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Abstract

Understanding the behavioral patterns that lead online store visitors to complete
purchases is critical for improving the performance of e-commerce businesses.
While much of the existing literature focuses on estimating purchase probabilities or
optimizing the likelihood of purchase through interface changes and personalization,
this thesis takes a modeling-oriented approach to classify whether a user session
will result in a purchase. The objective is to build a model that predicts the binary
purchase outcomes based on observed clickstream data, which consists of timestamped
sequences of user interactions such as page views, clicks, and navigation paths on a
website or digital platform.

To achieve this, the study applies a hidden semi-Markov model (HSMM), which
captures both the sequence and duration of user behaviors during a session. The model
is estimated on event-level data from a Finnish online clothing store, including detailed
behavioral events such as product views, cart additions, and checkout actions. Through
this temporal modeling framework, the analysis highlights the value of duration-aware
modeling in understanding visitor behavior in an online store.

The results demonstrate that modeling session-level behavior as a sequence of
hidden states with hidden semi-Markov models can provide accurate classification of
purchase outcomes. In addition to the modeling work, this thesis presents a literature
review that defines the purchase prediction task as a classification problem, examines
factors that influence purchasing behavior, and reviews common modeling approaches
used in online retail contexts. It also reflects on the challenges of preprocessing
large-scale behavioral data and discusses the implications of model assumptions in
the context of limited user tracking and session variability.

Keywords E-commerce, purchase prediction, hidden semi-Markov model, binary
classification, conversion rate optimization
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Tiivistelma

Verkkokaupan toiminnan tehostaminen edellyttdd ymmarrysti siitd, millaiset kayt-
tdytymismallit johtavat asiakkaan ostopditokseen. Aiempi tutkimus on keskittynyt
pitkalti ostotodennékdisyyksien arviointiin tai oston todennédkdisyyden parantamiseen
esimerkiksi kdyttoliittymasuunnittelun tai personoinnin keinoin. Tédssd opinndytteessi
lahestytdadn aihetta mallipohjaisesti, ja tavoitteena on luokitella kiyttdjdistunnot ostoon
johtaviin ja ei ostoon johtaviin niistd keridtyn datan perusteella. Tarkoituksena on
rakentaa malli, joka ennustaa bindéristd ostotapahtumaa havaitun kayttaytymisda-
tan perusteella. Data koostuu tapahtumaketjuista, jotka kuvaavat kiyttdjin toimintaa
verkkosivustolla tai digitaalisella alustalla, kuten sivujen katselut, klikit ja siirtymiset
sivujen vililla.

Tyossd hyodynnetddn hidden semi-Markov mallia, joka ottaa huomioon seka
kayttdjatoiminnan jarjestyksen ettd niiden keston istunnon aikana. Malli estimoi-
daan suomalaisen verkkovaatekaupan vierailijadatalla, joka sisdltdd yksityiskohtaisia
kiyttaytymistapahtumia, kuten tuotesivujen katseluita, ostoskoriin lisdimisii ja kas-
salle siirtymisid. Lahestymistapa korostaa ajallisen rakenteen ja tapahtumien keston
huomioimista ostopolkujen ymmartimisessa.

Tulokset havainnollistavat, ettd tdssd aineistossa kayttdjdistuntojen mallintaminen
piilotettujen tilojen sarjana hidden semi-Markov malleilla mahdollistaa ostotapah-
tumien luotettavan luokittelun. Varsinaisen mallinnustyon lisdksi opinnéyte sisaltdd
kirjallisuuskatsauksen, jossa ostokdyttdytymisen ennustamista lahestytdan luokitte-
luongelmana. Katsauksessa tarkastellaan ostokdyttdytymiseen vaikuttavia tekijoitd
sekd yleisimpid mallinnusmenetelmii, joita on sovellettu verkkokauppaymparistossa.
Tyo késittelee myOs laajamittaisen kayttdytymisdatan esikdsittelyn haasteita ja mallin
oletusten vaikutuksia tilanteissa, joissa kiyttdjdseuranta on rajoitettua ja istunnoissa
esiintyy suurta vaihtelua.

Avainsanat Verkkokauppa, oston ennustaminen, hidden semi-Markov malli,
konversio-optimointi, bindériluokittelu
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1 Introduction

E-commerce, or electronic commerce, has grown to become a dominant force in
global retail, with its market share steadily increasing each year (Coppola [16]).
Simultaneously, competition has intensified as technological advancements have made
it easier for businesses to establish online stores with minimal effort (Dushnitsky
and Stroube [21]). Unlike traditional brick-and-mortar shopping, where physical
location and store ambiance play a role in purchasing decisions, online retail offers
customers the ability to browse multiple stores effortlessly, compare prices, and switch
between retailers within seconds. This heightened accessibility increases competition
and reduces brand loyalty, making it more difficult for businesses to retain visitors
and convert them into paying customers. As a result, understanding the factors that
influence purchase decisions has become a critical success factor for e-commerce
businesses (Gudigantala et al. [36]).

The process of increasing the proportion of visitors who convert is known as
conversion rate optimization (CRO) (Saleh and Shukairy [48]). A conversion refers
to an event where a visitor completes a desired action, such as signing up for a
newsletter or making a purchase. The conversion rate is the percentage of visitors
who complete such actions. In this thesis, conversion rate optimization refers to the
practice of refining an online store’s design, content, and user experience to increase
the proportion of visitors who complete a purchase. Conversion rate optimization has
been a topic of research since the early days of online shopping (Moe and Fader [62],
Montgomery [64]).

While businesses employ various strategies to increase conversion rates, achieving
meaningful improvement remains an ongoing challenge. Common CRO techniques
include optimizing website design for usability, implementing A/B testing to compare
different layouts and call-to-action buttons, using recommendation algorithms to
personalize product offerings, and leveraging targeted discounts or remarketing
campaigns to re-engage potential buyers (Saleh and Shukairy [48]). Despite these
efforts, conversion rates in e-commerce have remained relatively low, often averaging
between 1% and 4.9% (Zumstein and Kotowski [90]). This persistence suggests that
traditional approaches may not be fully capitalizing on user behavior data to anticipate
and respond to purchase intent in real time. Thus, predicting conversion decision
based on behavioral signals presents an opportunity to enhance decision-making and
optimize conversions more effectively.

The primary objective of this thesis is to estimate whether a visitor will make a
purchase in an online store based on their on-site behavior, prior to action clearly
indicating a purchase. Identifying this can help store owners make real-time decisions
that guide visitors toward making a purchase. For instance, high-intent visitors could
be shown personalized product recommendations, while hesitant users could receive
time-sensitive discount offers to encourage immediate action (Moe and Fader [62]).
Additionally, identifying behaviors associated with cart abandonment allows businesses
to implement proactive interventions such as automated email reminders or chatbot
assistance, minimizing lost sales opportunities. By leveraging purchase predictions,
businesses can move beyond reactive strategies and proactively tailor the shopping



experience to individual visitor needs, increasing revenue and improving customer
satisfaction.

This thesis is organized as follows. Chapter 2 provides background on key aspects
of e-commerce, including business characteristics, consumer behavior, web analytics,
and conversion rate optimization. Chapter 3 reviews prior research on modeling
purchase decisions in online stores. It introduces the classification framing used in
this thesis, discusses features unique to purchase prediction, and describes prevailing
modeling approaches. Chapter 4 presents the empirical analysis, beginning with a
description of the data and preprocessing steps, followed by the implementation of a
hidden semi-Markov model for purchase prediction. Chapter 5 presents the results,
including outcomes related to data preparation as well as insights from the model’s
performance, behavioral patterns it captures, and its predictive capabilities. Chapter 6
discusses the findings in relation to the research objectives, and Chapter 7 concludes
the thesis.

The empirical examples in this thesis are subject to limitations related to data
consent, tracking scope, and the generalizability of results from a single online store.
Despite the limitations, the hidden semi-Markov model seems to produce a reliable
estimate of purchase intent in the dataset used in this study.

10



2 Foundations of user behavior in online retail

2.1 Key characteristics of e-commerce business

E-commerce businesses operate in a digital environment that fundamentally differs from
traditional brick-and-mortar retail. While both models aim to facilitate transactions
and serve customer needs, the online marketplace introduces distinct opportunities and
challenges. One of the most significant differences is accessibility: a physical store
can only serve customers within a certain geographic area, whereas an online store
is typically accessible to anyone with an internet connection, regardless of location.
Additionally, visiting a brick-and-mortar store requires time and effort, whereas an
online store can be accessed within seconds from any internet-enabled device. This
ease of access means that online stores generally receive significantly higher traffic
than their physical counterparts (Moe and Fader [62]). This also contributes to a more
competitive landscape, where businesses must continuously refine their strategies to
attract, engage, and convert visitors into paying customers.

However, higher traffic does not necessarily translate to higher sales. Unlike
physical stores, where customers are more likely to be intent on making a purchase,
online visitors may browse casually without committing to a transaction (Bucklin et
al. [12]). One reason for this difference in purchase intent may be explained by the
sunk cost fallacy: a cognitive bias where individuals feel compelled to follow through
with an action once they have invested time or effort into it (Arkes and Blumer [4]).
In the context of brick-and-mortar retail, the effort required to physically visit a store
can psychologically reinforce the decision to buy. In contrast, the low-effort nature
of visiting an online store makes it easier for users to abandon the shopping process
at any stage. Another key distinction is the limitation of space and personnel in
traditional stores. Only a certain number of customers can be present at a time, and
purchases are constrained by the availability of checkout staff. Online stores, on the
other hand, do not face these restrictions; thousands of customers can browse and
complete purchases simultaneously. Previously, server capacity could have presented
challenges when handling a high number of visitors, potentially leading to slow load
times or downtime during traffic spikes. However, with the increasing adoption of
modern technologies such as content delivery networks (CDNs), this is no longer
a problem in most cases. CDNs are distributed networks of servers that cache and
deliver content from locations closer to users, reducing latency and distributing traffic
loads (George and George [29]).

The low barriers to entry in e-commerce have contributed to a highly competitive
market. Nowadays, almost anyone can set up an online store at little to no cost,
even without programming knowledge or advanced technical skills (Dushnitsky and
Stroube [21]). Additionally, the widespread use of popular e-commerce platforms,
such as Shopify and WooCommerce, has led to a standardized look and feel among
online stores, as these platforms offer pre-designed templates aimed at making it easier
for visitors to navigate the store and make purchases.

A crucial challenge for online retailers is attracting visitors to their stores. All
online stores exist in the same virtual space, where visibility depends entirely on factors
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such as direct traffic (customers entering the site’s URL), search engine rankings, and
online advertisements. Search engine optimization (SEO) is a key aspect in increasing
store visibility, with retailers investing significant effort into researching relevant
search terms and optimizing their websites accordingly to improve their ranking on
search engine results pages (SERPs). Higher search rankings can have a substantial
impact on sales (Baye et al. [6]).

In addition to SEO, many online retailers invest in paid advertising. Search
engines sell ad placements at the top of search results, allowing businesses to bid
for prominent visibility. Social media advertising is also widely used, as it enables
seamless redirection to the store with a single click. Moreover, many advertising
platforms, such as Meta and Google, allow businesses to showcase their products
directly within advertisements, which serves as an external display window for the
store.

2.2 Consumer behavior in e-commerce

Consumer behavior in e-commerce differs significantly from shopping in physical stores
due to the nature of the digital environment. While online stores offer convenience
and a wider selection of products, the absence of in-person interaction and tangible
product experiences impacts how customers make purchasing decisions.

One characteristic of online consumer behavior is the ease of comparison shopping.
Customers can easily compare offerings from different stores by visiting multiple
websites or using price comparison tools. As a result, prices among competitors tend
to be closely aligned, forcing online retailers to differentiate themselves in other ways
(Lee et al. [53]). This increased competition makes it important to have a visually
appealing and user-friendly website, along with high-quality product images and
detailed descriptions. Providing comprehensive product information is especially
critical, as customers often cannot physically inspect items before making a purchase.

Another major factor influencing online shopping behavior is trust. Unlike in
physical stores, where customers can directly see and assess products before buying,
online shoppers must rely on digital representations and product descriptions. Trust
is further complicated by the requirement to enter sensitive information, such as
payment details, before receiving the product. To mitigate this uncertainty, many
online retailers leverage customer reviews and testimonials as social proof of their
reliability. Additionally, the overall design and professionalism of an online store play
a crucial role in establishing credibility. Customers may hesitate to enter payment
information on a website that appears untrustworthy or poorly maintained (Seckler et
al. [76]).

The user experience (UX) of an online store also significantly impacts consumer
behavior. Research indicates that even minor inconveniences, such as slow loading
times, can lead to site abandonment, making performance optimization essential
(Pushkar et al. [72]). Additionally, minimizing distractions and streamlining navigation
can help keep potential customers engaged (Seckler et al. [76]).

Replicating the personal touch of an in-store shopping experience is another
challenge for online retailers. Physical stores offer direct customer service, allowing
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shoppers to ask questions and receive immediate assistance. In contrast, online
shoppers interact with a digital interface, making it more difficult to establish trust and
provide personalized service (Madhuri et al. [56]). To address this, many e-commerce
businesses implement chatbots, personalized recommendations, and live customer
support features to enhance the shopping experience.

2.3 Web analytics

Web analytics refers to the practice of collecting and analyzing web data to understand
how visitors interact with a website. It is commonly used to evaluate how effectively
a site fulfills its purpose, and many websites rely on analytics tools to monitor
performance and user behavior. Common metrics include visits, page views, traffic
sources, and user-specific data such as device type, browser, and geographical location.
Many website hosting services provide basic analytics on site performance, while
external measurement tools can be integrated for more detailed data collection and
the ability to define custom metrics (Bekavac and Garbin Pranicevi€ [7]). In online
retail, understanding visitor interactions is particularly crucial, as it directly affects
sales performance and customer satisfaction (Gudigantala et al. [36]).

In Europe, regulations such as the General Data Protection Regulation require
websites to obtain user consent before gathering any data that is not essential for the
website’s functionality (European Union [23]). This consent is typically requested
through a cookie banner: a notice displayed when a user first visits a site. Cookies are
small data files stored in the user’s browser that enable websites to track and remember
user activity across sessions. While essential cookies support basic site functionality,
others collect analytics or marketing data. The cookie banner determines what types
of cookies may be set, thereby affecting how much behavioral data can be collected
for analysis.

