tops from both years and those that did not connect
to the other year are shown in Table 1.

The top pair data can be used to find the harvested trees. With the same logic,
pre-harvesting tree can be considered as harvested if there is no corresponding top
satisfying the distance and height constraints and it lies in the harvested area. The
number of harvested trees within the selection harvesting area is 1 740.

For better accuracy, the Intersection Method presented in Algorithm 4 is used for
the final top pair result in Chapter 4.5.1.

(a) Spatial distribution of the difference.
Red: positive difference, blue: negative dif-
ference, white: near 0, black: not connected.
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(b) Histogram of the difference.

Figure 10: Difference of height for each 2021 top between a connected 2020 top.
Difference is calculated as hdiff = h2021 − h2020.
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Table 1: Number of trees in the final result and number of trees not connected to
the data of the other year when cropped to the same extent.

Number of trees 2020 2021

All trees 7 010 6 289
Not connected (by

distance and height) 2792 2085

Not connected (by
intersection and

height)
2914 1706

4.3 Results and validation to field data
Results of the Individual Tree Detection can be validated using the manually collected
field inventory as well as trees detected from the Terrestrial Laser Scanning (TLS).
The field inventory is collected in summer 2020 (before the selection harvest) by
manually measuring the trees in multiple circle areas. Their location is not precise
or at least comparable to UAV ITD, but the inventory can be used to estimate the
number of stems in the area and their species distribution.

Individual Tree Detection based on Terrestrial Laser Scanning provides precise
locations of stems in two 50 x 50 m survey areas. TLS is performed using scanner
located at breast-height, and the resulting point cloud is combined from multiple
scans made from different close by locations. The detected trees from the TLS scans
have been manually inspected to remove incorrect objects such as measuring devices.
Its result can be assumed to be fairly accurate while the most significant error source
being close-by or conjoined tree trunks that may have been detected as single trunk.

In some cases, it is problematic to visually tell from the orthomosaic image how many
tree trunks there actually are in a crown, especially in the case of deciduous trees
which have large crowns. If the forest is sparse enough and the photos are taken at
solar elevation angle of ca. 45 degrees, the shadows of the tree trunks give fairly good
information about the locations of trunks. See Kattenborn et al. (2018) for example
study, where tree trunk diameter is estimated from shadows. For Ränskälänkorpi
data sets, this is possible method for the selection harvest area in 2021 data as the
area is sparse enough and the trunks cast shadows in the images.

The Figure 11 compares the number of trees with different heights found using
the field inventory and the UAV ITD in 2020 data. It is clear that the UAV finds
significantly less trees, especially ones with smaller height. This is intuitive as only
the tallest trees can be seen from the drone images. It is not possible to visually
see beneath the canopy and thus most of the smaller trees with height less than 15
meters are not found in the ITD process.

In addition, some of the larger trees are also missed as it is difficult to estimate the
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exact number of trunks. Especially with deciduous trees, many of the correct trunks
are most likely not detected from the CHM based on drone photos. The result could
be improved by using a laser scanner on a drone or other low-altitude vehicle, as the
laser pulses can penetrate through the leaves and reveal the location of branches and
trunks more precisely (Laurén et al., 2021).

After all, the Improved ITD consisting of methods presented in this study detects
larger number of trees than the Baseline solution, which is a plain local maxima
filtering using well-chosen search window. This can be seen as good result, since the
Baseline solution includes notably larger number of incorrect tops than the Improved
version. The presented methods allow the usage of a smaller search window as more
tops can be accurately marked as incorrect and can be removed.
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Figure 11: Distribution of trees in the whole study site found using the field survey
and Individual Tree Detection from the drone data in 2020 with the Improved
(consisting of methods presented in this study) and the Baseline (plain lmf) versions.
The number ITD of trees is scaled using the ratio of the approximate area of the
field survey and the UAV study area.

When compared to the trees detected using the TLS ITD in Figure 12, the Improved
drone ITD detects 54% of the trees in the control site. In more sparse selection
cutting site, 80% of the trees are found as most of the trees are visible for the drone.
However, the TLS ITD also misses trees with height less than 5 m when compared to
the manual field inventory (Figure 11). It can be expected that those trees are present
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undetected especially in the control area, and their number should be significant.
Otherwise, the distributions from the drone and TLS ITD follow similar shape.

While difficult to manually determine exact number of false positives from the
thousands of trees in the whole area, in the control area the used methods remove
practically all incorrect tops. However, as seen in Figure 12, almost half of the
TLS-detected trees are missing. In the partial harvest area, approximately 5% of
the found tops are incorrect, while approximately 25% of the TLS-detected trees are
missed after utilizing the methods.