Web analytics enables online retailers to analyze user behavior on their digital
storefronts and make data-driven decisions to guide user actions toward more desirable
outcomes (Bucklin et al. [12]). Various qualitative and quantitative methods are
available for examining user behavior. An example of a qualitative method is session
recording, where a script tracks a user’s mouse movements, clicks, and scrolling
behavior throughout their session. This data is then compiled into a video-like playback
that overlays interactions onto the webpage. Website owners can analyze these
recordings to identify usability issues and optimize the site’s design and functionality
(Filip and Cegan [26]). Another tool is heat maps, which visually represent areas of a
webpage that receive the most user interaction, typically through clicks, scrolls, or
mouse movements (Soava and Raduteanu [79]). To analyze user navigation patterns,
clickstream data is often utilized. Clickstream data consists of a sequence of recorded
clicks that map out a user’s journey through a website, providing insights into browsing
habits, drop-off points, and areas for improvement (Bucklin et al. [12]).

Web analytics has inherent characteristics and limitations that must be considered
when interpreting data. One key limitation in Europe is that only data from visitors
who have accepted cookies is collected, meaning that users who decline tracking
remain unaccounted for (European Union [23]). Additionally, ad blockers and privacy
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extensions can prevent analytics tools from functioning by blocking all third-party
scripts from loading, effectively making these users invisible in the dataset (Garimella
et al. [28]). Most analytics tools track users based on their browser rather than a
unique user identity. As a result, a single user visiting from multiple devices may be
counted multiple times, while multiple individuals sharing a device may appear as
a single user (Bekavac and Garbin Pranicevi€ [7]). Analytics data is also limited to
on-site activity; it does not capture a user’s prior browsing behavior, such as visits to
competitor sites or exposure to advertisements, even though these factors may strongly
influence purchasing decisions (Ferrini and Mohr [24]). Furthermore, website traffic
may include non-target users, such as competitors analyzing the site or bots collecting
data, leading to interactions that do not reflect genuine user behavior (Xu et al. [87]).
Despite these limitations, web analytics remains an essential tool for understanding
user behavior. While individual data points may be incomplete or skewed, large-scale
traffic analysis can still reveal meaningful trends, provided that the missing or excluded
data is not systematically biased. However, this assumption may not always hold:
privacy-conscious users, for example, may differ in their behavior from those who
consent to tracking, potentially distorting observed patterns.

Given these challenges in data accuracy, different tracking methods offer distinct
advantages and trade-offs. In web analytics, data can be collected either through
client-side tracking or via server logs, each offering a different perspective. Client-side
analytics tools, such as Google Analytics, run in the user’s browser and uses scripts
to capture page views and events. This approach provides detailed insight into user
interactions and typically ignores traffic that doesn’t execute the tracking code, like
many bots, but it may miss visits from users who disable scripts or block tracking.
Server log data, on the other hand, is automatically recorded by the web server, logging
every request to the site, so it includes all visits including those from users with blocked
scripts and automated bots. Because of these differences, each approach has trade-offs
in accuracy: server logs offer a more complete raw dataset but include non-human
traffic that must be filtered out, whereas client-side data is pre-filtered for genuine users
but can underestimate visits when tracking is blocked. For example, Suchacka and
Chodak [24] used server log records to identify browsing patterns that signal a high
probability of purchase in an online store, demonstrating that while server logs can
yield rich insights, making sense of them may require additional processing compared
to the more straightforward reports from client-side tools. (Analytics Market [2])

2.4 Conversion rate optimization

Conversion rate is considered one of the most important metrics for assessing the
performance of an online store (Gudigantala et al. [36]). However, it should be
analyzed in conjunction with other key performance indicators, such as total visitors,
total sales, and market share, to gain a comprehensive understanding of a store’s
success. A high conversion rate alone does not guarantee profitability if the overall
number of visitors is low.

The typically low conversion rates in e-commerce imply that the vast majority
of visitors do not finalize a purchase. However, this does not necessarily indicate a
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failure on the part of the store. Many users visit online stores for reasons other than
making an immediate purchase, such as researching products, comparing prices, or
planning future purchases. Additionally, some visitors may arrive at the website by
mistake, either while searching for unrelated content or by accidentally clicking on an
advertisement. Despite this, a core objective of online retailers is to maximize the
number of potential customers who complete a purchase. Conversion rate optimization
refers to the practice of refining an online store’s design, content, and user experience
to increase the proportion of visitors who complete a desired action.

Besides that, there can be other goals in CRO, such as enhancing user satisfaction
and long-term engagement. These are related to increasing customer loyalty and
encouraging repeat visits, which are more closely associated with customer retention
than with acquiring new customers. In this thesis, we do not consider these objectives
and focus solely on the purchase rates.

CRO follows an iterative process (Saleh and Shukairy [48]). First, businesses
analyze visitor behavior to identify common user journeys that lead to conversions.
Next, they pinpoint critical points where users tend to exit without completing a
purchase. Based on these insights, modifications are implemented, ranging from
minor design tweaks to more substantial user flow adjustments aimed at reducing
drop-offs. However, because website owners lack perfect insight into user behavior,
the effectiveness of these changes must be validated through controlled experiments.

A/B testing is a commonly used method to evaluate these modifications system-
atically (King et al. [49]). In A/B testing, users are randomly assigned to different
versions of a webpage, typically a control version (A) and a variant (B). The con-
version rates of each version are then compared, and statistical tests are performed
to determine whether any observed differences are significant. A/B tests rely on
hypothesis testing, where the null hypothesis (Hp) assumes no difference between the
two versions, and the alternative hypothesis (H1) suggests a significant difference. The
statistical significance of an A/B test is typically evaluated using a significance level
(@), commonly set at 0.05. If the p-value of the test falls below «, the null hypothesis
is rejected, indicating that the difference in conversion rates is unlikely to be due to
random chance (King et al. [49]).

A well-designed A/B test must satisfy key statistical assumptions. First, the control
and treatment groups must be comparable in all relevant characteristics to ensure a
fair comparison. Second, the groups must be independent, meaning the experience
of one user should not influence another. Additionally, A/B tests must account for
potential statistical errors. Type I errors (false positives) occur when a difference is
detected where none truly exists, leading to the mistaken implementation of ineffective
changes. Type II errors (false negatives) occur when a real effect goes undetected,
causing beneficial modifications to be overlooked. To minimize these risks, tests must
maintain a sufficiently large sample size and statistical power to detect meaningful
differences.

Despite these challenges, A/B testing remains one of the most reliable methods for
optimizing conversion rates. It allows businesses to test new approaches with lower
risk and assess their impact before fully implementing them. By comparing outcomes
between randomized groups, A/B testing provides a basis for establishing whether a
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change actually affects user behavior. This causal interpretation can be reasonably
assumed to hold if the statistical assumptions listed above are satisfied. When these
conditions are met, any observed difference in conversion rates can be attributed to
the change itself, rather than to other influences or random variation.
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3 Modeling online store purchase decisions in the
literature

3.1 Problem description
3.1.1 Definition of a classification problem

The problem of predicting the purchase decision of an online store visitor based on
their actions can be formulated as a binary classification problem, where the task is to
assign the visitor, based on their actions on the store prior to the purchase action or
leaving the site, to one of two categories: purchase or no purchase. More generally,
classification involves assigning an input vector X, representing observed features, to
one of a finite set of discrete classes. In the binary case, this means choosing between
two mutually exclusive classes, often denoted C; and C;.

A probabilistic formulation of classification aims to model the posterior distribution
p(Cr | X), where k € {1,2}. This represents the probability that the input belongs to
class Cx given the observed data. The decision-making process then involves selecting
the class that maximizes the posterior probability, which constitutes a rational decision
under a 0-1 loss function, as it minimizes the probability of classification error. The
0-1 loss function assigns a loss of 1 to incorrect classifications and O to correct ones.
This framework allows for a wide variety of models, including generative models that
estimate the joint distribution p(x, Cx), and discriminative models that directly target
the posterior. A deterministic formulation involves constructing a decision function
f :RY = {C1, Gy}, where d denotes the dimension of x, that assigns each input vector
directly to a class label. (Bishop [10])

3.1.2 Ways to describe and solve classification problems

A simple approach to classification is the nearest-neighbor method, a nonparametric
technique that requires no explicit model. Given a new input vector X, the method
searches in the set of input vectors for the k nearest neighbors, typically using Euclidean
distance, and assigns the class label based on a majority vote among these neighbors.
In the case of 1-nearest-neighbor, the prediction corresponds to the class label of
the single closest example. The method does not require any assumptions about the
underlying data distribution, allowing it to adapt to the observed data directly (Cover
and Hart [17]). Although it can achieve low training error, defined as the proportion of
misclassified examples in the training set, its performance on new data is sensitive to
the choice of &, the distance metric, and the dimensionality of the feature space (Beyer
et al. [8], Prasath et al. [71]). Nearest-neighbor classification can also be interpreted
probabilistically by assuming the posterior class probability as the proportion of
neighbors belonging to each class within the local region around x (Bishop [10]).
While simple, this method can be problematic in high-dimensional settings, where the
distinction between near and far neighbors diminishes (Beyer et al. [8]).

A straightforward way of solving classification problems is through linear dis-
criminant functions or decision functions as defined above. In these methods, the
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input vector X is assigned to a class through a linear function. A simple example
of a linear discriminant function is given by y(x) = w'x + w(, where w is a vector
of weights and wq is bias, which determines the location of the decision surface.
The input vector x is assigned to class C; if y(x) > 0 and to class C, otherwise.
One technique that builds on this formulation is least squares classification, which
treats classification as a regression problem by assigning target values to class labels
(typically r = 1 for C; and ¢ = O for C;). In this approach, ¢ represents a fixed numeric
value chosen to represent each class, allowing the use of regression to approximate
class boundaries. The model parameters are then estimated by minimizing the squared
difference between the model output y(x) and the target ¢ (Bishop [10]). However,
using least squares in classification has some drawbacks. It is sensitive to outliers and
can produce poor probability estimates, especially when class distributions, that is,
the spread of feature values within each class, overlap significantly (Hastie et al. [39]).
Because least squares assumes Gaussian noise with constant variance, it does not align
well with the binary nature of classification targets (Bishop [10]).

If the dimensionality of the problem is high, it can be reduced by using Fisher’s
linear discriminant, which aims to find a linear projection of the input data that
maximizes the separation between the classes (Murphy [66]). Specifically, the idea is
to project the high-dimensional input vector x onto a one-dimensional space using a
weight vector w such that the projected points from the two classes are well separated
(Murphy [66]). The criterion for selecting w is to maximize the ratio of the between-
class variance to the within-class variance of the projected data (Fisher [27]). This
leads to an optimal direction for projection, represented by the weight vector w, in
which the classes are most distinct (Hastie et al. [39]). To classify a new point x, it is
assigned to one class if w'x exceeds a threshold (typically the midpoint between the
class means) and to the other class otherwise (Bishop [10]).

Classification problems can also be approached through probabilistic generative
models, where the class-conditional probabilities p(x | Cx) and the prior probabilities
of the classes p(Cy) are modeled and used to compute the posterior probabilities
p(Ck | x) through Bayes’ theorem (Raina et al. [74]). In the case of continuous
input variables, a common choice is to model the class-conditional densities using
multivariate Gaussian distributions (Bishop [10]). When assuming that all the
classes share the same covariance matrix but have different means, the resulting
posterior probability has a logistic sigmoid form, leading to a linear decision boundary
(Bishop [10]). The parameters of these Gaussian distributions, namely, the means
and shared covariance matrix, can be estimated from data using maximum likelihood
principle estimation (Murphy [66]). This involves maximizing the likelihood function
with respect to the parameters by computing sample estimates: the mean for each
class is given by the empirical average of the data points in that class, the shared
covariance is a weighted average over class-specific covariances, and class priors are
estimated by the relative frequencies of each class in the training set (Murphy [66]).
This approach yields a generative classifier that not only performs classification but
also provides interpretable probabilistic models of the data distribution within each
class (Bishop [10]).

In contrast to generative approaches, probabilistic discriminative models directly
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model the posterior probability p(C; | x) without explicitly modeling the input
distribution p(x) (Murphy [66]). One of the most widely used discriminative models
for binary classification is logistic regression, which assumes that the posterior
probability can be modeled using the logistic sigmoid function applied to a linear
combination of input features (Hosmer et al. [44]). The model has the form

1

1 +e WX’

p(Ci|x)=0(w'x) = (D
where o (+) is the sigmoid function and w is the weight vector learned from data
(Hosmeretal. [44]). The parameters are determined by maximum likelihood estimation,
which finds the weight vector that maximizes the likelihood of the observed labels
(Murphy [66]).

Another approach in the same family is probit regression, which also models the
posterior probability as a function of a linear combination of inputs, but uses the
cumulative distribution function (CDF) of a standard normal distribution (Albert and
Chib [1]):

p(C1 | x) = ®(W'x), 2)

where @ denotes the Gaussian CDF. While both logistic and probit models produce
similar outputs in practice, they differ in their assumptions about the underlying
noise distribution: logistic regression assumes a logistic noise model, whereas probit
regression assumes Gaussian noise (Liu [54]). Both models provide smooth posterior
estimates and linear decision boundaries in the feature space, making them suitable
for a wide range of binary classification tasks (Hastie et al. [39]).

Neural networks offer a flexible and powerful framework for solving classification
problems, particularly when the relationship between the input vector and class labels
is highly nonlinear (Goodfellow et al. [31]). A typical neural network used for
classification is a feed-forward neural network, which consists of a sequence of layers
composed of functions, including one or more hidden layers and a final output layer
trained to approximate a target function that maps inputs to class labels (Goodfellow
et al. [31]). For binary classification, the output layer typically uses a logistic sigmoid
function, producing a probability estimate p(C; | x) analogous to logistic regression
but with greater representational capacity due to the hidden layers (Goodfellow et
al. [31]). The network parameters are trained by maximum likelihood and optimized
via gradient-based methods such as backpropagation (see Werbos [86]), which
calculates how the loss function changes with respect to each parameter and updates
the parameters in a way that moves the model toward minimizing the loss (Rumelhart
et al. [75], Goodfellow et al. [31]). Neural networks can approximate complex decision
boundaries, making them well-suited to problems with high-dimensional or structured
input data (Hornik et al. [43], LeCun et al. [52]). However, their flexibility comes
at the cost of increased risk of overfitting, which is commonly addressed through
regularization techniques such as early stopping, weight decay, or the incorporation of
prior distributions in a Bayesian framework (Srivastava et al. [80], MacKay [55]).