As only 54% of the trees in the control area found, in denser forest smaller trees
easily remain hidden when viewed from the air. There exist methods to estimate the
total number of trees from the UAV data, which allows to overcome the observed bias
in the drone survey. One possible method is investigated in the following section.
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Figure 12: Histogram of trees found using Individual Tree Detection performed on
Terrestrial Laser Scanning and drone.

4.4 Estimating the total number of trees
As only the tallest trees can be seen using the drone, smaller trees are left undetected
under the topmost canopy layer. One possible method to estimate the total number
of trees for the observed height categories is described in Chapter 3.8. It uses training
data to estimate detectability dα(ri) for each height category of trees detected from
UAV images. In other words, the method does not estimate the number of saplings
or other smaller trees not visible in UAV images. This is major limitation, since
number of them is significant according to the field survey (Figure 11).

The validation data is the individual tree detection performed for the two plots with
point clouds from Terrestrial Laser Scans. The training data is the ITD performed on
UAV images with a slightly larger area than the TLS point clouds, as whole crowns
of the UAV-detected trees need to be included in the set. Here k = 1 clusters are
used. By comparing the error between observed and estimated number of trees for
each α, we find the optimal value of α by numerically solving the root. The values
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are αharvested = −0.299 for the selection harvest area and αcontrol = −0.230 for the
other areas.

When estimating the number of trees for the TLS scan areas, exactly the same
number of trunks is obtained with distributions aiming to match the distributions
of the trees detected from the TLS (Figure 13). However as seen in Figure 13, the
distributions are not equal as some height categories have much higher estimated
number and some notably smaller. For many categories, the HT-like estimator is
still better than using the UAV ITD value. Inaccuracies in the height category
frequencies may cause problems when upscaling the calculated crown parameters for
the undetected trees, however.

Now with the site-specific parameter values, the total number of trees in the whole
study site can be estimated. When using a slightly smaller area where 5 817 trees
are detected from the UAV data, the estimated number of total trees is 9 357. The
area is divided into harvest and control (other) areas, and the results in Table 2
follow the same detection rates as for the training areas: in the selection harvest
area approximately 80% and in the control area approximately 50% of the trees
are detected using the UAV ITD compared to the estimation. As mentioned, the
estimation is applied for only the height categories detected by UAV ITD.

Figure 14 shows the distribution of estimated trees and the trees detected from the
UAV data for the whole area. When compared to Figures 11 and 12, the HT-like
estimation tries to adjust the detected distribution to match the true distribution.
However, as the number of TLS-detected trees is small for the smallest height
categories, only minor increase in the estimation is applied for those categories.
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Figure 13: Distribution of HT-estimated trees for control and thinned (selection
harvest) survey areas including the trees from the UAV and TLS ITD.
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Table 2: Estimated total number of trees obtained with the Horvitz-Thompson
-like estimator and trees detected from the UAV data without any estimation for 5
different plots in 2021.

Area # Type UAV ITD HT-like
estimation

1 Control 791 1357
2 Harvest 1259 1621
3 Harvest 955 1122
4 Control 1170 2200
5 Control 1642 3057

Total 5817 9357
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Figure 14: The distribution of trees found using UAV ITD and the estimated number
of trees with the HT-like estimator for the whole 2021 data.

4.5 Crown segmentation
With the estimated locations of individual trees, their crowns can now be delineated
from the canopy. Here the segmentation is performed using the method presented in
Chapter 3.7. To improve the segmentation, all tops with height less than 3 m are
removed prior, because their crowns can’t be seen from the UAV images in practice.

Due to the noise in the 2021 CHM, the segmentation is done separately for the
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selection harvest and other areas as more aggressive noise filtering is used for the
control area. As the crowns in the selection harvest area are smaller, more aggressive
filtering would reduce their size too much. While different noise filtering produces
different CHMs, the RGB orthomosaic seems to be mostly the same no matter which
version of the CHM is used for the projection.

As the segmentation is based on the CHM, the algorithm delineates the crowns from
the ground in detail. However, the segmentation between the trees is rough when
the crowns are touching each other (see Figure 15) due to the Voronoi tessellation
approach of the algorithm.

In addition, as in some cases the borders of the segmentation might be incorrectly
in the crown of another tree, only the largest section actually corresponding to the
crown is decided to be kept. This results in more accurate crown details for individual
trees, calculated in Section 4.5.2, but as less canopy area is used it gives incorrect
value when estimating the total crown area in the study site. In addition, when
estimating tree physiology parameters at forest-level, it is slightly different sample
than when using all of the crown area, even though the segments might be a bit
wrong for individual trees.

After performing the segmentation, there remains some pixels containing understory
vegetation or ground due to inaccuracies in the CHM. These can be removed using
Vegetation Indices calculated from spectral information, for example NDVI or NGRDI
value. Here NGRDI is used, and by manually inspecting the raster, only pixels with
NGRDI > −0.059 are kept in the crowns. The final result can be seen in Figure 15.

4.5.1 Top pairs using Intersection Method

Connecting the trees between the two flights can now be performed using the Crown
Intersection Method explained in Chapter 3.6 with the allowed tree height difference
range [−1, 6] as found in Chapter 4.2.2. As a result, common identifier is set for
each individual tree in both years. Those trees that are not connected, such as small
trees revealed after the selection harvesting, get unique id meaning all ids actually
represent separate trees. Now, the temporal analysis of individual trees is possible.
In addition, the Intersection Method provides yet another way for removing incorrect
tops, or to be more specific, merge crown segments that correspond to the same
crown in the other data set.

The resulting tree counts for the Intersection Method are presented in Table 1. For
2021, better results are achieved by leaving most of the smaller trees revealed after
harvesting as unconnected. In addition, when multiple segments correspond to the
same crown, almost all crown segments now get accurately the correct corresponding
top whereas only one of them is taken with distance method. However, inaccuracy
in detecting the tops and thus in segmentation increases the number of incorrect
connections. For 2020, the missing connections correspond mostly to the harvested
trees.
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Figure 15: Final segmentation with algorithm by Silva et al. (2016) and NGRDI
filtering.

4.5.2 Calculating tree parameters

After the segmentation, parameters in Table 3 are calculated for each individual tree
crown. This makes object-based analysis possible for each individual tree.

In our case, the images were captured on a bright day. This caused some number
of overexposed (clipping) pixels, in other words, pixels with maximum value 255 in
at least one of the RGB channels. For those pixels the exceeding information has
been lost. This affected only 6% of the crowns, and the number of clipping pixels is
mostly low as seen in Figure 16.
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Figure 16: Number of overexposed pixels in crowns having values capping at maximum
RGB value.
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Table 3: Parameters of each crown

Parameter Description

Crown area [m2] Number of pixels in the crown times
the image resolution squared

Crown diameter [m]

Average and maximum distance from
the tree top to crown edges multiplied
by 2. In the most cases the top is near

the center point of the crown.

Tree height [m]
Highest point and mean of the top 10%
in the height are calculated from the

CHM inside the crown.

RGB Intensity [DN] The mean intensity of the red, green
and blue channels of the crown.

NGRDI

Mean of the Normalized Green Red
Difference Index, calculated as

NGRDI = Green−Red

Green + Red
.

RGBVI

Mean of the Red Green Blue
Vegetation Index (Bendig et al., 2015)

RGBV I = Green2 −Red ∗Blue

Green2 + Red ∗Blue
.

NDVI

The mean Normalized Difference
Vegetation Index value of the crown

from multispectral orthomosaic

NDV I = NIR−Red

NIR + Red
.

Temperature [◦C] The mean temperature value of the
crown from thermal orthomosaic.
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5 Discussion

5.1 Remote sensing
This thesis presents workflow for modern remote sensing relying on point clouds
derived from drone photographs using Structure from Motion technique. This
provides cheaper alternative to airborne laser scanning using mostly off-the-shelf
equipment as well as commercial and open-source software. While not used, there
also exists open-source tools for photogrammetric processing of UAV images.

The novel features of this work are the combination of data from RGB, thermal
and multispectral sensors, as well as utilizing large temporal data from pre- and
post-harvest surveys, which is uncommon for the Boreal region. When merging
temporal data, the need for precisely measured drone or Ground Control Point
locations is emphasized as fixing the incorrect georeferencing afterwards using image
transformations is not possible at this scale. In addition, the selection harvesting
caused its own trouble as the remaining trees are notably thinner.

Although point cloud pre-processing requires multiple steps, and especially Ground
Control Point registration requires manual work, the process is still mostly automatic.
However, as it was noted with the collected data, considerable amount of manual work
to ensure the best possible results might be required and multiple error possibilities
exist especially during the field surveys.

Although the drone data acquisition is relatively inexpensive, obtaining optimal
results is highly dependent on local weather conditions and camera settings. Either
clear sky or thin even layer of clouds is the optima for image capturing since changes
in radiation affect the analysis especially in the case of thermal sensing. In addition,
wind causes the branches to move making the SfM process more difficult (Agisoft
LLC, 2021). Moreover, currently the flight times of drones are between 20-40 minutes
with one set of batteries. This limits the survey areas as batteries need to be changed
during the flight. Image overlap was also remarkably important, as here simply
having less image overlap in certain area caused significant amount of noise when
constructing the Digital Elevation Model from the photographs.