Probabilistic graphical models can be used for representing and reasoning about
complex probabilistic models using graphs to encode conditional dependencies between
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variables (Koller and Friedman [50]). In the context of classification, Bayesian
networks, a class of directed graphical models, are especially useful for modeling the
joint distribution of input variables and class labels in a structured and interpretable way
(Ang et al. [3]). A Bayesian network defines a directed acyclic graph (DAG) in which
each node corresponds to a random variable, and the edges represent direct probabilistic
dependencies (Pearl [69]). The joint distribution is factorized into a product of local
conditional distributions, allowing for efficient computation and inference (Koller and
Friedman [50]). For classification tasks, a common structure places the class variable
C as a parent of the observed input variables x, reflecting the generative assumption
p(x | C) (Angetal. [3]). This facilitates the application of Bayes’ theorem to compute
posterior class probabilities p(C | x), enabling classification decisions (Bishop [10]).
Bayesian networks can incorporate domain knowledge through their structure and
allow for missing data handling, inference under uncertainty, and integration with
latent variables, making them suitable for complex classification problems (Koller and
Friedman [50], Darwiche [18]). Inference in these models can be carried out using
either precise algorithms or simplified approximations, with the choice depending on
the complexity and structure of the network (Koller and Friedman [50], Darwiche [18]).

Clustering methods such as k-means and Gaussian mixture models (GMMs) can
also be applied to classification problems (Jain et al. [46]). The k-means algorithm
groups data points into clusters by assigning each one to the closest center, aiming
to make the points within each cluster as similar as possible based on their squared
distance from the center (Jain et al. [46]). However, this hard assignment approach is
limited in its ability to capture uncertainty and is sensitive to initialization and outliers
(Bradley et al. [11], Jain [47]). GMMs address these limitations by modeling the
data as a mixture of Gaussian distributions, allowing for soft assignments where each
point is associated with a probability of belonging to each cluster (McLachlan and
Peel [60]). Nevertheless, these unsupervised clustering methods are not specifically
designed for classification tasks and can struggle when class distributions overlap (Jain
et al. [46]), as in the case where only a small fraction of users make purchases. In such
cases, clustering may yield uninformative or misleading groupings, highlighting the
importance of integrating external information, such as domain-specific knowledge,
when classification accuracy is critical (Jain [47]). Clustering or segmentation can
serve as a preprocessing step before modeling, helping to improve performance by
dividing the data into more homogeneous groups (Kotsiantis et al. [51]).

An important class of solution approaches to classification problems involves
Markov models (Rabiner [73], Murphy [66]). These models assume that the current
state depends only on a limited history, often just the previous state, enabling tractable
inference in time-series or sequential data. In classification tasks, hidden Markov
models (HMMs) can be used to model the joint distribution of observed features
and hidden states, offering a framework for problems involving temporally evolving
behavior, such as user interactions in an online environment. These models are
discussed in more detail in Section 3.3.1.
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3.2 Purchase decision specific problem features
3.2.1 Factors explaining purchase decisions

Many studies have analyzed which user behaviors correlate with a higher likelihood of
making a purchase in an online session. Generally, visitors who engage more deeply
with the website tend to be more likely to buy. For example, a greater number of page
views or product detail views in a session is often associated with a higher purchase
probability (Hendriksen et al. [41], Huang and Van Mieghem [45]). Similarly, the
time spent on the site or on key pages, indicative of interest in the products, shows a
positive correlation with purchase intent (Huang and Van Mieghem [45]). In contrast,
very brief sessions with only a couple of page views rarely lead to a sale.

Among all behavioral signals, shopping cart related actions are consistently found
to be the strongest indicators of eventual purchase. Adding an item to the cart or
wishlist is a clear expression of purchase intent, and sessions with such events have a
much greater chance of ending in a purchase (Hendriksen et al. [41]). Other actions
that reflect high engagement, such as repeatedly visiting the same product, using
the site search, or starting the checkout process, likewise correspond to an increased
probability of purchase. On the other hand, certain browsing patterns can signify a
lower intent (for instance, excessive product comparison without cart addition).

Contextual and user-specific factors also play a role. Returning visitors (those
who have visited the store before) are generally more likely to make a purchase than
first-time visitors, especially if the return visit happens soon after a previous session
(Hendriksen et al. [41]). The timing of the visit can matter as well: prior research
has observed differences in purchase likelihood by time of day or day of week (e.g.,
shopping activity might peak in evenings or weekdays when users are more likely
to purchase) (Hendriksen et al. [41]). Similarly, the device type used (desktop vs.
mobile) has been linked to different purchase behaviors; for instance, desktop users
often have higher average order values, whereas mobile users might browse more but
purchase less frequently (Hendriksen et al. [41]).

3.2.2 Static vs. dynamic approaches

The binary classification problem of estimating the probability of a user making
a purchase can be approached in two ways: as a static problem, where all data is
available at once, or as a dynamic problem, where predictions are updated as new data
becomes available. The selected approach has implications for model selection, as
certain methods, particularly those designed for sequential or time-dependent data,
are more naturally suited to the dynamic setting, while others assume fixed input
representations and perform best in the static case. Unsupervised clustering methods
and deep learning methods are more tailored for the static approach while probabilistic
classifiers, such as hidden Markov models, and linear machine learning models, such
as logistic regression, are well suited for the dynamic approach (Cirqueira et al. [15]).

The two approaches also differ in their business applications. In the static case,
the online retailer receives an estimate of a user’s purchase probability after their
session, which can be used for follow-up actions such as marketing emails or targeted
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promotions. In the dynamic case, interventions suitable for the estimated purchase
state can be made in real time while the user is still browsing the online store, allowing
the retailer to take immediate actions aimed at increasing the likelihood of a purchase.
The ways in which the store owners or marketers can utilize the estimated probabilities
are discussed in more detail in Section 3.2.4.

3.2.3 Two-level approaches

The dataset used for building a model to predict purchase decisions typically includes
full sessions. This provides the opportunity to tailor the model to a specific group of
interest by using categorical segmentation, by user demographics for example, or a
data clustering method in order to cater the model to the particular users. E-commerce
visitors are a diverse population: different people may exhibit distinct browsing
patterns, respond to site content in various ways, and have different propensities to
buy (Suchacka and Chodak [81]). Therefore it is likely that many visitors do not have
any intention of making a purchase and it would not be meaningful to estimate their
purchase probabilities.

Chang et al. [13] address this challenge by introducing a customer anticipation
model that segments the users based on purchasing behavior and personal attributes.
Their approach utilizes clustering analysis to group loyal customers, identified by a
metric called past purchasing tendency (PPT), according to demographic features
such as age, gender, and education level. These clusters serve as behavioral profiles
representing typical purchasing patterns. Potential customers are then matched to
these clusters based on their own personal information, allowing the model to focus its
predictions only on those whose profiles resemble those of known buyers. This use of
clustering filters the customer base, concentrating predictive efforts on individuals
who are behaviorally aligned with likely purchasers, and avoiding irrelevant data from
visitors with no apparent purchase intent.

Suchacka and Chodak [81] pursue a similar goal of refining purchase prediction
by focusing on meaningful subpopulations of users, but instead of applying clustering
methods, they employ a rule-based segmentation strategy grounded in observed
product preferences. They divide customers into two predefined groups, traditional
and innovative, based on whether a user viewed only printed books or also browsed
multimedia products like audiobooks and films. This distinction, informed by domain
knowledge from the online bookstore, is used to separately determine association rules
for each group, allowing the identification of session features that are strongly correlated
with purchase decisions within each segment. By tailoring rules to specific user
types, their approach effectively isolates high-intent sessions and mitigates the dilution
of predictive patterns by low-engagement traffic. This segmentation enables more
accurate and interpretable probability estimates while avoiding the added complexity
and computational cost of clustering.

However, the importance of segmentation does depend on the method used for
modeling. Some models, such as hidden Markov models and deep learning models, can
internalize what segmentation would have achieved externally making segmentation
less relevant (Rabiner [73]). In the case of HMMs this results from them utilizing
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hidden states that evolve over time based on observed user behavior, effectively
capturing underlying structure and intent without requiring explicit segmentation of
user groups (Rabiner [73]). Each hidden state can represent a distinct behavioral
pattern or user type, allowing the model to differentiate between, for example, casual
browsers and serious buyers through probabilistic inference (Rabiner [73]). On the
other hand, methods such as regression can benefit significantly from segmentation,
as fitting the model to a more homogeneous group of users typically leads to more
accurate predictions (Kotsiantis et al. [51]). In the dynamic setting, the model begins
with very limited information about the user and cannot reliably determine which
specific model to apply. Therefore, it should be capable of internally inferring the
user’s underlying intent as more data becomes available in order to be effective at
predicting the purchase decision.

3.2.4 Ways to affect purchase decisions

The primary motivation for predicting whether an online store visitor will make
a purchase is to enable actions that can either dynamically influence the visitor’s
likelihood of purchasing during the session or guide tailored marketing efforts after
the session. To maximize impact, different strategies should be applied to high and
low purchase probability visitors.

For visitors who are estimated to have a high probability of making a purchase, the
main objectives are to ensure they complete their purchase and to encourage them to
buy as many items as possible. If they ultimately do not make a purchase, personalized
marketing efforts can be directed toward them. Common in-session actions include
providing navigation shortcuts to the checkout, product recommendations, and cart
reminders (Esmeli and Gokce [22], Suh et al. [82]). These measures are designed
to simplify the path to checkout and increase order value by recommending relevant
products. These users are also an ideal target audience for advertising, as they already
exhibit purchase intent, making advertising more likely to convert into actual sales
(Yeo et al. [88]). Additionally, they can be prioritized for direct outreach by sales
representatives over users with a low purchase probability (Habel et al. [37]). Examples
of the specific actions by purchase probability and timing are given in Table 1.

For visitors who are estimated to have a low probability of making a purchase,
the objective is to increase their likelihood of purchasing, either by making the act
of ordering more appealing or by making the decision not to order less attractive.
Since these users are considered unlikely to make a purchase, they can be offered
special incentives, such as discount codes, that might not be given to others (Esmeli
and Gokce [22]). The discount codes can also be provided to these users afterwards
by email for example. The rationale is that it is more beneficial for them to make a
purchase with reduced profit margins than not to purchase at all. To make not ordering
less attractive, the store can, for example, display messages indicating that an item is
almost sold out or implement a countdown timer that automatically empties the cart if
the items are not purchased before it expires (Esmeli and Gokce [22]). A low purchase
probability may also signal that the visitor needs assistance: perhaps in finding the
right product or resolving concerns about shipping or store policies. In such cases,
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providing access to customer service or other forms of support could help address
their hesitation (Mokryn et al. [63]). Additionally, these users may be given lower
priority in follow-up marketing efforts to allow more focus on those with a higher
likelihood of returning and completing a purchase (Habel et al. [37]).

Table 1: Example actions based on visitor purchase probability and timing.

Timing High purchase probability Low purchase probability
Real-time - Navigation shortcuts to check- - Special discount codes or offers
out - Urgency cues (e.g., "almost sold
- Product recommendations out")
- Cart reminders - Live chat/help for support

Afterwards - Personalized marketing (emails, - Discount codes
ads) - Deprioritized in follow-up ef-
- Priority outreach by sales reps  forts

3.3 Prevailing modeling approaches

As discussed in Section 3.1.2, classification problems can be described and solved
in several different ways. In this section, we focus on the methods that have been
particularly relevant in the context of predicting purchase decisions in recent literature.
These prevailing approaches can be broadly categorized based on whether they take
a Markovian modeling perspective, a machine learning approach, or a sequence
modeling viewpoint. Each model category offers different strengths, depending on the
structure of the user behavior data, suitability for real-time analysis and the needs for
interpretability versus predictive accuracy.

3.3.1 Structural modeling: Markov approaches

Markov models provide a simple but effective framework for modeling sequential data,
where the order of observations carries meaningful information and dependencies
between elements must be captured explicitly (Rabiner [73]). These models are
built on the Markov assumption, which states that the current state depends only on
the previous state (Markov [57]). In classification problems involving sequences,
such as user behavior, speech signals, or biological data, Markov models can be
estimated for each class to capture the characteristic patterns of observation sequences
associated with that class (Rabiner [73]). Each class Cy, where k € {1,...,N} (here
N = 2) can be associated with a separate first-order Markov chain, which defines
a distribution over sequences based on a set of state transition probabilities and
emission probabilities, assuming that the observations are generated by the model
(Ghahramani [30]). Emission probabilities refer to the probabilities of observing
particular actions given the current state. When classifying an observed sequence
X = (x1,...,x7), the likelihood p(x | Cy) is computed using the model associated
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with each class. Classification is then performed by selecting the class with the highest
posterior probability, as determined via Bayes’ theorem (Rabiner [73]).

Hidden Markov models extend Markov models by introducing hidden states,
allowing them to model more complex, structured dependencies in sequential data (Ra-
biner [73]). In an HMM, each observation in the sequence is assumed to be generated
by a hidden state, which evolves according to a Markov process (Ghahramani [30]).
This makes HMMs especially powerful for classification tasks involving sequences
that exhibit high variability or may be only partially observed (Ghahramani [30],
Rabiner [73]). Estimating the model parameters, such as transition probabilities,
emission probabilities, and the initial state distribution, requires iterative methods,
even though exact inference in HMMs is tractable (Rabiner [73]). HMMs provide a
balance between flexibility and computational efficiency, making them a widely used
tool for sequence classification problems (Ghahramani [30], Rabiner [73]).

Markovian approaches, especially hidden Markov models, have proven effective for
assessing online store visitors’ purchase probabilities in real time, where the estimated
likelihood is continuously updated as new events occur (Ding et al. [20], Montgomery
et al. [65]). In this context, observable user behaviors, such as viewing a product,
adding an item to the cart, or initiating checkout, are viewed as actions driven by an
underlying sequence of hidden behavioral states. These hidden states may correspond
to unobserved user intentions like casual browsing, price comparison, or high purchase
intent. The state transition dynamics and emission probabilities allow the model to
infer these hidden intent shifts and estimate the evolving likelihood of conversion
as the session progresses. In their review, Cirqueira et al. [15] compare different
models in their effectiveness of predicting purchase probabilities in suitability for
real-time analysis, interpretability and sequential modeling and rate HMMs high on
each category.