5.2 Individual Tree Detection and Segmentation
It is a difficult task to find the locations of tree tops and produce crown segmentation
with high accuracy. In general, the Individual Tree Detection results achieved here
can be considered good when compared to literature (for example Duncanson et al.,
2014). With the selection harvest area in 2021, we obtained 80% of the trees detected
by the Terrestrial Laser Scanning. For the more denser control area, 54% of trees
were found using the UAV methods. The segmentation has sufficient quality for the
purposes of the detailed tree physiology analysis. Ground pixels can be well removed
from the crown segments using NGRDI value, which is important for calculating any
spectral values. However, the delineation of touching crowns could be improved.



44

In this case, the largest error source for the segmentation are the remaining incorrect
tree tops. As the segmentation method starts region-growing from each top, all tops
will be assigned its own segment. As incorrect tops may lie in very wrong places
(like in seemingly invisible trees between canopy), the resulting incorrect segments
might extend partly to correct trees. This is the main reason why such an effort was
spent on removing the incorrect tops. In this sense, slightly bigger search window for
the local maxima filtering could provide less incorrect tops, especially if the filtering
methods presented are applied. In addition, the segmentation and crown details
could be used for species classification for different search windows, and heuristics to
merge the segments could possibly be developed to include the deciduous trees better.
However, in practice it was found the deciduous trees were not more problematic
than the other trees.

The algorithm used here for the segmentation by Silva et al. (2016) is rather simple.
As characteristic to the central Voronoi tessellation, the touching tree crowns are
separated by straight polygon lines. As here it is implemented simply by using
K-means clustering on the CHM, any further heuristics or usage of spectral layers for
the clustering could improve the results. Speculatively, the Large Scale Mean Shift
algorithm (Michel et al., 2015) provides spectral segments that could be clustered as
crowns.

Already in lidR package and especially literature, there exists many other methods
for segmentation and tree detection. Vauhkonen et al. (2012) compares different
ITD algorithms (for LiDAR point cloud data). It was found that the performance
of the algorithms is similar and that the forest structure has the largest effect on
the accuracy. As another case example, Wagner et al. (2018) uses image processing
methods to delineate crowns solely from RGB satellite image with 0.5 m pixel
resolution.

In addition, there exist some examples of using Convolutional Neural Networks for
Individual Tree Detection, like Santos et al. (2019) and Weinstein et al. (2019).
Zhou et al. (2020) used more advanced method by using holistically nested edge
detection network for tree edge detection and minimum spanning tree method to
merge weighted crown segments. These methods show promising accuracy. However,
the used method was chosen for practical reasons as it was easily available in the
package and the computation time was sufficient.

Especially when using point clouds from Structure from Motion, smaller trees remain
unseen beneath the canopy of largest trees. This can be seen well in Figure 11, where
the number of trees under 5 meters measured in the pre-harvest field inventory is very
high. Although saplings and other small trees remain problem, using airborne laser
scanning would generally detect more trees, as the laser pulses penetrate through
leaves. For area-based metrics, the number of smaller trees can be statistically
estimated using field-data samples, similar to what was done here for the taller height
groups (e.g. Kukkonen et al., 2021).

The HT-like estimator used here provides a way to correct the bias in the Individual
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Tree Detection and allows to upscale the obtained crown parameters for larger
proportion of the actual trees in the site. The estimation procedure clearly makes
the distribution more accurate, but it does not consider the smallest tree heights. In
case the number of the unobserved height categories would be estimated using some
other method, the tree physiology parameters should be estimated using allometric
models (Jucker et al., 2017).

5.3 Applicability for decision making and ecosystem model-
ing

This type of detailed UAV data (with resolution more than 5 cm) is suitable especially
for studying ecosystem behavior. For forestry needs, rougher spatial resolution has
traditionally been used, but new tree level harvest plans in precision forestry benefit
from more detailed data. However, as it was noted in this research, obtaining good
quality data using drones is not trivial and the survey areas might be inconvenient
for larger forest inventories with current flight ranges. For commercial purposes that
may not need such a high-quality data as scientific research, effort should be focused
on regularly produced national laser scanning databases which have increasingly high
resolution and are already available.

In this case, the data is being used for studying the effects of selection harvesting
as well as extreme drought in summer 2021. Temporal data including thermal
measurements from 2020 can be used as reference data, and as the analysis is
performed on individual tree level, the behavior of individual trees could potentially
be considered. In addition, field-measured sensor values such as tree water flow can
be estimated for the rest of trees with no sensors installed.

Another focus area, improving the individual tree detection for SfM point clouds,
could potentially lead to better estimation for the number of tree size and species
categories. This could potentially lead to better estimation of forest inventories,
forest biomass, or carbon stored in the site, for example, with minimal amount of
field work.

In terms of climate change and biodiversity loss, this type of research helps to
analyze ecosystem behavior and generate e.g. harvesting strategies that minimize
the ecological impact of silvicultural actions. In general, the possible rapid change
in climate conditions needs to be considered when studying ecosystem behavior or
refining management strategies for long term. As noted by Keenan (2015), the societal
aspect and local communication is major factor when increasing the sustainability
and resilience of forests. In addition, the more advanced forestry research has mainly
focused on northern and western countries (Keenan, 2015), but the increase in
commercially available remote sensing devices such as drones and the availability of
open-source software provide possibilities for more research.
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6 Conclusion
In this study, an end-to-end process for versatile use of remote sensing data to study
the effects of continuous cover forestry is presented. In addition, methods to remove
incorrectly detected trees for the Individual Tree Detection are developed and a
novel method to statistically estimate the distribution of all trees in the study site is
utilized.

By combining RGB, thermal and multispectral data captured using a drone as
well as height information derived from the photos using Structure from Motion
technique, all visible tree crowns in the forest are segmented and various ecosystem
modeling studies for understanding the ecosystem response to changing conditions
can be performed. Additionally, the data can be used to support decision making on
precision forestry. The drones provide cost-effective and easily scalable process for
gathering remote sensing data with processing workflow that requires manual input
only on a few steps.

For individual tree level analysis, methods to improve the Individual Tree Segmen-
tation are presented. Commonly used local maxima filtering for tree top detection
is extended using two methods for filtering incorrect tops. Branch Top Removal
examines the neighborhood of each top to find ones with large height differences
suggesting location not at the real apex of the tree. Temporal Clustering takes
advantage of the two available data sets from the same study area and overcomes
noise issues present in the other by clustering all tops corresponding to the same
tree. In addition, temporal data is used to form top pairs between the two surveys
and to analyze the number of trees between and after the harvest. As a result, larger
number of trees with less false positives is detected compared to a baseline solution
of using only local maxima filtering.

For validating and analyzing the results, detailed field survey and ITD performed
on Terrestrial Laser Scanning data is used. Particularly, the TLS data is used to
statistically estimate the total number of trees in the whole study site by generating
model for the detectability of each tree height category found using the drone ITD.
For this, Horvitz-Thompson -like estimator is used. This allows to estimate the
crown parameters for those trees not detected using the drone.

Combining different types of remote sensing data from Unmanned Aerial Vehicles,
planes and satellites to manual and automatic field measurements, detailed analysis
of forest ecosystems can be conducted even on individual-tree level. Remote sensing
data can for example be used to monitor the health and growth of individual trees. As
forests are key factor in nature ecosystems and provide multiple important ecosystem
services, understanding forest health as well as interconnections and feedback-loops
between other nature and climate systems is crucial.

In general, forest industry benefits from operations research in generating harvest
plans, like optimizing structure and species composition to be resilient to varying cli-
mate conditions by specifying individual trees for harvesting and choosing harvesting
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times to obtain maximal economical value by selecting species and size distribution
of the timber. Especially in the case of Continuous Cover Forestry, which particularly
in the context of managed peatland forests has smaller impact on nature, individual
tree level data can be used to optimize the obtained economic and environmental
value.

In the future, more research is needed in how to implement individual tree level
data on day-to-day forestry operations to enable more sustainable precision forestry.
To support this, methods need to provide more detailed data on smaller trees that
are currently not detected using airborne remote sensing. This can be done with
better statistical estimation from remote sensing data or with novel ground-based
sensing methods such as handheld laser scanners. To improve remote sensing results
in general, deep learning methods show promising results by providing more accuracy
in Individual Tree Detection and Segmentation as well as in species classification
tasks.

Climate change adds uncertainty to the decision making, especially as the time
scales of forestry are decades and the rate of change in conditions is uncertain.
This requires the use of more stochastic modeling, such as Markov decision models,
portfolio optimization and stochastic dynamic programming, as decisions cannot be
based solely on historic data. It is also important to realize the rapid temporal rate
of climate change and the need for understanding the systemic context in addition
to fine-tuning small-scale systems.
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