Montgomery et al. [65] use a hidden Markov model to represent user navigation
behavior through an online retailer’s website, modeling hidden user intent states
and observed page views via a dynamic multinomial probit framework. Each user
session is modeled as a sequence of page views, and the observed categories of pages
(e.g., home, category, product, cart, order) form the emissions of the model. The
hidden states are intended to represent unobserved user browsing modes, most notably,
browsing-oriented and deliberation-oriented states, which correspond to different
cognitive states or levels of purchase intent. Importantly for purchase probability
estimation, Montgomery et al. [65] show that the hidden state sequence is highly
informative of user intent, and transitions between states can indicate shifts from casual
browsing to serious purchasing. They estimate the model using Bayesian Markov chain
Monte Carlo (MCMC) methods and show that purchase predictions made after just
six page views can reach over 40% accuracy, meaning that over 40% of sessions were
correctly predicted as either purchase or non-purchase based on model output after
six page views. Real-time purchase probabilities are computed through simulation of
future paths, incorporating current state estimates and forecasting the likelihood that
an order page will be reached before the session ends.

Ding et al. [20] extend the application of hidden Markov models to not only
infer user purchase intent in real time but also to guide concurrent, optimal web
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page transformation aimed at reducing cart abandonment and increasing purchase
conversion. Their approach treats user intent as a hidden cognitive state that evolves
dynamically during the session and is inferred from a combination of observed
behaviors, primarily shopping cart choices, such as adding or removing items, making
purchases, or exiting the site. Each user session is modeled as a sequence of page-level
decisions, and these decisions are assumed to be probabilistically generated by an
underlying, unobserved sequence of intent states, modeled using a continuous-time
hidden Markov model. Based on data from the American bookstore Barnes & Noble,
the model reduces cart abandonment by 32.4% and increases purchase conversions by
6.9% when optimal interventions begin after only a few page views, demonstrating its
effectiveness for intent prediction and dynamic personalization.

A limitation of traditional HMMs is their inability to account for the duration a
user remains in a given hidden state, due to the Markov property: transitions depend
only on the current state, not on how long it has been occupied. While observable
metrics like time on page can be modeled, the duration spent within unobserved
behavioral states remains unaccounted for, which may limit the model’s ability to fully
capture patterns relevant to purchase intent (Hatt and Feuerriegel [40]). To address
this limitation, Hatt and Feuerriegel [40] developed a duration-dependent hidden
Markov model (DD-HMM) to predict user exits during web sessions. This model
extends conventional HMMs by allowing transitions between hidden states to depend
on the time spent in the current state. The authors argue that prolonged duration in
a particular hidden state can influence the likelihood of remaining in that state. For
instance, a user who has spent a long time in a browsing state may be less likely to
transition to a purchase-oriented state compared to someone who has spent only a
brief time browsing. By relaxing the traditional Markov property, the model enables
hidden state transitions to be duration-sensitive. This type of model is categorized as
a hidden semi-Markov model because of the relaxation of the Markov property.

In this work, we are specifically interested in developing a model that can estimate
whether a session will end in a purchase as new events occur. Because of their ability
to capture hidden behavioral dynamics and sequential dependencies, we focus on
Markovian approaches, specifically hidden Markov models. Hidden Markov and
semi-Markov models are described in more detail in Section 4.6.

3.3.2 Black box modeling: machine learning and deep learning

In addition to Markov models, machine learning (ML) and deep learning (DL) ap-
proaches have become central to modeling user purchase intent in online environments
(Cirqueira et al. [15]). ML models are algorithms that identify patterns in data to
generate predictions or decisions without needing explicit programming for each task.
Deep learning is a subfield of ML that uses multi-layered neural networks to model
complex relationships in data. While both paradigms fall under the broader umbrella of
predictive modeling, they differ in key respects. Traditional machine learning models
generally rely on feature engineering, that is, the manual construction of input variables
that capture relevant patterns or domain knowledge from raw data, and operate on
structured input using models such as decision trees or logistic regression. In contrast,
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DL models, especially those using neural network architectures, learn representations
directly from raw or minimally processed input, often excelling in tasks involving
sequential, high-dimensional, or unstructured data. (Goodfellow et al. [31])

Machine learning approaches offer a flexible and scalable framework for predicting
online purchase behavior by leveraging high-dimensional features derived from user
interactions. Unlike Markovian models, which are constrained by explicit state
transition structures, ML models focus on learning direct mappings from session
features to purchase outcomes. Machine learning methods, particularly discriminative
models like logistic regression, support vector machines (SVMs), and neural networks,
are powerful tools for pattern recognition, enabling the modeling of complex, nonlinear
relationships without requiring detailed assumptions about data generation processes
(Bishop [10]).

ML models applied for purchase prediction in previous work range from feature-
based methods such as boosted decision trees to neural architectures designed for
sequential data, such as recurrent neural networks (Hendriksen et al. [41]). These
models can incorporate a wide array of features including page views, dwell time,
device type, and user history. Feature-based methods are valued for their interpretability
and robustness to heterogeneous input data, while neural networks are favored for
their ability to capture temporal dependencies and nonlinear patterns in high-volume
datasets.

Hendriksen et al. [41] provide a large-scale empirical evaluation of ML-based
purchase predictors using over 95 million anonymized sessions from a major European
e-commerce platform. They distinguish between anonymous and identified sessions,
building separate feature-based models for each. For anonymous sessions, where user
history is unavailable, models rely exclusively on dynamic, session-level features such
as device type, number of visited pages, and channel of entry. For identified sessions,
they enrich the feature space with historical indicators like prior purchase frequency
and time since last order. The authors construct multiple classifiers, including logistic
regression, decision trees, gradient boosting machines, and neural networks, and show
that in the anonymous setting, tree-based models and neural networks outperform
support vector machines, logistic regression and k-nearest neighbors, achieving an
F1 score improvement of over 17.54%. F1 score is a metric that balances precision
and recall and is calculated as the harmonic mean of the two. For identified users, the
addition of historical features enables ML models to achieve up to 96.2% F1 accuracy
on held-out data. Their work highlights how feature importance evolves during the
session: dynamic features grow more predictive over time, especially in anonymous
settings where no prior context exists.

In contrast to purely supervised classifiers, Nishimura et al. [68] propose a latent-
class machine learning model tailored to product-choice prediction. Their method
uses clickstream data to estimate purchase probabilities for individual products,
while incorporating behavioral assumptions about how viewing behavior relates to
purchase likelihood. Building on prior work using monotonicity, convexity, and
concavity (MCC) constraints in regression, the authors introduce a latent-class variant
that accounts for product heterogeneity, such as differences in price sensitivity or
purchase frequency across product types. Their approach classifies products into latent
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groups and fits separate MCC models to each, estimating class-specific product-choice
probabilities as a function of the recency and frequency of product page views.
This model is trained using an expectation-maximization algorithm and is shown to
outperform both standard MCC models and latent-class logistic regression in predictive
accuracy.

Neural networks are a flexible class of models that can learn complex, nonlinear
relationships from data, including subtle patterns that traditional models may miss
(Bishop [10]). For predicting purchase intent over a user session, architectures designed
for sequential input, such as recurrent neural networks (RNNSs), are especially useful
because they can account for how user behavior unfolds over time. These models do not
require manually defined hidden states or fixed transition assumptions, as in HMMs,
and instead estimate hidden representations and transition dynamics directly from
data. These models are estimated using algorithms like backpropagation through time
(see Werbos [86]), which allows them to learn from extended behavioral sequences.
To address difficulties in estimating these models on long sequences, such as the
tendency to forget earlier actions or to become unstable when trying to learn long-range
patterns, more advanced architectures like gated recurrent units (see Cho et al. [14])
and long short-term memory networks (see Hochreiter and Schmidhuber [42]) have
been introduced. These designs help the model retain important information over time
while filtering out less relevant details (Bishop [10]).

Sheil et al. [77] propose an RNN-based framework for predicting user purchasing
intent using anonymous session data. Their model is designed to eliminate the need for
extensive domain-specific feature engineering, a common requirement in tree-based
models like gradient boosted machines (GBMs). Instead of manually constructing
features, they represent user actions (such as item views or cart events) as input
sequences and use deep RNNs to learn patterns that capture both short-term and
broader behavioral dynamics. The design includes techniques to help the model
perform well across sessions of varying length. Their results suggest that deep learning
models can be effective for predicting purchase intent from anonymous session data,
even in settings with strong class imbalance.

Tang and Wang [83] propose a model called Caser that applies deep learning to
model user behavior over time. While not originally designed for binary classification,
Caser is relevant to purchase intent modeling as it captures both long-term user
preferences and short-term action patterns within a session. The model treats a user’s
sequence of interactions as a structured input and uses neural network components
to detect recurring patterns, such as recent clicks or combinations of earlier actions
that may influence later behavior. It also allows for flexibility in modeling situations
where earlier behaviors affect outcomes even if they are not immediately followed
by related actions. Compared to more traditional approaches, Caser is designed to
better capture complex behavior sequences. In evaluation tasks involving product
recommendation, the model consistently outperforms several established methods,
suggesting its potential for broader behavioral prediction problems.

28



4 Predicting purchases in an online clothing store

4.1 Setup

In this section, we develop a model to predict whether a visitor will make a purchase
in a Finnish online clothing store that specializes in exclusive sneakers and streetwear.
The store features over 300 products, including a wide selection of shoes, clothing,
and accessories. Its website follows a typical e-commerce structure, with a strong
emphasis on product presentation and carefully designed navigation to help users
easily locate items.

We formulate the prediction of a purchase event as a binary classification problem,
as described in Section 3.1.1. User behavior on the online store is captured through
timestamped events, each associated with a unique user ID. These events are used to
construct input vectors representing individual user sessions. Each sequence of user
actions is assumed to be generated by an underlying sequence of hidden user intent
states, which evolve over time and are modeled using hidden semi-Markov models
(HSMMs). Classification is based on the observed input vector as well as the duration
a user spends in each hidden state, a key feature of HSMMs. Prior research by Hatt
and Feuerriegel [40] has demonstrated the effectiveness of this temporal modeling
approach in predicting user exits in online stores, suggesting that state duration could
also serve as a valuable predictor for purchase behavior.

The modeling process is based on clickstream data collected over a period from
January 21 to May 30, 2025. Clickstream data consists of all the actions a user takes
while interacting with a website. The resulting dataset has 29 597 443 rows and
contains 618 052 timestamped events generated by 42 626 unique users. Each event is
linked to an anonymized user ID, allowing the reconstruction of complete behavioral
sequences across user sessions. The HSMMs are estimated using the observed user
event sequences, capturing both the types of actions (e.g., product views, cart additions)
and the duration spent in underlying hidden states. This temporal modeling approach
allows the system to account for the time users remain in each intent state, providing
a more nuanced view of session progression than memoryless models like standard
HMMs.

4.2 Data collection

In accordance with GDPR requirements, visitor consent was obtained via a cookie
banner prior to initiating data collection. Visitor interactions on the website were
tracked using Google Tag Manager (GTM) [33] and Google Analytics 4 (GA4) [32],
with the collected data stored in BigQuery [34]. The tracking setup was implemented
by integrating a custom pixel into the store’s Shopify platform. A pixel is a small
piece of code embedded in a webpage that sends information about user behavior to
analytics or advertising platforms. Because data is only recorded for users who accept
tracking cookies, the dataset may reflect a subset of visitors, introducing potential
selection bias.

The pixel was configured to record specific user actions, such as viewing a product,
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adding an item to the cart, or completing a purchase. Each interaction generated an
event containing a unique user identifier and contextual information related to the
action. Table 2 lists the types of events that were collected during user sessions.

Website visitor

Visits store

v

Shopify store

Shows cookie banner

v

Consent given?

No Yes
No data collected Custom pixel

Generates events

Google Tag Manager

Sends data

v

Google Analytics 4

Daily export of raw events

BigQuery

Streams data via API

v

Local CSV file

Read file

v

Preprocessing & modeling

Figure 1: The data collection process.
Once recorded, the events were transmitted to GA4 and subsequently exported to

BigQuery, where the data was stored for further processing. As GA4 does not provide
direct access to raw event-level data in its interface, the export to BigQuery was
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configured to occur on a daily basis. From there, the dataset was retrieved as a local
CSV file using Python 3.11.9 and the google-cloud-bigquery library (version 3.31.0)
to allow for preprocessing and modeling. The data collection process is illustrated in
Figure 1. While this workflow could have been managed entirely within Google Cloud
Platform (GCP), a local environment was used to reduce cloud computing costs. The
implementation followed publicly available guidance for integrating GA4 with GTM
and Shopify [25].

Table 2: The events collected from the online store and their descriptions.

Event name Description

first_visit User visits the site for the first time
session_start User first enters the site

page_view A page on the site is viewed

menu_click A link in the store menu is clicked
view_search_results An on-site search is performed

view item list A collection page is opened
product_click A product card is clicked

view_item A product page is opened

add_to_cart An item is added in the shopping cart
view_cart Shopping cart page is opened
remove_from_cart An item is removed from the shopping cart
begin_checkout User enters the checkout page
add_shipping_info Shipping information is filled on checkout
add_payment_info Payment information is filled on checkout
purchase A purchase is completed

The number of events sent daily from Google Analytics 4 to BigQuery is shown
in Figure 2. These are all the actions taken by different users in the online store
each day. The daily volume ranges from 3,327 to 7,330 events. While there is
noticeable day-to-day variation, no prolonged periods of unusually high or low activity
are observed. This suggests that there were no errors in sending data from Google
Analytics 4 to BigQuery. The short-term peaks likely correspond to specific campaigns
or promotions. A decline in mid-February coincides with the winter holiday period,
and lower event counts at the end of April align with the Easter holiday.
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Daily event count in BigQuery
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Figure 2: The daily number of events sent to BigQuery.

4.3 Data structure

User interaction data is recorded as a series of timestamped events. Each row in
the table corresponds to a single event performed by a user on the website. Events
are identified by a name (e.g., page_view, product_click) and are associated with an
anonymized user identifier. Each event is accompanied by two types of metadata:
event parameters and contextual variables. Event parameters are key-value pairs
that provide additional information about the event itself. For example, a page_view
event, triggered when a user loads a page, includes parameters such as the page URL,
campaign identifiers, and session-related metadata. Table 3 provides an overview of
typical parameters associated with a page_view event. Contextual variables describe
the environment in which the event occurred. These include general information
about the user’s device (e.g., mobile vs. desktop) and geographical location (e.g., city,
country).

The event parameter values can hold values of different data types, including
strings, integers, floats, and doubles. The parameters are stored as nested records in
the database. Each event contains a repeated field called event_params, where each
entry includes a key and a nested value object. The value object contains one or more
type-specific fields, depending on the data type of the parameter. This schema is
illustrated in Table 4.

Figures 3 and 4 illustrate the same page view event from the Google Analytics
4 export to BigQuery in two different table schemas. In the raw schema (Figure 3),
all event parameters are stored as nested fields within a single row. In contrast, the
flattened schema (Figure 4) expands these parameters so that each key—value pair
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Table 3: The set of event parameters sent with a page_view event.

Parameter key

Description

entrances
page_location
source
batch_ordering_id

ga_session_id
srsltid

page_title
content_group
ga_session_number
session_engaged
medium
batch_page_id
campaign

term

page_referrer
engaged_session_event

ignore_referrer

content

campaign_id

Indicates whether a page is the first page viewed in a
session

The URL of the visited page

From where the user came from, e.g., Google

The number of network requests sent from the page
A unique ID for the session

Identifier parameter that is added if the user entered
the site through an advertisement in Google Merchant
Center

The title of the page

The category of the page, such as home or collection
The number of sessions the user has had on the website
Boolean flag indicating whether a user actively engaged
with the website

The traffic medium through which a user arrived at the
site, such as email

Used to identify a specific page within a batch of page
views

The marketing campaign through which a user arrived
at the site

The search keyword or phrase that a user entered in a
paid search campaign

The URL of the previous page the user visited

A parameter indicating whether a user actively engaged
with the website

Used to indicate whether the referrer information
should be disregarded

The specific element or creative content within a cam-
paign or ad that led the user to the website

The ID of the campaign through which a user arrived
at the site

occupies its own row. The grey rectangles are used to hide the company name that
appears in some fields. While the nested schema is more efficient for storage and
querying within BigQuery (see [35]), it complicates data processing outside that
environment. Flattening the data makes it easier to process outside of BigQuery but
results in redundancy and increased storage size. For example, the size of the nested

table for events between January 21 and May 30, 2025, is 1.21 GB, while the flattened

table for the same period occupies 6.44 GB, even though many columns were excluded

from the flattened table.
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Table 4: User interaction data schema structure.

Field name

Description

event_timestamp
event_name
event_params
key
value
string_value
int_value
float_value
double_value
device
category

geo
city

Timestamp of the event

Name of the event (e.g., page_view)
Repeated record of event parameters
Name of the parameter

Record containing the parameter value
Value as a string

Value as an integer

Value as a float

Value as a double

The device information

The device category: mobile, desktop etc.

The location information
The city the user is in

event_timestamp + event_name ¥

% 4

1739656809937937  page_view

, event_params. key , event_params.value. string_value  event_params.val... , event_params.val..  event_paramsyal.. . event previous
ga_session_number 1

page_location

session_engaged 1
batch_ordering.id i

page._title

batch_page_id 1739656809780
ga_session_id 1739656505
engaged_session_event 1
content_group product detail

page_referrer

ignore_referrer true

Figure 3: A page view event in the raw BigQuery event table exported from Google
Analytics 4.

Row , event.date ~
15 20250216
16 20250216
17 20250216
18 20250216
19 20250216
20 20250216
21 20250216
22 20250216
23 20250216
24 20250216
25 20250216

1739656809937937  page_view

1739656809937937  page_view

1739656809937937  page_view
1739656809937937  page_view

1739656800937937  page_view

1739656809937937  page_view
1739656800937937  page_view
1739656809937937  page_view
1739656809937937  page_view

1739656809937937  page_view

1739656809937937  page_view

, param_key ~ . 9 ., ., wl.. val.. , d ~
ga_session_number 1 1779295039.1739(
page_location htps:/ 1779295039.1730(
session_engaged 1 1779295039.1739(
bateh_ordering_id 1 1779295039.1730(
page.itle 1779295039.1738(
bateh_page_id 1739656809780 1779295039.1730(
ga_session._id 1739656505 1779295039.1738(
engaged_session_event 1 1779295039.1739(
content_group product detail 1779295039.1730(
page._referrer 1779295039.1739(
ignore_referrer true 1779295039.1730(

Figure 4: A page view event in the flattened BigQuery event table exported to a local

CSV file.
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4.4 Data preprocessing

Clickstream data is high-dimensional and often irregular, with sessions varying
significantly in length and content, making preprocessing a necessary step. From a
statistical standpoint, the heterogeneity complicates comparisons across sessions, as
many modeling approaches assume inputs with a uniform structure. Preprocessing
helps by reducing variability and organizing the data into a format where patterns in
user behavior can be more reliably identified and analyzed. As described in Section 4.3,
the exported data includes nested fields, most notably the event parameters, which must
be unnested to produce a flat, tabular format suitable for analysis. Table 5 presents the
schema of the flattened dataset used in this study, after unnesting the nested fields from
the GA4 export using SQL. The structure and complexity of this data require tailored
preprocessing steps, which vary depending on the data source and the types of events
involved. In this case, preprocessing was designed for client-side clickstream data
collected via Google Analytics 4 and exported to BigQuery. Key preprocessing tasks
include constructing sessions, filtering out bots and anomalous behavior, selecting
relevant events, and generating labels. We use Python 3.11.9 and the pandas library
(version 2.2.3) (McKinney [59]) throughout the preprocessing. The objective is to
transform the raw event stream into a clean, structured, and model-ready format that
preserves the sequential and contextual properties necessary for downstream modeling
tasks.

Session construction refers to the process of grouping all events generated by a
specific user within a defined time window, often 30 minutes, and arranging them
chronologically. This sequence of events captures the user’s navigation path and event
history throughout their visit to the online store, forming the basis for modeling behavior
as a sequence of transitions between states, an assumption central to Markov chain-
based approaches. In earlier studies, session construction was typically performed
using server log data, which required researchers to infer user identity based on
semi-unique identifiers such as IP addresses and to reconstruct event order from server
request timestamps (Montgomery et al. [65], Sismeiro and Bucklin [78]). However,
server log data has known limitations. Many modern websites implement caching
mechanisms, which allow pages to be served from the browser’s or intermediary
proxy’s memory when revisited, bypassing the server entirely. As a result, repeated
views of the same page may not be recorded in server logs. Furthermore, [P-based user
identification is unreliable: multiple users within the same network (e.g., a household
or office) may share an IP address, and individual users may appear under different
IPs over time due to dynamic allocation or mobile usage.

By contrast, client-side data collection, such as that performed through Google
Analytics 4, captures events directly in the user’s browser. This approach reliably
logs every interaction, regardless of whether a server request was made, and typically
assigns a unique user ID, such as user_pseudo_id in Table 5, at the time of first visit,
assuming the user consents to tracking via cookies. This ID is stored in the browser
and attached to each event, enabling straightforward and accurate session construction
without relying on IP addresses. Nevertheless, this identifier is browser-specific,
meaning a user visiting the site from multiple devices or using incognito mode will
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Table 5: The initial dataset schema.

Name Type
event_date STRING
event_timestamp INTEGER
event_name STRING
event_param_key STRING
event_param_value_string STRING
event_param_value_int INTEGER
event_param_value_float FLOAT
event_param_value_double FLOAT
user_pseudo_id STRING
user_first_touch_timestamp INTEGER
device_category STRING
mobile_brand_name STRING
device_language STRING
geo_city STRING
geo_country STRING
traffic_source_name STRING
traffic_source_medium STRING
traffic_source_source STRING
item_id STRING
item_name STRING
quantity INTEGER
price FLOAT

be assigned different IDs, fragmenting their activity across separate user profiles.
Conveniently, we can use the user_pseudo_id and event_timestamp to construct the
sessions where we define a session as a sequence of events generated by a user where
the time difference between two subsequent events is less than 30 minutes. Google
Analytics and other analytics platforms often use 30 minutes as the default session
timeout which is why it was chosen.

Virtually all websites are regularly scanned by automated bots for purposes such
as indexing, monitoring, or scraping. In server-side log data, these bots generate page
requests that are indistinguishable from those made by human users unless explicitly
filtered, leading to potential contamination of behavioral datasets. By contrast, client-
side data collection, such as that used in this study, inherently filters out most bot
traffic. This is because tracking scripts, typically loaded and executed via JavaScript,
are not triggered by bots, which often do not render or execute JavaScript. As a result,
bot activity is largely absent from datasets collected using tools like Google Analytics
4, eliminating the need for separate bot detection and filtering procedures.

However, anomaly detection remains an important preprocessing step. Sessions
that are excessively short (e.g., a single event) or abnormally long may not contain
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meaningful behavioral signals and can distort model estimation or evaluation. Fol-
lowing practices noted in the literature, these anomalies are typically filtered out by
applying thresholds on the number of page views or events per session (Bigon et
al. [9]). This ensures that only sessions with sufficient behavioral information are
retained for analysis. Following the preprocessing conducted in Montgomery et al. [65]
and Hatt and Feuerriegel [40] we decide to exclude sessions consisting of less than
three and more than 50 page views. This leaves us with 24 252 valid sessions in our
dataset.

To identify the sessions that end in purchase, the session outcome is encoded as a
binary label indicating whether a purchase occurred. Information such as transaction
value or item identity were not used in this analysis. This simplification reduces target
complexity and allows the model to focus solely on whether the purchase occurred
rather than the characteristics of the purchase.

Of the 24 252 sessions in the dataset, 252 are labeled as purchase sessions. This
level of class imbalance is common in online retail data and has to be taken into
account in the modeling process. The impact of class imbalance can be mitigated
before modeling by oversampling the minority class, undersampling the majority class
or using different error weights for different classes (Menon et al. [61]). The decision
threshold, the probability value above which a session is classified as a purchase, can
also be adjusted for a probabilistic classifier to account for class imbalance. That is,
instead of using a default threshold (e.g., 0.5), the threshold can be shifted to reflect
the fact that purchase events are much less common than non-purchase events (Menon
et al. [61]).

The events in Table 2 include some events that are closely related to a purchase
event, namely add_shipping_info and add_payment_info. These correspond to the
user filling out their information in the checkout which is the last required step before
completing a purchase. Since these events occur so close to the purchase itself, they
offer limited utility for proactive interventions and are excluded from the predictive
model.

4.5 Reduction of dimensionality

To reduce the complexity of the input space, we exclude certain event types and
contextual variables from the modeling data. Many of the events listed in Table 2
exhibit high correlation with one another, which can introduce multicollinearity and
compromise model stability. Moreover, high-dimensional sets of input variables can
increase model variance and reduce generalization performance, especially when
sample sizes are limited. Variable selection helps mitigate these risks by eliminating
redundancy and focusing on behaviorally informative signals. At the same time,
care must be taken to avoid discarding relevant patterns that contribute to purchase
decisions.

The page_view event and its associated parameters are retained due to their central
role in capturing user navigation patterns. Previous studies (e.g., Montgomery et
al. [65], Hatt and Feuerriegel [40]) have demonstrated the effectiveness of categorizing
pages into broader groups, such as product, collection, or cart pages, rather than
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modeling each URL or product individually. This process can be viewed as a form
of discretization, where a high-cardinality feature is transformed into a smaller set
of interpretable categories that still capture meaningful user intent. By leveraging
page_view data, it is possible to infer visits to product pages, search result pages,
and even transitions to the checkout and thank-you pages, the latter of which indi-
cates a completed purchase. However, some key events, such as add_to_cart and
remove_from_cart, cannot be inferred from page views because they represent actions
that are taken within a page so they are not removed from the data.

Based on the structure of the online store, we define the following page cate-
gories under which we group the pages: HomE, INFo, SEARCH, COLLECTION,
Propuct, CarT, CHECKOUT, ORDER. The category INFo refers to all pages
not included in other categories, such as shipping terms, privacy policy, and contact
information. The categories are assigned based on the page URL, for example, if a
page URL includes /products/ we assign it to category PrRopucT. By adopting this
categorization, we lose the ability to compare how individual products or collections
influence purchase decisions, as each is represented by a shared label. In a store
with hundreds of products, such comparisons would require substantially more data
than is currently available in order to yield statistically meaningful results. While the
contextual features in Table 5 are useful for comparing behavior across user segments
(e.g., comparing mobile versus desktop users), they are excluded from the modeling
features to avoid overly fragmenting the dataset and reducing the sample size within
each segment.

Another way to reduce the dimensionality of the model is to use a parametric
distribution for the durations. We use the discrete Weibull distribution for this purpose.
This choice is motivated by prior work (Hatt and Feuerriegel [40]), which demonstrates
that the discrete Weibull can closely approximate a wide range of duration patterns.
Unlike the geometric distribution, implicitly assumed in standard HMMs, the Weibull
can accommodate both light- and heavy-tailed behaviors through its shape parameter,
highlighting its potential in modeling real-world temporal dynamics. The discrete
Weibull distribution is defined over positive integers d = 1,2, ... with probability
mass function:

P(D=d)=(1-0)D _(1-9)%, 3)

where 6 € (0, 1) is the scale parameter and ¢ > 0 is the shape parameter. The shape ¢
controls the "stickiness" or tail behavior of the duration, with ¢ < 1 producing heavy
tails and ¢ > 1 producing lighter ones (Nakagawa [67]).

The summary statistics for the preprocessed dataset are presented in Table 6. On
average, a session lasts approximately 3.99 minutes and includes 7.52 page views.
Most user activity is concentrated in the CoLLEcTION and PRoDUCT categories,
which account for an average of 3.83 and 2.28 page views per session, respectively.
In contrast, transactional categories such as CArRT, CHECckoUT, and ORDER are
the least visited. Interestingly, CHECckoUT is accessed more frequently than CART,
despite appearing later in the purchase process. This can be explained by the store,
like many other stores, offering a quick checkout button on the product pages which
takes the user straight to checkout without visiting the shopping cart.
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Table 6: Summary statistics of the dataset.

Mean Std. dev.

Session duration (in minutes) 3.99 7.31
Page views per session 7.52 6.21
Add to cart events per session 0.05 0.40
Remove from cart events per session .01 0.18

Category views per session

CART 0.04 0.31
CHECKOUT 0.06 0.43
COLLECTION 3.83 4.03
HowMmE 0.27 0.68
INFO 0.84 1.17
ORDER 0.01 0.15
ProbucT 2.28 2.85
SEARCH 0.19 0.81

Event counts throughout data processing steps

Figure 5: The total number of events after data processing steps.

The impact of data processing steps on session and event counts is illustrated in
Figures 6 and 5. As expected, the number of events decreases at each step, since each
stage involves filtering or discarding certain event types. In contrast, the session count
only decreases at the step where sessions with fewer than three or more than fifty
page views are removed. Subsequent filtering of events does not affect the number of
sessions retained, only the contents of the sessions. The final dataset contains only
29.6% of the original events, highlighting the high-dimensional and irregular nature
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of clickstream data.

Session counts throughout data processing steps

Figure 6: The total number of sessions after data processing steps.

4.6 Hidden semi-Markov model

We now return to the description of hidden Markov and semi-Markov models. A hidden
Markov model is a generative probabilistic model for sequential data in which the
observed sequence O = {01, 0,,...,07} is assumed to be generated by a sequence
of unobserved (hidden) states S = {S;, S, ...,S7}, whereeach S; € {0,...,K — 1}
is drawn from a finite state space and K is the number of distinct states. For example, if
K = 4, asequence of unobserved states could be {0, 0, 1, 3, 3, 2}. Figure 7 demonstrates
this generative process. The model is defined by an initial state distribution P(S),
a state transition matrix P(S;;; | S;), and an emission distribution P(O; | S;). The
sequence of hidden states forms a Markov chain, where the next state depends only on
the current state. The state transition matrix describes the probability of transitioning
from one hidden state to another. The emission distribution models the likelihood of a
specific observation given the current hidden state and thus models the relationship
between the hidden behavioral state and the observed user action. A key assumption
in HMMs is that the hidden state transitions follow a first-order Markov process, and
that the duration in each state is implicitly governed by a geometric distribution due to
the memoryless nature of the transitions.

A hidden semi-Markov model generalizes the hidden Markov model by explicitly
modeling the duration d; € N* that the system remains in each hidden state S;, where
i € {1,...,N}. This extension is illustrated in Figure 8. The duration refers to the
number of observations assigned to a hidden state and is therefore a positive integer. The
HSMM defines a segmentation of the observation sequence O = {01, 0>, ...,0r}

40



O)
N
o
3

Observations 0,

Unobserved states S1 SZ ces ST

Figure 7: Hidden Markov model process.

into N non-overlapping, contiguous segments, where each segment corresponds to a
single hidden state that persists for d; consecutive time steps. The generative process
can be described mathematically in the following way. Let #; denote the starting time
of the i-th segment, with #; = 1 and #;41 = t; + d;. The generative process is defined as:

Si ~P(S; | Si—1), withS; ~ P(S)), (Transition distribution)  (4)
di ~ Pp(d; | S)), (Duration distribution)  (5)
O, ~P(O;|S;), fort=t;,....t; +d;—1, (Emission distribution)  (6)

where each variable is drawn from the specified distribution subject to the constraint
,[-\i , di = T, which ensures that the total duration matches the full observation sequence
of length T'.

By allowing state durations to follow arbitrary distributions Pp(d; | ;) rather
than being implicitly geometric (as in HMMs), HSMMs provide greater degrees of
freedom in modeling real-world temporal dynamics. For instance, the model can better
capture prolonged hidden states such as a user deliberating before a purchase. In our
case, we use the discrete Weibull distribution to model these durations. However, this
increased expressiveness comes at a cost: model estimation and inference become
more computationally intensive, since the model must explicitly consider all possible
durations. This can impact scalability, particularly for long sequences or large datasets.

To apply the HSMM framework to our task, we model user sessions in terms
of hidden intent states and their durations. Let O = {0}, O»,...,O7} denote the
observed sequence of user actions during a session of length 7', where each O; is a
vector representing the user’s behavior at time step #. The corresponding sequence
of hidden states S = {S}, S», ..., Sy} represents unobserved user intent states (e.g.,
browsing, comparing, considering, intending to buy, abandoning). The duration for
which the system remains in a given hidden state S; is modeled by the distribution
d; ~ Pp(d | S;). The generative process for this setting follows the formulation
described above: state transitions are modeled with P(S; | S;_1), durations with
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Figure 8: Hidden semi-Markov model process.

Pp(d; | S;), and emissions with P(O; | S;) over the duration of each segment.
Bringing these components together, the joint probability of the observed actions,
hidden states, and durations is defined as:

d
P(O,S.{d;}) = P(SOPp(dy | $1) [ [ P(O: | $1)
=1
(7)

N li+d5—1
. P(S; | Si-1)Pp(d; | Si) 1_[ P(O; | S))
=)

i 1=t;

wheret; = 1 + Z;;ll d; is the starting index of the ith segment. (Yu [89])

The model estimation consists of finding the state transition matrix P(S; | Si-1),
duration distribution Pp(d; | S;) and emission distribution P(O; | S;) that maximize
the likelihood of the observed user actions. In the case of multiple user sessions, the
objective becomes maximizing the joint likelihood of the entire dataset under the
model. The estimation algorithms are usually iterative and require a starting point of
iteration, which needs to be chosen carefully.

The estimated models can be used to make classification decisions. The objective is
to classify each user session into one of two classes: purchase (C;) or no purchase (Cy),
based on the observed action sequence O. This is done by computing the posterior
probability:

A

= P
C =arg krerﬁl’g} (Cr 1 0), (8)

where the posterior is estimated via Bayes’ rule:

P(O | C) - P(Ch)

P(Ce| 0) = =5,

9
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with P(O | Cy) the class-conditional likelihood computed by estimating an HSMM
for each class k € {1,2}, and P(Cy) the class prior estimated from the empirical class
distribution in the estimation data. The denominator P(Q) in Equation (9) is constant
across classes and cancels out when maximizing the posterior in Equation (8). By
estimating separate HSMMs for each class, the model captures both temporal and
sequential dependencies in user behavior, including the varying durations users spend
in different hidden intent states. This enables more accurate classification of sessions
as leading to a purchase or not.

4.7 Model implementation

In this section, we describe the process of estimating hidden semi-Markov models
for purchase and non-purchase sessions using their respective class-labeled datasets.
To implement the models, we use Python 3.11.9 and the hsmmlearn library (Vanker-
schaver [84]). We estimate the models with 80% of the data and use the remaining
20% for validating the classification accuracy of the estimated models. The models
are used to predict purchase decisions and interpret user behavior. Model performance
is assessed on the held-out 20% validation set using several classification metrics:
accuracy, balanced accuracy, recall, and area under the ROC curve. These metrics are
defined and reported in Section 5.1.

4.7.1 Initializing the models

Table 7: Event category pair integer representations.

Integer token Event name, category

add_to_cart, CART
add_to_cart, CHECKOUT
add_to_cart, INFO
add_to_cart, PRopucT
page_view, CART
page_view, CHECKOUT
page_view, COLLECTION
page_view, HOME

0NN N kW~ O

page_view, INFO
page_view, PRoDUCT
page_view, SEARCH
remove_from_cart, CART
remove_from_cart, INFO

p— e \O
N = O

Before we can fit the HSMMs to our data, we must initialize them. We use the
class MultinomialHSMM from hsmmlearn to initialize HSMMs which requires us to
specify the number of states K to form and provide initial guesses for the emission
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probabilities, transition matrices and duration distributions. We estimate the models
using K = 3. This choice is justified in Section 5.5.

MultinomialHSMM expects the input data to be a sequence of sequences, where each
inner sequence represents a user session composed of (event name, category) pairs
represented by integers. The pair (page_view, ORDER) and all actions after it are
removed from the modeling data. Viewing an ORDER page indicates a completed
purchase so leaving it in would make the classification trivial and the actions after
the purchase can not be used for making predictions. The complete list of integer
representations of (event name, category) pairs is given in Table 7.

4.7.2 Estimating the models

Algorithm 1: Expectation-maximization algorithm implementation in hsmmlearn.

1: Input: Observed sequence of user actions O, maximum iterations max_iter,
convergence threshold e
2: Initialize:

* Transition probabilities A

* Emission probabilities B

e Duration distributions Pp

* Initial state probabilities P(S)

e Previous log-likelihood £pey «— —o0

3: for t = 1 to max_iter do
4: Estimate how likely the observed data O is under the current parameters
5: Update:

* Initial state probabilities P(S)
* Transition probabilities A
¢ Duration distributions Pp

* Emission probabilities B

6 Compute current log-likelihood €y,
7: if |Ccurr — Cprev| < € then

8 break

9 end if
10: fprev — Ceurr
11: end for

12: Output: Estimated parameters A, B, Pp, and P(S})

The transition matrix A, emission matrix B, and duration distributions are iteratively
updated to maximize the joint likelihood of the data under the model using the
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expectation-maximization (EM) algorithm (see Dempster et al. [19]). The algorithm
alternates between two steps: an expectation step (E-step) and a maximization step
(M-step). In the E-step, it computes the expected value of the log of the full joint
probability in Equation (7), using the current guesses for the model parameters, i.e.,
the transition probabilities, emission probabilities, and duration distributions. In the
M-step, the model parameters are updated to make this expected value as large as
possible, by calculating new values based on how often each parameter is estimated to
have contributed to generating the observed data. These estimates are calculated using
the probabilities of being in each state and of transitioning between states at each point
in the sequence, given the current parameter values. In this study, we use the EM
algorithm implemented in hsmmlearn. The procedure is described in Algorithm 1.
We run the EM procedure for a maximum of 5000 iterations or until convergence
below a tolerance threshold of € < 1073, where ¢ is the absolute difference between
the log-likelihood of the observed data in the previous step and the current step. Using
a relative difference instead could introduce instability when the log-likelihood values
are small or close to zero, since dividing by very small numbers can lead to large values.
This means that the algorithm terminates when changes to the model parameters result
in a change in the log-likelihood smaller than the specified tolerance threshold €. The
stopping criteria were selected based on empirical observations. Since the use of an
absolute difference means that an appropriate value for € depends on the scale of the
log-likelihood values, we evaluate different values to balance estimation time and
model performance on validation data. The maximum iterations is set as an upper
limit to prevent infinite loops in cases where the algorithm fails to converge. The
convergence diagnostics for different values of € are reported in Section 5.5.

4.7.3 Initial guesses for the parameters

As mentioned above, we need to provide initial guesses for the MultinomialHSMM class
to initialize the models. The initial values for the parameters affect the convergence of
the model so they have to be chosen carefully.

We use k-means clustering for initializing the emission probabilities by grouping
similar actions together based on how they appear across all user sessions. The k-means
clustering is implemented with the KMeans class from the scikit-learn library (version
1.6.1) (Pedregosa et al. [70]). Each cluster is then treated as an initial approximation of
a hidden state, and the emission probabilities are calculated by counting how often each
action appears within each cluster. This gives the model a reasonable starting point
for estimating the relationship between hidden intent states and observed behaviors.
While k-means is not ideal for categorical data, since it relies on numeric distances
that may not fully reflect the structure of discrete events, it offers a simple, fast, and
practical method for initializing the model in the absence of labeled state information.
More specialized methods could improve this step, but k-means provides a useful
balance between simplicity and effectiveness for our current setup.

For the durations, we use the discrete Weibull distribution described in Section 4.5.
We fit the Weibull parameters for each class based on observed state durations from a
preliminary model. For the purchase model, the best-fitting parameters were shape
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cp = 1.436 and scale 6, = 0.328 and for the non-purchase model c¢,, = 0.805
and scale 6,, = 0.601. Figure 9 illustrates the resulting Weibull distributions in
comparison with a geometric distribution (p = 0.2), which corresponds to the implicit
duration distribution of a standard HMM with self-transition probabilities of 0.80.
Self-transition probabilities indicate the likelihood that the model remains in the same
state across consecutive time steps.

Duration distributions
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Figure 9: Weibull distributions for the HSMMs and a geometric distribution.

We initialize the transition matrix with the assumption that users tend to stay in the
same behavioral state for multiple steps before switching, such as continuing to browse
or compare products, rather than frequently alternating between different states. To
reflect this, we assign a high probability (0.80) to remaining in the same state and
distribute the remaining probability equally across transitions to other states. Each
row is then normalized so that the transition probabilities sum to one. This creates a
bias towards state persistence while still allowing for transitions.

4.7.4 Session classification and interpretation

After estimating the hidden semi-Markov models for both classes, we apply them
to make classification decisions for the remaining 20% of the data evaluating their
classification accuracy. Specifically, we compute the log-likelihood of each validation
sequence O = {Oy,...,Or} under each class-specific HSMM. We use the log-
likelihood to avoid small probabilities being rounded to zero, which can happen when
multiplying many such values over long sequences. Computing this log-likelihood
involves first evaluating the marginal likelihood P(O | Cy), that is, the total probability
of observing O under class Cg, as defined by the generative model in Equation (7).
Because the hidden state sequence and durations are not observed, this requires
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summing the joint probability over all possible combinations of hidden states S and
durations d; that could have produced the observations:

P(O|C) = D, P(O,S.{d} | Co), (10)
S.{di}

where P(O,S,{d;} | Cx) is structured as defined in Equation (7), incorporating
the initial state distribution P(S;), the transition probabilities P(S;+; | S;), the
state-dependent duration distributions Pp(d; | S;), and the emission probabilities
P(O; | Si).

In the implementation, the marginal likelihood in Equation (10) is computed by
recursively summing, in log-space, over all valid state transitions and duration segments
that could produce the observation sequence O, corresponding to the summing over
hidden states and durations described in the previous paragraph.

The resulting log-likelihoods log P(O | C;) and log P(O | C,) are then combined
with empirical class priors using Bayes’ rule:

log P(Cx | 0) = log P(O | Gy) +log P(Ch), (11)

which corresponds to applying a maximum a posteriori (MAP) classifier over the
generative likelihoods conditioned on class Ci. The priors P(C;) and P(C,) are calcu-
lated empirically from the estimating data as the relative frequencies of purchase and
non-purchase sessions, respectively. To obtain normalized posteriors for classification,
the log-posteriors are exponentiated and normalized:

exp (log P(C1 | 0))
exp (log P(C1 | 0)) +exp (log P(C2 | )
_ exp (log P(C; | O))
~ exp (log P(C> | 0)) +exp (log P(Cy | 0))°

P(C1]0) = (12)

P(C | 0) (13)
which allows for a direct probabilistic interpretation. A final classification is then
made by comparing the posterior P(C; | O) to an empirically chosen classification
threshold and assigning the session to class C; if the threshold is exceeded.

We select the classification threshold by examining the model’s ROC curve. The
ROC (receiver operating characteristic) curve displays the available combinations
of hit rate and false positive rate for the model that can be achieved with different
classification thresholds (Marzban [58]). It reflects how well the model separates
the positive and negative classes as the decision threshold varies. The diagonal line
corresponds to random classification, and curves above this line represent increasingly
better performance (Marzban [58]). A perfect classifier would produce a curve that
rises vertically to a hit rate of 1.0 at a false positive rate of 0.0, and then extends
horizontally across the top (Marzban [58]). Because the ROC curve is monotonically
increasing, selecting a threshold involves identifying the point with the highest true
positive rate that still maintains an acceptable false positive rate. In this case, we select
the threshold by locating the first region along the curve where the marginal gain in
true positive rate begins to slow, that is, where the curve flattens or its slope first drops
below 0.5 and remains low.
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To gain insight into the hidden structure inferred by the estimated models, we
decode the most likely sequence of hidden states for each observed session. This allows
us to analyze how inferred user intent evolves over time. Decoding is performed using
the Viterbi algorithm (see Viterbi [85]), which identifies the sequence of hidden states
that maximizes the joint probability P(O, S, {d;}) given the observed actions. The
algorithm is adapted within the HSMM framework to account for variable-duration
state segments. By recovering the most probable state path, we can qualitatively
interpret patterns of behavior associated with purchase and non-purchase sessions
and evaluate the model’s internal representations. The hidden state interpretation is
discussed in more detail in Section 5.2.
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5 Results

5.1 Classification performance

We evaluate the prediction performance of the model using several common classifica-
tion metrics (Hatt and Feuerriegel [40], Montgomery et al. [65]). Accuracy measures
the overall proportion of correctly classified sessions and is defined as

TP+TN
TP+TN+FP+FN’

Accuracy = (14)
where TP, TN, FP, and FN denote the number of true positives, true negatives, false
positives, and false negatives, respectively. To account for class imbalance, we report
balanced accuracy, calculated as

TP TN
Balanced accuracy = =

+ , (15)
2\TP+FN TN+FP

which averages the proportion of correctly classified sessions for each class. We also
report the hit rate, defined as

) TP
Hit rate = —, (16)
TP+ FN

which captures the proportion of purchase sessions correctly identified. ROC AUC
measures how well the model distinguishes between purchase and non-purchase
sessions across all possible classification thresholds. It is computed as the area under
the ROC curve, which plots the hit rate (true positive rate) against the false positive
rate (FPR = & 1{1’;]\,). A ROC AUC of 1.0 indicates perfect separation between the
two classes, while 0.5 corresponds to random guessing. We also present a confusion
matrix, a 2x2 table that displays the proportion of correct and incorrect predictions
for each class. It provides a straightforward visual summary of classification results,
helping to identify specific types of misclassification, such as whether the model tends
to mislabel purchase sessions as non-purchases or vice versa. Finally, we include
the false positive rate and the false negative rate, corresponding to the proportion
of non-purchase sessions misclassified as purchases and the proportion of purchase
sessions misclassified as non-purchases, respectively.

Table 8 shows the prediction performance of the HSMMs for a classification
threshold of 0.2797 selected as described in Section 4.7.4. The model achieves an
overall accuracy of 0.9544 which is largely explained by class imbalance: a naive
model that classifies all sessions as non-purchase would still achieve approximately
99% accuracy, since only around 1% of sessions end in a purchase. The balanced
accuracy of 0.8897 provides a more meaningful measure in this context, showing that
the model performs well across both classes. The ROC AUC of 0.9335 suggests that
the model performs well in distinguishing between classes across various classification
thresholds. The hit rate of 0.8235 indicates that the model correctly classifies a large
proportion of purchase sessions. The confusion matrix in Figure 11 visualizes the
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Figure 10: The ROC curves for the selected models.

proportion of correct and incorrect predictions for each class. We see that the model
classifies 96% of non-purchase sessions and 82% of purchase sessions correctly.

To further assess the performance of the hidden semi-Markov models, we compare
them to two commonly used alternatives: logistic regression and hidden Markov
models. Logistic regression, implemented with the LogisticRegression class from
the scikit-learn library (version 1.6.1) (Pedregosa et al. [70]), is often employed as
a baseline due to its interpretability and efficiency (Hendriksen et al. [41], Sismeiro
and Bucklin [78], Hatt and Feuerriegel [40]). In our case, we use an {,-regularized
logistic regression model with the same input data and default settings except for
two modifications: we set the maximum number of iterations to 500, and we enable
class_weight="balanced" to correct for the substantial class imbalance in the data.
{>-regularization adds a penalty term to the model’s loss function proportional to
the square of the model coefficients. This discourages the model from assigning
overly large weights to any single feature, helping to prevent overfitting and improve
generalization to unseen data. The class_weight="balanced" option automatically
adjusts the weight assigned to each class during estimation based on its frequency
in the data. Specifically, the weight for class i is set to w; = %, where n; is the
number of samples in class i. This means the minority class (purchases) is given more
influence during estimation, helping the model detect patterns for both classes more
effectively and reducing the tendency to predict only the majority class.

Table 8 summarizes classification results across the multiple metrics defined above

50



for all three models. Logistic regression underperforms relative to both sequential
models, particularly in identifying purchase sessions. We use the default classification
threshold 0.5 for logistic regression. It yields an accuracy of 0.9870, balanced
accuracy of 0.5763 and a hit rate of 0.1569 indicating limited effectiveness in capturing
session-level behavioral patterns in this setting.

Table 8: Model comparison on classification metrics

Metric HSMM logistic regression HMM
Accuracy 0.9544 0.9870 0.9722
Balanced accuracy 0.8897 0.5763 0.8016
ROC AUC 0.9335 0.5787 0.8761
Hit rate 0.8235 0.1569 0.6275
False positive rate  0.0442 0.0042 0.0242
False negative rate  0.1765 0.8431 0.3725

The HMMs follow the same structure as the HSMMs, with the key distinction
that state durations are modeled using geometric distributions. Apart from this, the
implementation is kept identical to that of the HSMMs to ensure that any observed
differences in performance can be attributed to the choice of duration modeling. We
use a classification threshold of 0.5745 for the HMM, again selected as described
in Section 4.7.4. Its performance is slightly lower across most metrics, with the
exceptions of overall accuracy and the number of false positives. The most notable
difference lies in the hit rate, which is 0.6275 for the HMM compared to 0.8235 for
the HSMM. As illustrated in the ROC curve in Figure 10, the HMM would require a
false positive rate of approximately 30% to achieve a similar hit rate that the HSMM
achieves at around 4% false positive rate. This suggests that the explicit duration
modeling in the HSMMs more effectively supports the identification of purchase
sessions.
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Figure 11: Confusion matrix of the true and predicted labels.

5.2 Hidden state interpretation

To understand the internal structure of the HSMMs, we examine the emission prob-
abilities and inferred state sequences for selected sessions. These analyses allow
us to interpret the estimated hidden states in terms of user behavior. The emission
distributions for the purchase and non-purchase models are shown in Figures 12
and 13, respectively. Recall that the emission probabilities describe how likely each
user action is under a given hidden state. These distributions provide insight into the
behavioral patterns associated with each hidden state.

The decision-making process of online consumers can be described as a sequence
of stages reflecting the progression of behavior during a shopping session. This
includes need recognition, information search, evaluation of alternatives, purchase
decision, and post-purchase evaluation (Han [38]). Another perspective describes
online consumer decision-making as a process beginning with browsing, followed by
information search and evaluation of alternatives, and finally the purchase decision
(Awasthi [5]). These views are largely consistent, though the latter omits need
recognition and post-purchase evaluation, which typically occur outside the online
store and are therefore not reflected in our state interpretations.

The structure of the hidden states inferred by the models align with the stages
discussed above. In the purchase model, state 0 has high emission probability for actions
such as page_view:Checkout and page_view:Cart, which suggests that it corresponds
to the decision or transaction stage. State 1 is dominated by page_view:Product and
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page_view:Collection actions, indicating a browsing phase that reflects the user’s
initial exploration of available products after arriving at the store. In contrast, state 2,
with high probabilities for add_to_cart:Product and page_view:Cart, appears to
reflect a consideration or evaluation stage where the user is comparing options and
moving toward a purchase decision.

Similarly, for the non-purchase model, the distinctions between states also reflect
progression through decision stages, though the sequence ultimately does not end
in a purchase. State O is associated with collection page views and may correspond
to users passively browsing or not finding relevant products. State 1 shows a higher
emission probability for product page views reflecting a more deliberate information
search. State 2 has a high emission probability for the action page_view:Info which
includes pages such as shipping and payment terms. There are also non-zero emission
probabilities for cart related actions and checkout page views which suggests that this
state could be explained by consideration behavior.

Purchase model - Emission probabilities by state
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Figure 12: Emission distributions P(O, | S;) for each hidden state in the purchase
HSMM.

To further illustrate the behavior captured by the hidden states, Figure 14 presents
two example sessions and their corresponding state sequences as inferred by the model.
In the purchase session, the user initially occupies the consideration state (state 2)
viewing a product and adding it to the shopping cart. They then transition to state O for
the remainder of the session, during which they visit the cart, initiate checkout, briefly
navigate to the home and information pages, and finally return to checkout to complete
the purchase. In contrast, the non-purchase session begins in state 1, where the user
browses different product pages. The user then shifts to state O for an extended period
while exploring collection pages and eventually transitions to state 2, where they add
an item to the cart and view additional information pages, without completing the
purchase. Finally, the user briefly returns to state O before ending the session.
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Nonpurchase model - Emission probabilities by state
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Figure 13: Emission distributions P(O; | S;) for each hidden state in the non-purchase
HSMM.
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(a) Example state sequence in a pur-
chase session.
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(b) Example state sequence in a non-purchase session.

Figure 14: Hidden state sequences inferred by the HSMMs for example sessions.
Each colored block represents one time step, with the assigned hidden state and the
corresponding observed event shown below. These examples illustrate how the models
segment user behavior into interpretable patterns, conditioned on the session class.
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5.3 Duration modeling

To understand how long users tend to remain in a particular hidden state, we examine the
distribution of state durations estimated by the HSMMs. Table 9 presents descriptive
statistics for the state duration distributions, including the mean, standard deviation,
mode, and median, for each state in both the purchase and non-purchase models.

In the purchase model, the mean duration for state O (associated with purchase-
oriented activity) is 3.43 events, while state 1 (associated with browsing behavior) has
a slightly longer mean duration of 4.23 events. State 2, which reflects consideration
behavior has a notably brief mean duration of just 1.04 events. The relatively close
means and medians for states 0 and 1 suggest that users tend to remain in each state for
similar spans of time before switching, indicating comparable persistence in browsing
and purchase-oriented behavior. However, the larger standard deviation in state 1
indicates greater variability in browsing patterns, some users browse briefly, while
others spend longer periods exploring the store. This variation in how long users
stay in the browsing state supports the idea of explicitly modeling state durations,
as it allows the model to better account for differences in user behavior that simpler
approaches may overlook.

In contrast, the non-purchase model reveals a more pronounced difference in state
durations. State 0, which primarily reflects repetitive browsing of collection pages,
has a considerably longer mean duration of 7.76 events, with a relatively high standard
deviation of 10.13. This suggests that users who do not make purchases tend to remain
in this browsing state for extended sequences. State 1 in the non-purchase model has a
shorter mean duration of 2.11 events, and state 2 shows the briefest durations, with a
mean of 1.90 events.

These patterns indicate that purchase sessions are characterized by more frequent
transitions between exploratory and goal-oriented behavior, while non-purchase
sessions often involve long, uninterrupted stretches of low-engagement activity. This
prolonged browsing may offer an opportunity to proactively influence user behavior,
for instance, by presenting a targeted offer or discount to users who appear unlikely to
complete a purchase.

Table 9: Descriptive statistics of state duration distributions (in timesteps) for each
hidden state in the HSMMs.

Model State Mean Std Mode Median

0 343  2.07 2 3
Purchase 1 423 558 1 2

2 1.04 0.19 1 1

0 776 10.13 1 3
Non-purchase 1 211 224 1 1

2 1.90 2.06 1 1

Figure 15 visualizes the empirical state duration distributions for each hidden state
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in the purchase and non-purchase models. These plots offer more detail on the shape
of the duration distributions beyond the summary statistics.
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(b) State duration distributions for the non-purchase model.

Figure 15: Estimated duration distributions Pp(d | S;) for each hidden state in
the two HSMMs. The line shows the probability of remaining in a given state for
a specified number of time steps. These distributions reflect different behavioral
persistence patterns in purchase and non-purchase sessions.

For the purchase model, the duration distributions for all states are relatively
concentrated in the short-duration range. State 0, associated with purchase-oriented
actions, shows a peak at duration 2, indicating that once users enter this state, they
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tend to proceed through purchase-related steps relatively quickly. State 1, representing
browsing, is also skewed toward shorter durations, peaking at duration 1. State 2,
capturing consideration behavior, displays a sharp peak at duration 1, suggesting brief
and consistent visits. This suggests that even browsing behavior is fairly dynamic,
with users switching between pages or states at a relatively high rate.

The non-purchase model, on the other hand, exhibits a markedly different pattern.
State O has a flatter and more dispersed distribution, with multiple peaks at the longer
durations. The shape of this distribution indicates that users in this state often persist
in repetitive, low-engagement activity for extended sequences. State 1 peaks sharply
at duration 2 and declines steeply, pointing to brief visits. State 2 also peaks sharply at
duration 2, suggesting short consideration behavior that interrupts longer periods in
other states.

Taken together, these duration patterns reinforce the behavioral interpretation of
the states: purchase behavior involves purposeful, often short-lived transitions between
meaningful stages, while non-purchase behavior is more likely to involve long periods
of low-variety activity with occasional, brief shifts. The variety in distributional
shapes reflects the flexibility of the Weibull distribution to capture temporal dynamics,
supporting its use as an initial model choice.

5.4 Real-time purchase prediction

One of the key motivations for using HSMMs in this context is their suitability for
real-time prediction. Unlike models that only make decisions after observing the
entire sequence, the HSMM should be capable of making intermediate predictions as
user sessions unfold. In practice, this means the model can indicate whether a session
is likely to end in a purchase before the session has actually concluded, potentially
enabling timely interventions such as targeted offers or interface changes.

To evaluate this capability, we simulate a real-time setting by sequentially truncating
each session in the validation data and making a prediction at every timestep. This
corresponds to the dynamic setting described in Section 3.2.3. Given a session

with observed event sequence O = {0y, ..., O}, we perform classification at each
partial sequence {O1},{01,0,},...,{01,...,07r}. We then identify the earliest
point r € {1,...,T} at which the model makes a correct purchase prediction that

remains unchanged for the remainder of the session. We refer to this as the point of
stable and correct prediction. For comparison, we do the exact same simulation for
the estimated HMMs.

Table 10 summarizes the real-time prediction performance of the HSMM and
HMM models. The proportions reported in the table refer to session length, measured
as the number of events observed so far divided by the total number of events in
the session. When comparing the two, we observe that the HSMM achieves correct
and stable predictions in a greater proportion of sessions, 82.4% versus 62.7% for
the HMM. These values match the overall purchase classification accuracy for full
sessions, since the final iteration of the real-time simulation includes the entire session.
Therefore, it is more informative to examine at which point in the session a stable
and correct prediction is reached. In those sessions where stable predictions are
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Table 10: Real-time purchase prediction performance for the HSMM and HMM

models.
Statistic HSMM HMM
Proportion of correct and stable predictions  0.824  0.627
Mean proportion 0.637  0.804
Median proportion 0.707  0.833
Standard deviation 0.280  0.225
Minimum 0.080  0.120
Maximum 1.000  1.000

achieved, the HSMM tends to reach this point earlier. The mean proportion of the
session required for stability is 63.7% for the HSMM, compared to 80.4% for the
HMM. The median and minimum values for the models follow the same pattern. The
statistics suggest that the HSMM is able to make correct and stable predictions earlier
on average.

The histogram in Figure 16 shows the distribution of these proportions for the
HSMM and HMM across all purchase sessions. The HSMM achieves stable and
correct predictions on a significant number of sessions before observing 50% of
them. Further inspection reveals that these early predictions typically correspond
to straightforward purchase sessions, where the user visits a product page, adds the
item to the cart, and proceeds directly to checkout. The HMM only predicts two
purchase sessions correctly before 50% completion which suggests that it is not able to
recognize the straightforward purchase behavior. Predictions after 50% are achieved
at similar success between the models and for both models there are many sessions
that are only predicted just before completion.

The cumulative distribution functions (Figure 17) for the HSMM and HMM
provide a complementary view. It shows that for the HSMM, approximately 40% of
purchases are correctly predicted around 50% completion. At that point, the HMM
has only achieved stable and correct predictions in approximately 10% of purchase
sessions. After 70% completion, the cumulative shares for both models start increasing
faster likely because of checkout related actions near the end of the sessions.

From a practical standpoint, these results indicate that hidden semi-Markov models
are effective at detecting early purchase intent in straightforward sessions, but may
struggle with longer sessions involving more exploration or hesitation. This insight
can be valuable in several real-world applications. For example, during periods of high
traffic, such as Black Friday or Christmas sales, server resources could be dynamically
prioritized for users exhibiting clear purchase signals, ensuring they encounter minimal
friction when completing their transactions. It also enables targeted discounts or
reminders for users who are not exhibiting this type of behavior; if a user is already on
track to make a purchase, offering a discount or distracting them with a reminder may
be counterproductive.
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Figure 16: Histogram of session proportions before stable correct prediction.
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Figure 17: Empirical CDF of session proportions before stable correct prediction.
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5.5 Sensitivity analysis

In this section, we investigate how the model performs with different input variables.
We examine how the number of states K affects classification performance, evaluate
the convergence of the three-state model by running the EM algorithm with different
tolerance thresholds € and show how undersampling the set of non-purchase sessions
or oversampling the set of purchase sessions affects the results.

ROC curves for different values of K
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Figure 18: The ROC curves for the models with different values of K.

To examine how the choice of K affects classification performance, we estimate
the models with K € {2, 3,4, 5} and evaluate the performance of each model with the
ROC curves. All other input variables are kept identical. The ROC curves presented in
Figure 18 indicate which combinations of hit rate and false positive rate are available
for each model with different classification thresholds. We can see that for the low
false positive rates, the three-state model has a hit rate well above the rest. For a larger
false positive rate, around 30%, the two-state model outperforms the three-state model
but performs worse than any other model for lower false positive rates. This may
reflect limitations in the two-state model’s ability to distinguish between purchase
and non-purchase behavior when strict classification is required. However, with
higher false positives, it compensates by making broader generalizations that increase
sensitivity. The four and five-state models perform worse up until very high false
positive rates, which may indicate that these models capture patterns specific to the
estimation data that do not generalize well to the validation data.
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We evaluate the convergence of the three-state model by changing the tolerance €
in the EM algorithm used to fit the model parameters to the estimation data, where
the tolerance defines the minimum improvement in log-likelihood required for the
algorithm to continue iterating. We use absolute tolerance in this case because the
log-likelihood values are on a consistent scale across runs. The maximum number of
iterations is kept at 5000 to avoid extensively long runtimes. We report the number of
iterations the algorithm ran for, the total runtime, and whether it converged in Table 11.

The results show that the purchase model converges quickly across all values of e,
with low iteration counts and runtimes. The non-purchase model, on the other hand,
requires significantly more iterations and time to converge at every tolerance level.
This difference can be explained by the much larger number of sequences used to fit
the non-purchase model, which increases the computational load of each EM step.
However, while the gains in fit precision from lowering e diminish after 1073, the
runtime continues to grow, particularly for the non-purchase model, which takes nearly
28 minutes at € = 107>, These results suggest that e = 1073 remains a reasonable
choice for balancing convergence accuracy and computational efficiency, especially
when runtime is a concern.

Table 11: Convergence diagnostics for different values of e for the purchase and
non-purchase models.

Model € Iterations Time (s) Converged?
107! 77 0.3 Yes
1072 115 0.5 Yes

Purchase 1073 186 0.7 Yes
1074 273 1.1 Yes
1072 360 1.4 Yes
107! 213 91.5 Yes
1072 2463 1107.3 Yes

Non-purchase 1072 2814 1260.3 Yes
1074 2821 1309.2 Yes
1075 3713 1677.7 Yes

We undersample the non-purchase sessions by randomly selecting the same number
of sessions as in the purchase set, without replacement. We evaluate the resulting
model by plotting its ROC curve which is presented in Figure 19. The curve shows
that the model struggles to separate the classes at low false positive rates, suggesting
limited confidence in its predictions when strict classification is required. As the
threshold is relaxed, the hit rate increases rapidly, indicating that the model can still
detect purchases effectively when a higher false positive rate is acceptable.

The oversampling is done by randomly duplicating purchase sessions with re-
placement until their number matches the number of non-purchase sessions in the
estimation data. While this approach introduces some redundancy, it is a simple
way to balance the estimation data without altering the original session structure.
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Figure 19: The ROC curves for the HSMMs with oversampled purchase sessions and
undersampled non-purchase sessions.

An alternative would be to generate new artificial purchase sessions, but this would
require significantly more effort and may result in sequences that do not reflect real
user behavior. The ROC curve for the resulting model, shown in Figure 19, suggests
that oversampling yields better performance at low false positive rates compared to
undersampling, but still falls significantly short of the performance achieved with
the original, unbalanced estimation data. This may be due to the limited diversity
introduced by duplicating sessions, which can cause the model to be overly reliant
repeated patterns and reduce its ability to generalize.
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6 Discussion

The motivation for using HSMMs in this study was the assumption that explicit
modeling of state durations would capture important behavioral patterns that HMMs
might miss. The idea was that session behavior is not only defined by the sequence
of actions, but also by how long users remain in particular modes of engagement,
for instance, prolonged browsing versus a straightforward checkout path. The results
support this hypothesis in this dataset. We managed to achieve solid classification
performance with the HSMMs on both full sessions and truncated sessions simulating
a real-time scenario, consistently outperforming the HMMs. While many of the
sessions in the real-time setting were predicted correctly only towards the end of the
session, the model was able to identify early purchase signals in a substantial number
of cases.

A key limitation of this study is that the models were estimated and evaluated using
data from a single online clothing store. While this focused setting allowed for a detailed
analysis of user behavior within a consistent environment, it also raises questions
about generalizability. Online stores can differ significantly in their structure, product
types, navigation paths and traffic sources. Additionally, customer demographics,
browsing habits, and purchase behavior may vary widely across industries and target
audiences. As a result, the predictive performance and behavioral patterns identified
in this study may not fully translate to other online stores. Future work could address
this limitation by applying the models to data from a broader set of stores or domains,
potentially uncovering commonalities or domain-specific adaptations that influence
model effectiveness.

Another factor that may influence the interpretability and predictive capacity
of the models is the abstraction level used in representing user actions. Before
modeling, we opted to group similar page types under broader labels in order to reduce
the dimensionality, for example, consolidating all product page views under a single
"product” category. While this simplification helped reduce sparsity and manage model
complexity, it also meant that potentially meaningful distinctions between different
products, categories, or content types were not captured. As a result, the models
were not able to account for behavioral differences tied to specific product interest,
pricing levels, or browsing intent at a more granular level. Including more detailed
event representations could potentially reveal richer patterns, such as preferences for
certain product types or engagement with promotional content, that are currently
collapsed under generalized labels. Future work could explore the trade-off between
model tractability and behavioral resolution by systematically evaluating the effects of
different levels of event granularity.

The data used in this study was collected over approximately four months, which
limited the overall volume of available sessions, particularly purchase sessions, of
which there were 252. While this was sufficient for conducting the main experiments,
the relatively small sample size may restrict the robustness of the findings, especially for
more complex models like the HSMM. Limited data can increase the risk of overfitting,
hinder generalization, and reduce the reliability of estimated parameters, such as
emission and duration distributions. Furthermore, the restricted time span may not
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capture seasonal trends, promotional effects, or other temporal dynamics that influence
online shopping behavior. Extending the data collection period or incorporating data
from multiple time windows could help provide a more comprehensive view of user
behavior and enhance the stability and generalizability of the models.

An additional consideration in interpreting the results is the potential bias in the
data collection process introduced by cookie consent requirements. The data used in
this study was collected exclusively from users who accepted tracking cookies, which
means that sessions from users who declined consent were not captured or analyzed.
While there is no clear evidence suggesting that cookie rejection is systematically
associated with different shopping behavior, it remains a possibility. Users who
decline cookies might differ in terms of privacy preferences, engagement levels, or
device usage patterns, all of which could subtly affect browsing or purchase behavior.
This introduces a potential selection bias that is difficult to quantify but should be
acknowledged. It is also worth noting that cookie consent is not required for this type
of behavioral tracking in all jurisdictions. Studies conducted in regions with less
restrictive consent frameworks could help validate whether models estimated on data
from users who agreed to tracking generalize to the broader user population.

Although the models developed in this study show potential for predicting user
purchase behavior with high accuracy, their real-world applicability poses practical
challenges. Implementing a hidden semi-Markov model in a live e-commerce environ-
ment would likely require substantial engineering effort, real-time data infrastructure,
and computational resources. In particular, the ability to make accurate, session-
level predictions as user activity unfolds requires low-latency event processing and
continuous model evaluation. These technical requirements may translate into high
implementation costs, both in terms of initial setup and ongoing maintenance. As
such, the question arises whether the potential benefits, such as improved targeting,
personalization, or intervention strategies, are sufficient to justify these investments.
While the value of real-time purchase prediction could be significant in high-traffic or
high-margin settings, a cost-benefit analysis should be conducted before deploying
such models in practice.
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7 Conclusions

In recent years, an increasing share of global retail has shifted to online channels,
creating a highly competitive landscape where converting visitors into buyers is
crucial for business success. Despite significant investment in website optimization,
recommendation systems, and targeted marketing, conversion rates remain modest. As
a result, accurately predicting purchase decisions based on user behavior has become
a key research focus in e-commerce.

Previous work in this area has explored both machine learning and Markovian
modeling approaches. While machine learning models can achieve high predictive
accuracy, they typically rely on carefully prepared input data or large estimation
datasets. Markov models, in contrast, offer an interpretable probabilistic framework
that naturally incorporates sequential behavior. Among these, hidden Markov models
(HMMs) have proven effective in capturing hidden user intent. However, a key
limitation of HMMs is their assumption of memoryless state transitions, which
implicitly imposes a geometric duration distribution. Hidden semi-Markov models
(HSMMs) address this limitation by explicitly modeling how long the system remains
in each hidden state, offering a potentially richer temporal representation of user
behavior.

This thesis investigated the use of HSMMs to classify user sessions based on
whether they would end in a purchase, using behavioral data from a Finnish online
clothing store. While prior work has demonstrated the utility of HSMMs in modeling
user exits, our goal was to evaluate their effectiveness in predicting purchases and
assess their performance under real-time constraints, where the full session may not be
available. To assess the predictive capability, the model was tested on both complete
sessions and truncated sessions that simulate real-time use.

The results suggest that HSMMs are effective for classifying user sessions in our
dataset based on purchase intent, particularly due to their ability to model how long
users remain in different behavioral states. The approach performed well on both full
sessions and truncated sessions simulating real-time conditions. In many cases, the
model was able to detect purchase intent early in the session, indicating potential for
real-time applications where timely predictions are valuable.

Future research could explore applying these models across a broader set of
online retail environments to assess their generalizability and identify domain-specific
patterns. Increasing the granularity of user action representations may also uncover
richer behavioral signals that are currently abstracted away. In addition, collecting
larger and more temporally diverse datasets could improve the robustness of the models
and allow for the exploration of seasonal or campaign-driven shopping behaviors.
These directions may further clarify the strengths and limitations of sequence-based
models in predicting online purchase decisions.
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